首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of sugar moiety on T cell-replacing factor molecule derived from a monoclonal T cell hybridoma B151K12 (B151-TRF) was analyzed with respect to the interaction with receptor on B cells. The induction of B cell differentiation into Ig-secreting cells by B151-TRF was specifically inhibited by addition of N-acetyl-D-galactosamine (GalNAc) to culture. Such inhibition appeared to be attributed to the interference of GalNAc in the interaction of TRF with its receptor, because absorption of TRF activity with B cells was notably inhibited by the presence of GalNAc. To substantiate this point further, we established binding assay of B151-TRF molecule to the receptor on B cells by using 125I-labeled TRF fraction enriched by reversed-phase high-performance liquid chromatography and gel filtration. The results revealed that the binding of 125I-TRF molecule to the B cells was almost completely blocked by GalNAc. Moreover, the existence of GalNAc residue(s) on B151-TRF molecule was evidenced by the facts that 1) the TRF activity was eluted from lectin gels with specificity for GalNAc as revealed by the functional assay, and 2) the 125I-TRF molecule specifically bound to such lectin gels. Thus, the GalNAc residue(s) on B151-TRF molecule plays an important role in binding of TRF molecule to the receptor and in the stimulation of B cells. The molecular properties of B cell-stimulatory B151-TRF and its mode of interaction with corresponding receptor on B cells were discussed in the context of B151-TRF as a glycosylated lymphokine molecule and B151-TRF receptor as a carbohydrate-binding protein (animal lectin).  相似文献   

2.
We demonstrated previously that cellfree supernatant of the B151K12 T cell hybridoma (B151-CFS) contained T cell-replacing factor (here in after referred to as B151-TRF1) capable of inducing growth and differentiation of antigen-activated B cells into antigen-specific plaque-forming cells (PFC). In the present study, we have identified in B151-CFS another unique lymphokine activity (referred to as B151-TRF2), which induces polyclonal differentiation of unstimulated B cells into IgM-secreting cells without concomitant stimulation of antigen, mitogen, or anti-Ig antibody. The B151-TRF2 activity induced polyclonal IgM PFC responses via the action on surface Ig-positive small resting B cells from normal unprimed mice. This activation was effective across an H-2 barrier, and apparently independent of the presence of T cells and accessory cells. Interestingly, the B151-TRF2 activity notably stimulated B cells of neonatal and mutant DBA/2Ha mice, which are nonresponders to B151-TRF1, whereas it failed to activate the xid B cells from CBA/N mice. To substantiate that B151-TRF1 and B151-TRF2 activities are mediated by mutually distinguishable molecules, an absorption experiment of B151-CFS was performed by utilizing DBA/2Ha B cells which are lacking in B151-TRF1 receptor. It was found that DBA/2Ha B cells could absorb B151-TRF2 activity but not B151-TRF1 activity. In contrast, murine chronic B cell leukemia BCL1 cells, which were shown to differentiate into IgM-secreting cells by stimulation with B151-CFS, selectively removed B151-TRF1 activity but not B151-TRF2 activity. Furthermore, biochemical analysis revealed that the B151-TRF2 was a heat (56 degrees C for 30 min)-sensitive protein with an apparent m.w. of 30,000 by gel filtration, whereas B151-TRF1 was a heat-resistant glycoprotein with m.w. of 50,000. In addition, it was shown that prostaglandin E2 selectively inhibited B151-TRF2-mediated B cell responses. These results demonstrate clearly that B151-TRF1 and B151-TRF2 are distinct B cell differentiation factors involved in the different activation pathways of distinct B cell subpopulations. The immunologic implication of B151-TRF2 activity in B cell differentiation is discussed in comparison with other lymphokines so far reported to activate small resting B cells.  相似文献   

