首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apoptotic cell death and survival is controlled by pro- and antiapoptotic proteins. Because these proteins act on each other, cell fate is dictated by the relative activity of pro- versus antiapoptotic proteins. Here we report that BRUCE, a conserved 528 kDa peripheral membrane protein of the trans-Golgi network, protects cells against apoptosis and functions as an inhibitor of apoptosis (IAP). By using wild-type and mutant forms we show that BRUCE inhibits caspase activity and apoptosis depending on its BIR domain. Upon apoptosis induction, BRUCE is antagonized by three mechanisms: first, through binding to Smac; second, by the protease HtrA2; and third, by caspase-mediated cleavage. In addition to its IAP activity BRUCE has the distinctive property of functioning as a chimeric E2/E3 ubiquitin ligase with Smac being a substrate. Our work suggests that, owing to its two activities and its localization, BRUCE may function as a specialized regulator of cell death pathways.  相似文献   

2.
X chromosome-linked inhibitor of apoptosis (XIAP) is an endogenous inhibitor of caspase-3, -7, and -9. Smac/DIABLO, an inhibitor of XIAP, is released from mitochondria upon receiving apoptotic stimuli and binds to the BIR2 and BIR3 domains of XIAP, thereby inhibiting its caspase-inhibitory activity. Here we report that a serine protease called HtrA2/Omi is released from mitochondria and inhibits the function of XIAP by direct binding in a similar way to Smac. Moreover, when overexpressed extramitochondrially, HtrA2 induces atypical cell death, which is neither accompanied by a significant increase in caspase activity nor inhibited by caspase inhibitors, including XIAP. A catalytically inactive mutant of HtrA2, however, does not induce cell death. In short, HtrA2 is a Smac-like inhibitor of IAP activity with a serine protease-dependent cell death-inducing activity.  相似文献   

3.
4.
Members of the IAP (inhibitor of apoptosis) family function as anti-apoptotic proteins by binding directly to caspase-3, -7, and -9 to inhibit their activities. During apoptosis, the activities of IAPs are relieved by a second mitochondria-derived caspase activator, named Smac/DIABLO. Some IAPs have a C-terminal RING finger domain that has been identified as the essential motif for the activity of ubiquitin ligase (E3). Here we show that X-linked IAP (XIAP) mediates the polyubiquitination of caspase-9 and Smac. The large subunit of mature caspase-9 was polyubiquitinated by XIAP in vitro, while procaspase-9 was not. Furthermore, the polyubiquitinated form of caspase-9 accumulated in an XIAP-dependent manner in intact cells. The ubiquitination of caspase-9 was significantly inhibited in the presence of mature Smac, whereas XIAP was also found to promote the polyubiquitination of cytosolic Smac both in vitro and in intact cells. These ubiquitination reactions require the RING finger domain of XIAP. These findings suggest that XIAP functions as ubiquitin ligase toward mature caspase-9 and Smac to inhibit apoptosis.  相似文献   

5.
To identify human proteins that bind to the Smac and caspase-9 binding pocket on the baculoviral inhibitor of apoptosis protein (IAP) repeat 3 (BIR3) domain of human XIAP, we used BIR3 as an affinity reagent, followed by elution with the BIR3 binding peptide AVPIA, microsequencing, and mass spectrometry. The mature serine protease Omi (also known as HtrA2) was identified as a mitochondrial direct BIR3-binding protein and a caspase activator. Like mature Smac (also known as Diablo), mature Omi contains a conserved IAP-binding motif (AVPS) at its N terminus, which is exposed after processing of its N-terminal mitochondrial targeting sequence upon import into the mitochondria. Mature Omi is released together with mature Smac from the mitochondria into the cytosol upon disruption of the outer mitochondrial membrane during apoptosis. Finally, mature Omi can induce apoptosis in human cells in a caspase-independent manner through its protease activity and in a caspase-dependent manner via its ability to disrupt caspase-IAP interaction. Our results provide clear evidence for the involvement of a mitochondrial serine protease in the apoptotic pathway, emphasizing the critical role of the mitochondria in cell death.  相似文献   

