首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chlorophyll biosynthetic heterogeneity is rooted mainly in parallel divinyl (DV) and monovinyl (MV) biosynthetic routes interconnected by 4-vinyl reductases (4VRs) that convert DV tetrapyrroles to MV tetrapyrroles by conversion of the vinyl group at position 4 of the macrocycle to ethyl. What is not clear at this stage is whether the various 4VR activities are catalyzed by one enzyme of broad specificity or by a family of enzymes encoded by one gene or multiple genes with each enzyme having narrow specificity. Additional research is needed to identify the various regulatory components of 4-vinyl reduction. In this undertaking, Arabidopsis mutants that accumulate DV chlorophyllide a and/or DV chlorophyll [Chl(ide)] a are likely to provide an appropriate resource. Because the Arabidopsis genome has been completely sequenced, the best strategy for identifying 4VR and/or putative regulatory 4VR genes is to screen Arabidopsis Chl mutants for DV Chl(ide) a accumulation. In wild-type Arabidopsis, a DV plant species, only MV chlorophyllide (Chlide) a is detectable. However in Chl mutants lacking 4VR activity, DV Chl(ide) a may accumulate in addition to MV Chl(ide) a. In the current work, an in situ assay of DV Chl(ide) a accumulation, suitable for screening a large number of mutants lacking 4-vinyl Chlide a reductase activity with minimal experimental handling, is described. The assay involves homogenization of the tissues in Tris-HCl:glycerol buffer and the recording of Soret excitation spectra at 77K. DV Chlide a formation is detected by a Soret excitation shoulder at 459 nm over a wide range of DV Chlide a/MV Chl a ratios. The DV Chlide a shoulder became undetectable at DV Chlide a/MV Chl a ratios less than 0.049, that is, at a DV Chlide a content of less than 5%.  相似文献   

2.
General equations which permit the determination of the amounts of any two closely related fluorescent compounds which can be distinguished by 77 degrees K but not by 293 degrees K spectrofluorometry have been described. This was achieved in the presence or absence of a third interfering compound, without prior separation of the fluorescent species. The adaptation of the generalized equations to the determination of the amounts of monovinyl (MV) and divinyl (DV) Mg-protoporphyrins or of MV and DV protochlorophyll(ides) in the presence or absence of Mg-Protos [Mg-protoporphyrin IX (Mg-Proto), Mg-Proto monoester, Mg-Proto diester or a mixture of those three tetrapyrroles] interference, was then demonstrated over a wide range of MV/DV tetrapyrrole proportions. These equations are likely to be very useful for the study of the intermediary metabolism of the monovinyl and divinyl chlorophyll biosynthetic routes in plants.  相似文献   

3.
In an attempt to solve the controversy about the evaluation of the molar absorption coefficient of PChl(ide), this coefficient is estimated in this work by using an original experimental approach. The calculated molar absorption coefficient of PChl(ide) is 30.4.103 1 mole–1 cm–1 at 626 nm in acetone 80%; it is close to that derived from the specific absorption coefficient of Koski and Smith when assuming that the pigment extracted by these authors was the esterified pigment: PChl. Sets of equations for the quantification of Chl(ide) a, Chl b and PChl(ide) in 80% acetone extracts are derived.Abbreviations PChl(ide) protochlorophyll(ide) - Chl(ide) chlorophyll(ide)  相似文献   