3.
The present study examined the functional role of Ia antigens on B cells in polyclonal B cell activation induced by a B cell differentiation factor, B151-TRF2. The polyclonal IgM PFC responses by B151-TRF2 were inhibited by monoclonal antibodies specific for class II MHC antigens (Ia antigens) but not class I MHC antigens. Such inhibition by anti-Ia antibodies was haplotype-specific and was observed in the absence of both T cells and accessory cells. Moreover, the anti-Ia antibody-induced inhibition of the B151-TRF2 responses was not due to the blocking of binding of B151-TRF2 to the corresponding B cell receptor. A series of kinetic studies revealed that some Ia-mediated cellular activation process occurs before the resting B cells become responsive to B151-TRF2. Thus, the B151-TRF2-mediated B cell responses consist of at least two distinct phases. The early phase is an Ia-dependent but B151-TRF2-independent process, whereas the late phase is an Ia-independent but B151-TRF2-dependent process. To further characterize the functional role of Ia antigens on B cells, an additional experiment was carried out by using F1 B cells which co-dominantly express both parental Ia antigens on the surface. Interestingly, it was observed that the degree of inhibition of the B151-TRF2-mediated responses of F1 B cells by anti-parental Ia antibody was, at best, one-half that of the parental B cells, suggesting that F1 B cells may be separated into two subpopulations with the restriction specificity for the respective parental Ia antigens. To examine this possibility, (B10 X B10.BR)F1 B cells were separated into adherent and nonadherent cell populations by their ability to bind to either one of the parental B cell monolayers, and the specificity of inhibition of their responses to B151-TRF2 by anti-Ia antibodies was assessed. It was found that the responses of (B10 X B10.BR)F1 B cells adherent to the B10 B cell monolayer or the B10.BR B cell monolayer were almost completely inhibited by anti-I-Ab and anti-I-Ak antibodies, whereas those of nonadherent cells were now selectively inhibited by anti-I-Ak and anti-I-Ab antibodies, respectively. These findings are interpreted as indicating that the B151-TRF2-responsive F1 B cells consist of at least two subpopulations with the restriction specificity for either one of the parental Ia antigens.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
We have demonstrated that B cell recognition of Ia molecules is involved in polyclonal B cell differentiation by B151-TRF2. The present study was undertaken to examine the Ia recognition specificity of B151-TRF2-responsive B cells in fully major histocompatibility complex (MHC)-allogeneic P1----P2, semiallogeneic P1----(P1 x P2)F1, and double donor (P1 + P2)----(P1 x P2)F1 and (P1 + P2)----P1 radiation bone marrow chimeras. The B cells from both P1----P2 and P1----(P1 x P2)F1 chimeras could give rise to in vitro immunoglobulin M-producing cells upon stimulation with B151-TRF2 comparable in magnitude to that of normal P1 B cells, and their responses were inhibited by anti-I-AP1 but not by anti-I-AP2 monoclonal antibody even in the presence of mitomycin C-treated T cell-depleted P2 spleen cells as auxiliary cells. In contrast, the B151-TRF2 responses of P1 B cells isolated from both (P1 + P2)----(P1 x P2)F1 and (P1 + P2)----P1 double bone marrow chimeras became sensitive to the inhibition of not only anti-I-AP1 but also anti-I-AP2 monoclonal antibody only when the culture was conducted in the presence of P2 auxiliary cells, demonstrating that they adaptively differentiate to recognize as self-structures allogeneic as well as syngeneic Ia molecules. Moreover, the experiments utilizing B cells from H-2-congenic mice and B cell hybridoma clones as auxiliary cells revealed that B151-TRF2-responsive B cells recognize Ia molecules expressed on B cells. Taken together, these results demonstrate that B151-TRF2-responsive B cells recognize Ia molecules expressed by B cells as self-structures and that their self-recognition specificity is dictated by the MHC haplotype of bone marrow cells present during the B cell ontogeny but not by the MHC haplotype of a radiation-resistant host environment.  相似文献   

5.
The ability of B cells to respond to TNP-Ficoll has been shown to correlate with their ability to respond to T cell-replacing factor (TRF). The present study analyzed the relationship of TNP-Ficoll-responsive B cells to a TRF-responsive B cell subpopulation. The B cells from normal, unprimed mice responded to TNP-Ficoll in the presence of accessory cells. Such responses were notably augmented by the addition of TRF derived from a monoclonal T cell hybridoma, B151K12(B151-TRF). Interestingly, B cells of mutant X-linked immunodeficient DBA/2Ha which failed to respond to B151-TRF gave anti-TNP PFC responses to TNP-Ficoll comparable to those of normal mice, depending on the presence of accessory cells. However, under this condition, the addition of B151-TRF did not augment the TNP-Ficoll responses. One explanation of the augmentation of TNP-Ficoll response by TRF for the B cells from nondefective mice was that two distinct B cell subpopulations exist which differ in their respective activation requirement for TRF and accessory cells. To examine this possibility, syngeneic accessory cells were pulsed with TNP-Ficoll and were assayed for their ability to activate normal B cells in the presence or absence of B151-TRF. The results revealed that TNP-Ficoll-pulsed accessory cells were able to induce primary anti-TNP PFC responses in normal B cells to the same magnitude as soluble TNP-Ficoll. However, these B cell responses induced by the TNP-Ficoll-pulsed accessory cells were not augmented by the addition of B151-TRF to the culture. These results support the notion that two distinct TNP-Ficoll-responsive B cell subpopulations exist; one requires accessory cell-B cell interaction to be activated by TNP-Ficoll but fails to respond to TRF, and the other can be activated by TRF in a totally accessory cell-independent manner.  相似文献   