6.
Inhibitor of apoptosis (IAP) proteins inhibit caspases, a function counteracted by IAP antagonists, insect Grim, HID, and Reaper and mammalian DIABLO/Smac. We now demonstrate that HtrA2, a mammalian homologue of the Escherichia coli heat shock-inducible protein HtrA, can bind to MIHA/XIAP, MIHB, and baculoviral OpIAP but not survivin. Although produced as a 50-kDa protein, HtrA2 is processed to yield an active serine protease with an N terminus similar to that of Grim, Reaper, HID, and DIABLO/Smac that mediates its interaction with XIAP. HtrA2 is largely membrane-associated in healthy cells, with a significant proportion observed within the mitochondria, but in response to UV irradiation, HtrA2 shifts into the cytosol, where it can interact with IAPs. HtrA2 can, like DIABLO/Smac, prevent XIAP inhibition of active caspase 3 in vitro and is able to counteract XIAP protection of mammalian NT2 cells against UV-induced cell death. The proapoptotic activity of HtrA2 in vivo involves both IAP binding and serine protease activity. Mutations of either the N-terminal alanine of mature HtrA2 essential for IAP interaction or the catalytic serine residue reduces the ability of HtrA2 to promote cell death, whereas a complete loss in proapoptotic activity is observed when both sites are mutated.  相似文献   

7.
X-linked inhibitor of apoptosis protein (XIAP), the most potent member of the inhibitor of apoptosis protein (IAP) family, plays a crucial role in the regulation of apoptosis. XIAP is structurally characterized by three baculovirus IAP repeat (BIR) domains that mediate binding to and inhibition of caspases and a RING domain that confers ubiquitin ligase activity. The caspase inhibitory activity of XIAP can be eliminated by the second mitochondria-derived activator of caspases (Smac)/direct IAP-binding protein with low pI (DIABLO) during apoptosis. Here we report the identification and characterization of a novel isoform of Smac/DIABLO named Smac3, which is generated by alternative splicing of exon 4. Smac3 contains an NH2-terminal mitochondrial targeting sequence required for mitochondrial targeting of Smac3 and an IAP-binding motif essential for Smac3 binding to XIAP. Smac3 is released from mitochondria into the cytosol in response to apoptotic stimuli, where it interacts with the second and third BIR domains of XIAP. Smac3 disrupts processed caspase-9 binding to XIAP, promotes caspase-3 activation, and potentiates apoptosis. Strikingly, Smac3, but not Smac/DIABLO, accelerates XIAP auto-ubiquitination and destruction. Smac3-stimulated XIAP ubiquitination is contingent upon the physical association of XIAP with Smac3 and an intact RING domain of XIAP. Smac3-accelerated XIAP destabilization is, at least in part, attributed to its ability to enhance XIAP ubiquitination. Our study demonstrates that Smac3 is functionally additive to, but independent of, Smac/DIABLO.  相似文献   

8.
The inhibitor of apoptosis proteins (IAP) are endogenous caspase inhibitors in the metazoan and characterized by the presence of baculoviral IAP repeats (BIR). X-linked IAP (XIAP) contains three BIR domains and directly inhibits effector caspases such as caspase-7 via a linker_BIR2 fragment and initiator caspases such as caspase-9 via the BIR3 domain. A mitochondrial protein Smac/DIABLO, which is released during apoptosis, antagonizes XIAP-mediated caspase inhibition by interacting directly with XIAP. Here, using glutathione S-transferase pulldown and caspase activity assay, we show that Smac is ineffective in relieving either caspase-7 or caspase-9 inhibition by XIAP domain fragments. In addition, Smac forms a ternary complex with caspase-7 and linker_BIR2, suggesting that Smac/linker_BIR2 interaction does not sterically exclude linker_BIR2/caspase-7 interaction. However, Smac is effective in removing caspase-7 and caspase-9 inhibition by XIAP fragments containing both the BIR2 and BIR3 domains. Surface plasmon resonance measurements show that Smac interacts with the BIR2 or BIR3 domain in micromolar dissociation constants. On the other hand, Smac interacts with an XIAP construct containing both BIR2 and BIR3 domains in a subnanomolar dissociation constant by the simultaneous interaction of the Smac dimer with the BIR2 and BIR3 domains of a single XIAP molecule. This 2:1 Smac/XIAP interaction not only possesses enhanced affinity but also sterically excludes XIAP/caspase-7 interaction, demonstrating the requirement of both BIR2 and BIR3 domains for Smac to relieve XIAP-mediated caspase inhibition.  相似文献   