4.
CP29 (the lhcb4 gene product), a minor photosystem II antenna complex, binds six chlorophyll (Chl) a, two Chl b, and two to three xanthophyll molecules. The Chl a/b Q(y) absorption band substructure of CP29 (purified from spinach) was investigated by nonlinear polarization spectroscopy in the frequency domain (NLPF) at room temperature. A set of NLPF spectra was obtained at 11 probe wavelengths. Seven probe wavelengths were located in the Q(y) spectral region (between 630 and 690 nm) and four in the Soret band (between 450 and 485 nm). Evaluation of the experimental data within the framework of global analysis leads to the following conclusions: (i) The dominant Chl a absorption (with a maximum at 674 nm) splits into (at least) three subbands (centered at 660, 670, and 681.5 nm). (ii) In the Chl b region two subbands can be identified with maxima located at 640 and 646 nm. (iii) The lowest energy Q(y) transition (peaking at 681.5 nm) is assigned to a Chl a which only weakly interacts with other Chl aor b molecules by incoherent F?rster-type excitation energy transfer. (iv) Pronounced excitonic interaction exists between certain Chl a and Chl b molecules, which most likely form a Chl a/b heterodimer. The subbands centered at 640 and 670 nm constitute a strongly coupled Chl a/b pair. The findings of the study indicate that the currently favored view of spectral heterogeneity in CP29 being due essentially to pigment-protein interactions has to be revised.  相似文献   

5.
In an attempt to solve the controversy about the evaluation of the molar absorption coefficient of PChl(ide), this coeffecient is estimated in this work by using an original experimental approach. The calculated molar absorption coefficient of PChl(ide) is 30.4.103 l mole-1 cm-1 at 626 nm in acetone 80%; it is close to that derived from the specific absorption coefficient of Koski and Smith when assurning that the pigment extracted by these authors was the esterified pigment: PChl. Sets of equations for the quantification of Chl(ide) a, Chl b and PChl(ide) in 80% acetone extracts are derived.  相似文献   

6.
Reconstitution of the 16 kDa N-terminal domain of the peridinin-chlorophyll-protein, N-PCP, with mixtures of chlorophyll a (Chl a) and Chl b, resulted in 32 kDa complexes containing two pigment clusters, each bound to one N-PCP. Besides homo-chlorophyllous complexes, hetero-chlorophyllous ones were obtained that contain Chl a in one pigment cluster, and Chl b in the other. Binding of Chl b is stronger than that of the native pigment, Chl a. Energy transfer from Chl b to Chl a is efficient, but there are only weak interactions between the two pigments. Individual homo- and hetero-chlorophyllous complexes were investigated by single molecule spectroscopy using excitation into the peridinin absorption band and scanning of the Chl fluorescence, the latter show frequently well resolved emissions of the two pigments.  相似文献   

7.
8.
The occurrence of protochlorophyllide b and protochlorophyllide b phytyl ester in green plants is described. The chemical structure of protochlorophyllide b phytyl ester was established by proton nuclear magnetic resonance, fast atom bombardment mass spectroscopic analysis, and chemical derivatization coupled to electronic spectroscopic analysis. The macrocycles of protochlorophyll(ide) b are identical to those of conventional protochlorophyll(ide) except for the presence of a formyl group instead of a methyl group at position 3 of the macrocycles. They differ from chlorophyll(ide) b by the presence of an oxidized double bond at positions 7 and 8 of the macrocycles. The trivial name protochlorophyll(ide) b is proposed to differentiate these two tetrapyrroles from conventional protochlorophyll(ide), which in turn will be referred to as protochlorophyll(ide) a. Protochlorophyll(ide) b appears to be widely distributed in green plants. Its molar extinction coefficients in 80% acetone and diethyl ether are reported. The impact of this discovery on the heterogeneity of the chlorophyll a and b biosynthetic pathways is discussed.  相似文献   