6.
Experiments were performed to examine a growth-promoting activity on B cells or B leukemic cells of T cell-replacing factor (TRF) produced by a murine T cell hybridoma (B151K12) which constitutively produces TRF. The cellfree supernatant (CFS) from B151K12 cells (B151-CFS) could induce terminal differentiation of pre-activated B cells or in vivo passaged chronic B leukemia cells, BCL1, into immunoglobulin-secreting cells, while it did not exert a nominal lymphokine activity such as BCGFI (now known as BSFpl), IL 2, or gamma-interferon. However, it promoted [3H]thymidine uptake of dextran sulfate (DXS)-stimulated normal B cells and in vivo passaged BCL1 cells, suggesting that it also has BCGFII activity. We tried extensively to purify and to separate the TRF active molecule from the BCGFII active molecule by using many types of purification procedures. The purification scheme consisted of ammonium sulfate precipitation, DEAE-cellulose chromatography, Blue-Sepharose chromatography, hydroxylapatite chromatography, and gel permeation with fast protein liquid chromatography (FPLC). It was revealed that the BCGFII active molecule was hardly separable from the TRF during the entire purification procedure. The TRF as well as BCGFII active materials were glycoprotein with an apparent m.w. of 50 to 60 Kd on gel permeation chromatography and 18 Kd on SDS-PAGE under reducing conditions. The BCGFII active materials were hardly separable from the TRF active one, even after a reverse-phase FPLC, in which both BCGFII and TRF activities were recovered in the fractions eluted at 44 to 48% acetonitrile in 0.1% trifluoroacetic acid (TFA). Furthermore, the absorption of TRF and BCGFII active materials by using BCL1 cells removed not only TRF but also BCGFII activity. Moreover, B cell-specific monoclonal antibody (9T1), which can preferentially block TRF-dependent plaque-forming cell responses, also inhibited the expression of BCGFII activity to BCL1 cells. Taking all of the results together, we conclude that the TRF from B151K12 cells promotes growth of appropriately activated, such as DXS-stimulated normal cells and BCL1 tumor cells. These results suggest that B151-TRF may act on B cells as B cell growth and differentiation factors.  相似文献   

7.
Interleukin-2 (IL-2) specifically recognizes high-mannose type glycans with five or six mannosyl residues. To determine whether the carbohydrate recognition activity of IL-2 contributes to its physiological activity, the inhibitory effects of high-mannose type glycans on IL-2-dependent CTLL-2 cell proliferation were investigated. Man(5)GlcNAc(2)Asn added to CTLL-2 cell cultures inhibited not only phosphorylation of tyrosine kinases but also IL-2-dependent cell proliferation. We found that a complex of IL-2, IL-2 receptor alpha, beta, gamma subunits, and tyrosine kinases was formed in rhIL-2-stimulated CTLL-2 cells. Among the components of this complex, only the IL-2 receptor alpha subunit was stained with Galanthus nivalis agglutinin which specifically recognizes high-mannose type glycans. This staining was diminished after digestion of the glycans with endo-beta-N-acetylglucosaminidase H or D, suggesting that at least a N-glycan containing Man(5)GlcNAc(2) is linked to the extracellular portion of the IL-2 receptor alpha subunit. Our findings indicate that IL-2 binds the IL-2 receptor alpha subunit through Man(5)GlcNAc(2) and a specific peptide sequence on the surface of CTLL-2 cells. When IL-2 binds to the IL-2Ralpha subunit, this may trigger formation of the high affinity complex of IL-2-IL-2Ralpha, -beta, and -gamma subunits, leading to cellular signaling.  相似文献   