9.
Apollon/BRUCE is a giant IAP protein that has BIR and UBC domains in its amino- and carboxy-terminals, respectively. Apollon binds and ubiquitylates SMAC/DIABLO and caspase9, and regulates apoptosis by facilitating proteasomal degradation of these proteins. Apollon overexpression inhibits apoptosis, while its downregulation sensitizes cells to apoptosis, suggesting that Apollon level is important for apoptosis regulation. Here we show that HtrA2/Omi catalytically cleaves Apollon with its serine protease activity. Conversely, Apollon ubiquitylates and facilitates proteasomal degradation of HtrA2 that binds to Apollon through IAP-binding motif. Thus, Apollon and HtrA2 mutually downregulate each other. Expression of catalytically active, but not inactive, HtrA2 induced apoptosis in Apollon-expressing cells. In Apollon-deficient cells, however, expression of catalytically inactive HtrA2 mutant with IAP-binding motif also induced apoptosis. These results indicate that HtrA2 induces apoptosis in two different mechanisms, one with serine protease domain and the other with IAP-binding motif, in Apollon-deficient cells.  相似文献   

10.
Caspase activation, the executing event of apoptosis, is under deliberate regulation. IAP proteins inhibit caspase activity, whereas Smac/Diablo antagonizes IAP. XIAP, a ubiquitous IAP, can inhibit both caspase-9, the initiator caspase of the mitochondrial apoptotic pathway, and the downstream effector caspases, caspase-3 and caspase-7. Smac neutralizes XIAP inhibition of caspase-9 by competing for binding of the BIR3 domain of XIAP with caspase-9, whereas how Smac liberates effector caspases from XIAP inhibition is not clear. It is generally believed that binding of Smac with IAP generates a steric hindrance that prevents XIAP from inhibiting effector caspases, and therefore small molecule mimics of Smac are not able to reverse inhibition of the effector caspases. Surprisingly, we show here that binding of a dimeric Smac N-terminal peptide with the BIR2 domain of XIAP effectively antagonizes inhibition of caspase-3 by XIAP. Further, we defined the dynamic and cooperative interaction of Smac with XIAP: binding of Smac with the BIR3 domain anchors the subsequent binding of Smac with the BIR2 domain, which in turn attenuates the caspase-3 inhibitory function of XIAP. We also show that XIAP homotrimerizes via its C-terminal Ring domain, making its inhibitory activity toward caspase-3 more susceptible to Smac.  相似文献   

11.
Degradation of certain inhibitor of apoptosis proteins (IAPs) appears to be critical in the initiation of apoptosis, but the factors that regulate their degradation in mammalian cells are unknown. Nrdp1/FLRF is a RING finger-containing ubiquitin ligase that catalyzes degradation of the EGF receptor family member, ErbB3. We show here that Nrdp1 associates with BRUCE/apollon, a 530 kDa membrane-associated IAP, which contains a ubiquitin-carrier protein (E2) domain. In the presence of an exogenous E2, UbcH5c, purified Nrdp1 catalyzes BRUCE ubiquitination. In vivo, overexpression of Nrdp1 promotes ubiquitination and proteasomal degradation of BRUCE. In many cell types, apoptotic stimuli induce proteasomal degradation of BRUCE (but not of XIAP or c-IAP1), and decreasing Nrdp1 levels by RNA interference reduces this loss of BRUCE. Furthermore, decreasing BRUCE content by RNA interference or overexpression of Nrdp1 promotes apoptosis. Thus, BRUCE normally inhibits apoptosis, and Nrdp1 can be important in the initiation of apoptosis by catalyzing ubiquitination and degradation of BRUCE.  相似文献   