9.
Single molecule spectroscopy experiments are reported for native peridinin-chlorophyll a-protein (PCP) complexes, and three reconstituted light-harvesting systems, where an N-terminal construct of native PCP from Amphidinium carterae has been reconstituted with chlorophyll (Chl) mixtures: with Chl a, with Chl b and with both Chl a and Chl b. Using laser excitation into peridinin (Per) absorption band we take advantage of sub-picosecond energy transfer from Per to Chl that is order of magnitude faster than the F?rster energy transfer between the Chl molecules to independently populate each Chl in the complex. The results indicate that reconstituted PCP complexes contain only two Chl molecules, so that they are spectroscopically equivalent to monomers of native-trimeric-PCP and do not aggregate further. Through removal of ensemble averaging we are able to observe for single reconstituted PCP complexes two clear steps in fluorescence intensity timetraces attributed to subsequent bleaching of the two Chl molecules. Importantly, the bleaching of the first Chl affects neither the energy nor the intensity of the emission of the second one. Since in strongly interacting systems Chl is a very efficient quencher of the fluorescence, this behavior implies that the two fluorescing Chls within a PCP monomer interact very weakly with each other which makes it possible to independently monitor the fluorescence of each individual chromophore in the complex. We apply this property, which distinguishes PCP from other light-harvesting systems, to measure the distribution of the energy splitting between two chemically identical Chl a molecules contained in the PCP monomer that reaches 280 cm(-1). In agreement with this interpretation, stepwise bleaching of fluorescence is also observed for native PCP complexes, which contain six Chls. Most PCP complexes reconstituted with both Chl a and Chl b show two emission lines, whose wavelengths correspond to the fluorescence of Chl a and Chl b. This is a clear proof that these two different chromophores are present in a single PCP monomer. Single molecule fluorescence studies of PCP complexes, both native and artificially reconstituted with chlorophyll mixtures, provide new and detailed information necessary to fully understand the energy transfer in this unique light-harvesting system.  相似文献   

10.
《BBA》1985,807(2):143-146
Fluorescence excitation spectra (between 400–500 and 610–700 nm) for chlorophyll emission from particles and detergent extracts of the primitive green microalga, Mantoniella, were measured. The results showed that the prophyrin, magnesium 2,4-divinylpheoporphyrin a5, which this alga accumulates in addition to Chl b, also can transfer excitation energy to Chl a, and therefore act as antenna for photosynthesis. Evidence was found that magnesium 2,4-divinylpheoporphyrin a5 has a Soret band near 450 nm in vivo which further increases the light-harvesting capacity of these algae growing deep in the open ocean.  相似文献   

11.
Spectral properties of solutions containing mixtures of chlorophyll a and chlorophyll c are investigated. The yield of excitation energy migration from chlorophyll c to chlorophyll a is obtained ranging from 23 to 48% dependent on the used dye concentrations. The back transfer from chlorophyll a to chlorophyll c is negligible. The shape of the polarization excitation spectrum of chlorophyll c in the Soret band region is less composed than that of chlorophyll a. Depolarization of chlorophyll a fluorescence by chlorophyll c is in agreement with the conclusion drawn from fluorescence quenching that excitation energy migrates from chlorophyll c to chlorophyll a.  相似文献   

12.
Two Atlantic (SARG and NATL1) strains and one Mediterranean (MED) strain of Prochlorococcus sp., a recently discovered marine, free-living prochlorophyte, were grown over a range of "white" irradiances (lg) and under low blue light to examine their photoacclimation capacity. All three strains contained divinyl (DV) chlorophylls (Chl) a and b, both distinguishable from "normal" Chls by their red-shifted blue absorption maximum, a Chl c-like pigment at low concentration, zeaxanthin, and [alpha]-carotene. The presence of two phaeophytin b peaks in acidified extracts from both Atlantic strains grown at high lg suggests that these strains also had a normal Chl b-like pigment. In these strains, the total Chl b to DV-Chl a molar ratio decreased from about 1 at 7.5 [mu]mol quanta m-2 s-1 to 0.4 to 0.5 at 133 [mu]mol quanta m-2 s-1. In contrast, the MED strain always had a low DV-Chl b to DV-Chl a molar ratio, ranging between 0.13 at low lg and 0.08 at high lg. The discrepancies between the Atlantic and MED strains could result from differences either in the number of light-harvesting complexes (LHC) II per photosystem II or in the Chl b-binding capacity of the apoproteins constituting LHC II. Photosynthesis was saturated at approximately 5 fg C(fg Chl)-1 h-1 or 6 fg C cell-1 h-1, and growth was saturated at approximately 0.45 d-1 for both MED and SARG strains at 18[deg]C, but saturating irradiances differed between strains. Atlantic strains exhibited increased light-saturated rates and quantum yield for carbon fixation under blue light.  相似文献   