8.
Murine T cell replacing factor (TRF) was purified from a cellfree supernatant of a T cell hybridoma (B151K12) that constitutively produces TRF. Two assay systems for TRF activity were employed: 1) induction of anti-DNP IgG PFC responses in cultures of splenic B cells from DNP-KLH-primed BALB/c mice, and 2) induction of IgM PFC in chronic B cell leukemic cells (BCL1). The purification scheme consisted of ammonium sulfate precipitation, DEAE-cellulose chromatography, Blue-Sepharose chromatography, hydroxylapatite chromatography, gel permeation with fast protein liquid chromatography (FPLC), and disc polyacrylamide gel electrophoresis. Overall, TRF was purified approximately 34,000-fold with a maximum 3.8% recovery of activity, and the specific activity of the purified TRF was approximately 9.6 X 10(4) U/mg. The TRF that is active in these systems is distinct from the other lymphokines such as IL 1, IL 2, BCGFI (now known as BSFp1), and gamma-interferon. The TRF is extremely hydrophobic, with an apparent m.w. of 50,000 to 60,000 on gel permeation chromatography and 18,000 on SDS-PAGE under reducing conditions. Highly purified B151-TRF abrogated the activity by treatment with trypsin but not with RNase. Moreover, it bound to lima bean agglutinin-Sepharose specific for N-acetylgalactosamine residues, indicating that B151-TRF is a glycosylated glycoprotein containing N-acetylgalactosamine residues. The role of N-acetylgalactosamine residues on TRF activity was additionally substantiated by the fact that the addition of appropriate amounts of N-acetylgalactosamine in the assay systems for TRF preferentially induced a profound suppression for TRF-mediated PFC responses.  相似文献   

9.
The requirements for primary in vitro plaque-forming cell (PFC) development in cultures of purified rat splenic B cells have been examined. Rat B cells were directly responsive to the type 1 antigen trinitrophenyl-Brucella abortus (TNP-BA), but both T cells and adherent accessory cells were required for B cell responses to the type 2 antigen TNP-Ficoll and the T cell-dependent (TD) antigen sheep erythrocytes (SRBC). However, the cellfree supernatants from concanavalin A-induced spleen cells of rat or mouse origin replaced the requirement for T cells and macrophages, and resulted in PFC development in response to TNP-Ficoll and SRBC and augmented PFC numbers in response to TNP-BA. Culture supernatants from induced murine T cell and macrophage cell lines were used to partially deduce the molecular requirements for the support of PFC development by rat B cells to these three antigens. Supernatants from the EL-4 (EL-4 sup) and B151 K12 (B15 sup) T cell lines augmented TNP-BA responses, suggesting that B cell growth factor II (BCGF-II) mediated this effect. An admixture of purified interleukin 2 (IL 2) and B15 sup supported PFC development to SRBC; indicating that IL 2, BCGF-II, and the T cell-replacing factor in B15 sup (B15-TRF) were sufficient to support this response. In addition, the IL 2 plus B15 sup-supported anti-SRBC PFC response was increased by the addition of an interleukin 1-containing fraction from the supernatant of the macrophage line P388D1. PFC development in response to TNP-Ficoll had the most stringent requirements and only occurred in the presence of EL-4 sup and B15 sup (IL 2, BCGF-I, BCGF-II, EL-TRF, B15-TRF). These data indicate that different cellular and molecular requirements exist for PFC development in response to types 1, 2, and TD antigens by rat B cells.  相似文献   

10.
NK cells destroy microbe-infected cells while sparing healthy cells, and are controlled, in part, by inhibitory receptors specific for class I Ag-presenting molecules. CD1d1, a beta(2)-microglobulin-associated class I-like molecule, binds glycolipids and stimulates NKT cells. We previously demonstrated that target cell lysis by IL-2-activated mouse NK cells is inhibited by target cell expression of CD1d1, suggesting that IL-2-activated NK cells may express a CD1d1-specific inhibitory receptor. We now report that a significant subset of mouse IL-2-activated NK cells specifically binds cell size beads displaying either naturally expressed or recombinant CD1d1. In contrast, although tetramers of soluble recombinant CD1d1 loaded with alpha-galactosylceramide identify NKT cells, binding of this reagent to resting or IL-2-activated NK cells was undetectable, even with activated NK cells sorted with CD1d1 beads. Cytotoxicity by the CD1d1 bead-separated NK subset was strongly inhibited by CD1d1, compared with the NK cell subset not bound to CD1d1 beads. An Ab that blocks NKT cell recognition of CD1d1 also reverses CD1d1 inhibition of NK lysis, suggesting that TCRs of NKT cells and NK inhibitory receptor(s) may interact with a similar site on CD1d1. These results provide direct evidence for a physical interaction of NK cells with CD1d1, mediated by a functional, CD1d1-specific low-affinity inhibitory NK receptor. Display of ligands on cell size beads to maximize multivalent interaction may offer an alternative approach to examine NK cell receptor-ligand interactions, particularly those of lower expression and/or lower affinity/avidity that may go undetected using tetrameric reagents.  相似文献   