12.
X-linked IAP (XIAP) suppresses apoptosis by binding to initiator caspase-9 and effector caspases-3 and -7. Smac/DIABLO that is released from mitochondria during apoptosis can relieve its inhibitory activity. Here we investigated the role of XIAP in the previously found obstruction of chemotherapy-induced caspase-9 activation in non-small cell lung cancer (NSCLC) cells. Endogenously expressed XIAP bound active forms of both caspase-9 and caspase-3. However, downregulation of XIAP using shRNA or disruption of XIAP/caspase-9 interaction using a small molecule Smac mimic were unable to significantly induce caspase-9 activity, indicating that despite a strong binding potential of XIAP to caspase-9 it is not a major determinant in blocking caspase-9 in NSCLC cells. Although unable to revert caspase-9 blockage, the Smac mimic was able to enhance cisplatin-induced apoptosis, which was accompanied by increased caspase-3 activity. Additionally, a more detailed analysis of caspase activation in response to cisplatin indicated a reverse order of activation, whereby caspase-3 cleaved caspase-9 yielding an inactive form. Our findings indicate that the use of small molecule Smac mimic, when combined with an apoptotic trigger, may have therapeutic potential for the treatment of NSCLC.  相似文献   

13.
Neutrophil apoptosis constitutes a way of managing neutrophil-mediated reactions. It allows coping with infections, but avoiding overt bystander tissue damage. Using digitonin-based subcellular fractionation and Western blotting, we found that spontaneous apoptosis of human neutrophils (after approximately 20 h of culture) was associated with translocation of two proapoptotic Bcl-2 homologues, Bid and Bax, to the mitochondria and truncation of Bid, with subsequent release of Omi/HtrA2 and Smac/DIABLO into the cytosol. These events were accompanied by processing and increased enzymatic activity of caspase-8, -9, and -3. A G-CSF-mediated reduction in apoptosis coincided with inhibition of all these reactions. The G-CSF-induced effects were differentially dependent on newly synthesized mediators. Whereas inhibition of Bax targeting to the mitochondria and inhibition of caspase activation by G-CSF were dependent on protein synthesis, Bid truncation and redistribution were prevented by G-CSF regardless of the presence of the protein synthesis inhibitor cycloheximide. Apparently, the observed Bid changes were dispensable for neutrophil apoptosis. Although the regulators of the inhibitor of apoptosis proteins (IAPs), Omi/HtrA2 and Smac/DIABLO, were released into the cytosol during apoptosis, we did not observe cleavage of X-linked IAP, which suggests that another mechanism of IAP deactivation is involved. Together our results support an integrative role of the mitochondria in induction and/or amplification of caspase activity and show that G-CSF may act by blocking Bid/Bax redistribution and inhibiting caspase activation.  相似文献   

14.
Livin promotes Smac/DIABLO degradation by ubiquitin-proteasome pathway   总被引:13,自引:0,他引:13  
Livin, a member of the inhibitor of apoptosis protein (IAP) family, encodes a protein containing a single baculoviral IAP repeat (BIR) domain and a COOH-terminal RING finger domain. It has been reported that Livin directly interacts with caspase-3 and -7 in vitro and caspase-9 in vivo via its BIR domain and is negatively regulated by Smac/DIABLO. Nonetheless, the detailed mechanism underlying its antiapoptotic function has not yet been fully characterized. In this report, we provide, for the first time, the evidence that Livin can act as an E3 ubiquitin ligase for targeting the degradation of Smac/DIABLO. Both BIR domain and RING finger domain of Livin are required for this degradation in vitro and in vivo. We also demonstrate that Livin is an unstable protein with a half-life of less than 4 h in living cells. The RING domain of Livin promotes its auto-ubiquitination, whereas the BIR domain is likely to display degradation-inhibitory activity. Mutation in the Livin BIR domain greatly enhances its instability and nullifies its binding to Smac/DIABLO, resulting in a reduced antiapoptosis inhibition. Our findings provide a novel function of Livin: it exhibits E3 ubiquitin ligase activity to degrade the pivotal apoptotic regulator Smac/DIABLO through the ubiquitin-proteasome pathway.  相似文献   