11.
The B1 molecule is a 32,000 m.w. phosphorylated cell surface protein expressed exclusively by B cells from the mid pre-B until the plasma cell stage of differentiation. Two monoclonal antibodies (gamma 2a and mu) reactive with this molecule were used to assess the role of B1 in B cell activation, proliferation, and differentiation. The anti-B1 antibodies at concentrations ranging from 0.1 to 100 micrograms/ml significantly inhibited B cell proliferation induced by anti-mu antibodies, Staphylococcus aureus Cowan strain 1, activated T cells, and Epstein Barr virus. Although capable of inhibiting proliferation, anti-B1 antibody in soluble form or coupled to beads did not activate B cells or induce proliferation. Antibodies of comparable isotypes or against other B cell-restricted antigens, including B2, B4, B5, and HB-5, did not inhibit activation. Pretreatment of B cells with anti-B1 antibody did not inhibit activation, indicating that B cells had to be cultured with anti-B1 antibody for anti-B1-mediated inhibition to occur. Maximum inhibition was obtained when anti-B1 antibody was added at the initiation of culture. In agreement with this, growth factor-dependent proliferation of preactivated B cells was not inhibited by anti-B1 antibodies. Comparable inhibition of B cell activation was noted with antibodies reactive with class II antigens of the major histocompatibility complex with the exception that anti-B1 antibody inhibited immunoglobulin secretion in pokeweed mitogen assays, whereas anti-DR antibody did not. These results suggest that the B1 molecule may serve a central role in the regulation of B cell activation and differentiation.  相似文献   

12.
We have used the T cell surface molecule CD2 gene, expressed from the human cytomegalovirus promoter as a reporter to optimize a transfection system for human primary B cells. The CD2-encoding DNA was transfected into cells by electroporation and transient expression was monitored by flow cytometric analysis. By using our optimal electroporation conditions on activated primary B cells, more than 30% of the resulting viable cells expressed CD2 on the cell surface. Moreover, unactivated primary B cells could also be transfected using this system but subsequent expression of CD2 required cellular activation. Magnetic beads or plastic culture bottles coated with anti-CD2 antibodies have been used to selectively purify transfected cells. The high transfection efficiency combined with the ability to specifically purify transfected cells may allow future studies on specific genes transiently expressed in human primary B cells.  相似文献   

13.
We established an assay system for detecting T cell-replacing factor (TRF) activity of translated materials in Xenopus oocytes of poly (A)-positive mRNA extracted from a T cell hybrid cell line, B151K12 (B151) which constitutively produces TRF. Since it was difficult to detect TRF activity of the translated products of B151-mRNA, partly because of low TRF activities, we developed the following two systems. First, RNA was prepared from B151 cells stimulated with phorbol myristate acetate and calcium ionophore A23187 because such stimulations augmented TRF production by approximately three to five-fold. Second, interleukin 2 (IL-2, 125 U/ml) was added to the culture of BCL1 cells to detect a small amount of TRF-active materials since IL-2 synergizes with a suboptimal dose of TRF to induce IgM secretion in TRF-responding BCL1 cells (chronic B cell leukemic cells). Here we describe TRF activity of translation products of B151-mRNA in Xenopus oocytes. B151-TRF mRNA was detected in the fractions sedimented between 15 and 18S by analysis using sucrose density gradient centrifugation.  相似文献   

14.
Role of the LFA3-CD2 interaction in human specific B cell differentiation   总被引:2,自引:0,他引:2  
We examined the role of the lymphocyte function-associated (LFA)3 molecule in human B cell response. A mAb to this molecule did not influence B cell proliferation induced by anti-mu antibody and IL. In contrast, the same mAb inhibited the specific T-dependent B cell response induced by a particulate Ag. In the same line, two anti-CD2 mAb (directed toward the T11-1 and T11-2 epitopes) inhibited this response, whether used alone or in association. These inhibitions took place at an early stage of the response, and anti-LFA3 and anti-CD2 mAb acted on B cells and T cells, respectively. In contrast, when T cell help was provided by exogenous IL-2, the B cell response was resistant to the inhibitory effect of anti-LFA3 mAb. Taken together, these results indicate that the LFA3-CD2 pair play a major role in the direct T-B interaction required for T cell help.  相似文献   

15.
TP67.14 is a subclone of a resulting B cell hybridoma established by somatic hybridization between splenic B cells of A/J mice immunized with TNP-LPS and 2.52 M, a HAT medium-sensitive mutant of a B cell line; it expresses IgM, B220, IAk, and IEk on the cell membrane and also possesses a receptor molecule for TNP on its surface derived from TNP-reactive B cells of A/J mice used for cell fusion. As shown previously, TP67.14 could be induced to generate a significant amount of anti-TNP antibodies when treated with TNP-conjugated protein such as TNP-BSA and TNP-keyhole limpet hemocyanin without T cell help as well as LPS. Our study was undertaken to investigate direct involvement of surface MHC class II molecules on B cells during B cell maturation by analysis with this Ag-specific B cell clone. The data demonstrate that mAb against IAk and IEk molecules, but not IAd and H-2k, markedly inhibited the differentiative effects of LPS on TP67.14. In contrast, both antibodies specifically augmented the secretion of anti-TNP antibodies by TP67.14 treated with TNP-BSA, although these antibodies alone failed to induce the generation of anti-TNP antibodies. Interestingly, TP67.14 significantly differentiated into anti-TNP antibody secreting cells when incubated with TNP-conjugated monoclonal anti-IAk or anti-IEk antibodies alone; this differentiative effect was much greater than that of TNP-conjugated anti-IAd mAb or purified mouse IgG under the same conditions. Our result suggests that surface IA/E molecules on B cells may be directly involved in a transductional signal for B cell maturation mediated by the cross-linkage of receptor molecules on B cells with Ag.  相似文献   

16.
Phosphorothioate oligodeoxynucleotides (sODN) containing the CpG motif or TCG repeats induce T cell-independent polyclonal activation of human B cells. To elucidate the mechanism of this response, the role of cell surface receptors was investigated. Sepharose beads coated with stimulatory but not nonstimulatory sODNs induced B cell proliferation comparably with soluble sODNs. The B cell stimulatory activity of Sepharose-bound sODN did not result from free sODN released from the beads since media incubated with coated beads were inactive. Using FITC-labeled sODNs as probes, binding to human B cells could be detected by flow cytometry. Binding was rapid, saturable, initially temperature independent, but with a rapid off-rate. Competition studies indicated that both stimulatory sODNs and minimally stimulatory sODNs bound to the same receptor. By contrast, phosphodiester oligonucleotides with the same nucleotide sequence as sODNs and bacterial DNA inhibited the binding of sODNs to B cells minimally. Charge appeared to contribute to the binding of sODNs to B cells since binding of sODNs was competitively inhibited by negatively charged molecules, including fucoidan, poly I, and polyvinyl sulfate. These data indicate that human B cells bind sODNs by a receptor-mediated mechanism that is necessary but not sufficient for polyclonal activation.  相似文献   

17.
The Lyb-2 system of the mouse is involved in regulation of a proliferative step in the differentiation of B cells responding to T-dependent antigen. The present study concerns the role of Lyb-2 in an early phase of B cell activation with respect to B cell receptor functions for activation factors. It is shown that interaction of monoclonal anti (alpha)-Lyb-2 antibody with Lyb-2 on the B cell surface induces B cell proliferation by synergistic action with B cell growth factor II-containing factor or interleukin 1. In contrast, alpha-Lyb-2 antibody could not synergize with the Con A-induced culture supernatant of T cell hybridoma FS6-14.13 (FS6) containing B cell stimulatory factor-1 (BSF-1; formerly called BCGF I), and the effect of combining the two was only additive on B cell proliferation. Absorption studies showed that BSF-1 in FS6 could be absorbed by unstimulated B cells, about 95% of which were at Go phase of the cell cycle, but not by thymocytes, and more importantly that alpha-Lyb-2 antibody blocked the absorption in an Lyb-2-specific manner, possibly by competing with BSF-1. It is thus likely that alpha-Lyb-2 antibody may interact with a BSF-1 receptor on B cells or a molecule closely associated with it. Interestingly, alpha-Lyb-2 antibody mimicked the action of BSF-1 in a costimulator assay with affinity-purified goat alpha-mouse IgM antibody, but could not replace all the activities ascribed to BSF-1. Possible mechanisms involved are discussed.  相似文献   