15.
MCF-7 cells lack caspase-3 but undergo mitochondrial-dependent apoptosis via caspase-7 activation. It is assumed that the Apaf-1-caspase-9 apoptosome processes caspase-7 in an analogous manner to that described for caspase-3. However, this has not been validated experimentally, and we have now characterized the caspase-7 activating apoptosome complex in MCF-7 cell lysates activated with dATP/cytochrome c. Apaf-1 oligomerizes to produce approximately 1.4-MDa and approximately 700-kDa apoptosome complexes, and the latter complex directly cleaves/activates procaspase-7. This approximately 700-kDa apoptosome complex, which is also formed in apoptotic MCF-7 cells, is assembled by rapid oligomerization of Apaf-1 and followed by a slower process of procaspase-9 recruitment and cleavage to form the p35/34 forms. However, procaspase-9 recruitment and processing are accelerated in lysates supplemented with caspase-3. In lysates containing very low levels of Smac and Omi/HtrA2, XIAP (X-linked inhibitor of apoptosis) binds tightly to caspase-9 in the apoptosome complex, and as a result caspase-7 processing is abrogated. In contrast, in MCF-7 lysates containing Smac and Omi/HtrA2, active caspase-7 is released from the apoptosome and forms a stable approximately 200-kDa XIAP-caspase-7 complex, which apparently does not contain cIAP1 or cIAP2. Thus, in comparison to caspase-3-containing cells, XIAP appears to have a more significant antiapoptotic role in MCF-7 cells because it directly inhibits caspase-7 activation by the apoptosome and also forms a stable approximately 200-kDa complex with active caspase-7.  相似文献   

16.
The inhibitor of apoptosis (IAP) proteins bind and inhibit caspases via their baculovirus IAP repeat domains. Some of these IAPs are capable of ubiquitinating themselves and their interacting proteins through the ubiquitin-protein isopeptide ligase activity of their RING domain. The Drosophila IAP antagonists Reaper, Hid, and Grim can accelerate the degradation of Drosophila IAP1 and some mammalian IAPs by promoting their ubiquitin-protein isopeptide ligase activity. Here we show that Smac/DIABLO, a mammalian functional homolog of Reaper/Hid/Grim, selectively causes the rapid degradation of c-IAP1 and c-IAP2 but not XIAP and Livin in HeLa cells, although it efficiently promotes the auto-ubiquitination of them all. Smac binding to c-IAP via its N-terminal IAP-binding motif is the prerequisite for this effect, which is further supported by the findings that Smac N-terminal peptide is sufficient to enhance c-IAP1 ubiquitination, and Smac no longer promotes the ubiquitination of mutant c-IAP1 lacking all three baculovirus IAP repeat domains. In addition, different IAPs require the same ubiquitin-conjugating enzymes UbcH5a and UbcH6 for their ubiquitination. Taken together, Smac may serve as a key molecule in vivo to selectively reduce the protein level of c-IAPs through the ubiquitin/proteasome pathway.  相似文献   

17.
Du C  Fang M  Li Y  Li L  Wang X 《Cell》2000,102(1):33-42
We report here the identification of a novel protein, Smac, which promotes caspase activation in the cytochrome c/Apaf-1/caspase-9 pathway. Smac promotes caspase-9 activation by binding to inhibitor of apoptosis proteins, IAPs, and removing their inhibitory activity. Smac is normally a mitochondrial protein but is released into the cytosol when cells undergo apoptosis. Mitochondrial import and cleavage of its signal peptide are required for Smac to gain its apoptotic activity. Overexpression of Smac increases cells' sensitivity to apoptotic stimuli. Smac is the second mitochondrial protein, along with cytochrome c, that promotes apoptosis by activating caspases.  相似文献   