18.
We have assessed the inhibitory effects of various monoclonal antibodies on the expression of the IL 2 receptor. Anti-LFA-1, but not anti-Ly-2, markedly inhibited the induction of the IL 2 receptor on the Ly-2+ subset. T-depleted spleen cells, L cells, and B lymphoma cells all functioned as potent accessory cells (AC) for the induction of the IL 2 receptor on L3T4+ T cells. Anti-LFA-1 inhibited the induction of the IL 2 receptor irrespective of the type of AC used. Anti-L3T4 only inhibited the induction of IL 2 receptor expression when L cells were the source of AC. The inhibitory capacity of anti-L3T4 was not related to the expression of Ia on the AC population, because the magnitude of inhibition was comparable in cultures containing either Ia+ or Ia- L cells, whereas no inhibition was seen with either Ia+ or Ia-B lymphoma cells. We conclude from these studies that LFA-1 plays a critical role in mitogen-induced activation of both T cell subsets by promoting both T-AC and T-T interactions. Although anti-L3T4 can inhibit T cell activation in the absence of the recognition of Ia, the mechanism of inhibition and the proposed target molecule for L3T4 on the AC or the T cell have not been determined in our studies. A number of different models for the function of this cell surface antigen are discussed.  相似文献   

19.
Inhibition of human B cell responsiveness by prostaglandin E2   总被引:3,自引:0,他引:3  
The capacity of prostaglandin E2 (PCE2) to modulate human peripheral blood B cell proliferation and the generation of immunoglobulin-secreting cells (ISC) stimulated by Cowan 1 strain Staphylococcus aureus and mitogen-stimulated T cell supernatant was examined. PGE2 significantly inhibited both responses, whereas PGF2 alpha had no inhibitory effect. Responses of highly purified B cells obtained from spleen, lymph node, and tonsil were also inhibited. In addition PGE2 suppressed B cell responses supported by recombinant interleukin 2 rather than T cell supernatant. PGE2-mediated inhibition was mimicked by forskolin, a direct activator of adenylate cyclase. Kinetic studies indicated that PGE2 inhibited B cell responses by a progressively greater increment as cultures were prolonged. Evaluation by flow cytometry after staining with acridine orange or mithramycin indicated that PGE2 had no effect on initial B cell entry into the G1 phase of the cell cycle, passage through G1, and entry into S, G2, and M. Rather, PGE2 inhibited responses of postdivisional daughter cells. PGE2 inhibited responses in cultures stimulated by the calcium ionophore ionomycin and T cell supernatant but had minimal effects in cultures stimulated by the combination of ionomycin and phorbol myristate acetate. Moreover, phorbol myristate acetate reversed PGE2-mediated inhibition of proliferation stimulated by S. aureus or S. aureus + T cell supernatant. These results indicate that PGE2 suppresses the continued growth and differentiation of human B cells, although it has no effect on initial B cell activation and suggest that PGE2 may play a role in regulating human B cell responses in vivo.  相似文献   

20.
In the present study, we have demonstrated that both B151-T cell-replacing factor 1 and rIL-5 are responsible for the activity to partially induce CL-3 cells into IgM-synthesizing cells and also to synergize with IL-2 to augment IL-2R expression on and IgM synthesis in CL-3 cells. These actions of rIL-5 on a homogeneous cloned line (BCL1-CL-3 cells) allow us to identify and characterize the two alternated B cell developmental pathways. One is an IL-2-independent, IL-5-driven differentiation pathway without preceding up-regulated IL-2R expression, and the other is an IL-5 plus IL-2-dependent augmented differentiation pathway with preceding up-regulated IL-2R expression. We have also demonstrated the functional difference of two distinct B cell growth-promoting factors, B cell-stimulating factor 1 (rIL-4) and rIL-5. CL-3 cells are equally stimulated to grow by rIL-4 and rIL-5, whereas only rIL-5 can render CL-3 cells responsive to rIL-2, indicating that these two lymphokines affect B cells in a strikingly different manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号