18.
Smac/Diablo and HtrA2/Omi are inhibitors of apoptosis (IAP)-binding proteins released from the mitochondria of human cells during apoptosis and regulate apoptosis by liberating caspases from IAP inhibition. Here we describe the identification of a proteolytically processed isoform of the polypeptide chain-releasing factor GSPT1/eRF3 protein, which functions in translation, as a new IAP-binding protein. In common with other IAP-binding proteins, the processed GSPT1 protein harbors a conserved N-terminal IAP-binding motif (AKPF). Additionally, processed GSPT1 interacts biochemically with IAPs and could promote caspase activation, IAP ubiquitination and apoptosis. The IAP-binding motif of the processed GSPT1 is absolutely required for these activities. Our findings are consistent with a model whereby processing of GSPT1 into the IAP-binding isoform could potentiate apoptosis by liberating caspases from IAP inhibition, or target IAPs and the processed GSPT1 for proteasome-mediated degradation.  相似文献   

19.
The apoptosome is a large caspase-activating ( approximately 700-1400 kDa) complex, which is assembled from Apaf-1 and caspase-9 when cytochrome c is released during mitochondrial-dependent apoptotic cell death. Apaf-1 the core scaffold protein is approximately 135 kDa and contains CARD (caspase recruitment domain), CED-4, and multiple (13) WD40 repeat domains, which can potentially interact with a variety of unknown regulatory proteins. To identify such proteins we activated THP.1 lysates with dATP/cytochrome c and used sucrose density centrifugation and affinity-based methods to purify the apoptosome for analysis by MALDI-TOF mass spectrometry. First, we used a glutathione S-transferase (GST) fusion protein (GST-casp9(1-130)) containing the CARD domain of caspase-9-(1-130), which binds to the CARD domain of Apaf-1 when it is in the apoptosome and blocks recruitment/activation of caspase-9. This affinity-purified apoptosome complex contained only Apaf-1XL and GST-casp9(1-130), demonstrating that the WD40 and CED-4 domains of Apaf-1 do not stably bind other cytosolic proteins. Next we used a monoclonal antibody to caspase-9 to immunopurify the native active apoptosome complex from cell lysates, containing negligible levels of cytochrome c, second mitochondria-derived activator of caspase (Smac), or Omi/HtrA2. This apoptosome complex exhibited low caspase-processing activity and contained four stably associated proteins, namely Apaf-1, pro-p35/34 forms of caspase-9, pro-p20 forms of caspase-3, X-linked inhibitor of apoptosis (XIAP), and cytochrome c, which was only bound transiently to the complex. However, in lysates containing Smac and Omi/HtrA2, the caspase-processing activity of the purified apoptosome complex increased 6-8-fold and contained only Apaf-1 and the p35/p34-processed subunits of caspase-9. During apoptosis, Smac, Omi/HtrA2, and cytochrome c are released simultaneously from mitochondria, and thus it is likely that the functional apoptosome complex in apoptotic cells consists primarily of Apaf-1 and processed caspase-9.  相似文献   

20.
Inhibitors of apoptosis (IAPs) inhibit caspases, thereby preventing proteolysis of apoptotic substrates. IAPs occlude the active sites of caspases to which they are bound and can function as ubiquitin ligases. IAPs are also reported to ubiquitinate themselves and caspases. Several proteins induce apoptosis, at least in part, by binding and inhibiting IAPs. Among these are the Drosophila melanogaster proteins Reaper (Rpr), Grim, and HID, and the mammalian proteins Smac/Diablo and Omi/HtrA2, all of which share a conserved amino-terminal IAP-binding motif. We report here that Rpr not only inhibits IAP function, but also greatly decreases IAP abundance. This decrease in IAP levels results from a combination of increased IAP degradation and a previously unrecognized ability of Rpr to repress total protein translation. Rpr-stimulated IAP degradation required both IAP ubiquitin ligase activity and an unblocked Rpr N terminus. In contrast, Rpr lacking a free N terminus still inhibited protein translation. As the abundance of short-lived proteins are severely affected after translational inhibition, the coordinated dampening of protein synthesis and the ubiquitin-mediated destruction of IAPs can effectively reduce IAP levels to lower the threshold for apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号