13.
Kouril  Roman  Ilík  Petr  Naus  Jan  Schoefs  Benoit 《Photosynthesis research》1999,62(1):107-116
The concentration limits for spectrophotometric and spectrofluorimetric determinations of the chlorophyll (Chl) a/b ratio in barley leaves were studied using 80% acetone extracts at room temperature. The optimum sample absorbances (at 663.2 nm – maximum of the QY) band of Chl a) for the Chl a/b determination were determined. For given spectrometers and sample positions, these absorbances ranged between 0.2 and 1.0 and 0.008–0.1 for the absorption and fluorescence methods, respectively. Precision of the measurements and the distorting effects are discussed. The lower limits of both absorption and fluorescence methods depend on sensitivity of the spectrometers for the Chl b detection. The spectrophotometric determination of Chl a/b ratio at higher Chl concentrations can be distorted by the chlorophyll fluorescence signal. The extent of this distortion depends on sample-detector geometry in any given type of the spectrometer. The effect of inner filter of Chl molecules and the detection instrumental function affect the value of the upper limit for the spectrofluorimetric method. Both methods were applied to estimate the Chl a/b ratio in pigment extracts from greening barley leaves, which are characterized by a low Chl concentration and a high Chl a/b ratio at the beginning of greening process.  相似文献   

14.
黄化油菜突变体Cr3529子叶类囊体膜光谱性质研究   总被引:6,自引:3,他引:3  
以发育10d的黄化油菜突变体为材料,分析了突变体油菜子叶类囊体膜的色素含量、室温吸收光谱、叶绿素荧光发射和激发光谱以及蛋白内源荧光光谱的变化。数据显示:与野生型相比,突变体油菜子叶类囊体膜的光合色素Chl α和Chl b含量均减少.但Chl α/b比值升高;突变体油菜子叶类囊体膜叶绿素捕光能力和受激发能力均下降,且较依赖于Chl α捕光并将光能激发传递给PSⅡ反应中心;突变体油菜子叶类囊体膜的蛋白内源荧光也明显异于野生型。进一步表明突变体油菜子叶类囊体膜蛋白组成发生了改变。  相似文献   

15.
Das SK  Frank HA 《Biochemistry》2002,41(43):13087-13095
Absorption, fluorescence, and fluorescence excitation spectra have been measured from CP26, CP29, and monomeric and trimeric LHCIIb light-harvesting complexes isolated from Photosystem II subchloroplast particles from spinach. The complexes were purified using a combination of isoelectric focusing and sucrose gradient ultracentrifugation. The chlorophyll (Chl) and xanthophyll pigment compositions were measured using high-performance liquid chromatography (HPLC). Using the pigment compositions from the HPLC analysis as a starting point, the absorption spectral profiles of the complexes have been reconstructed from the individual absorption spectra obtained for each of the pigments. Also, the fluorescence excitation spectra of the complexes have been deconvoluted. The data reveal the energy transfer efficiencies between Chl b and Chl a and between specific xanthophylls and Chl a in the complexes. The spectral analyses reveal the underlying features of the highly congested spectral profiles associated with the complexes and are expected to be beneficial to researchers employing spectroscopic methods to investigate the mechanisms of energy transfer between the pigments bound in these complexes.  相似文献   

16.
Both chlorophyll (Chl) a and b accumulate in the light in a Synechocystis sp. PCC 6803 strain that expresses higher plant genes coding for a light-harvesting complex II protein and Chl a oxygenase. This cyanobacterial strain also lacks photosystem (PS) I and cannot synthesize Chl in darkness because of the lack of chlL. When this PS I-less/chlL(-)/lhcb(+)/cao(+) strain was grown in darkness, small amounts of two unusual tetrapyrroles, protochlorophyllide (PChlide) b and pheophorbide (pheide) b, were identified. Accumulation of PChlide b trailed that of PChlide a by several days, suggesting that PChlide a is an inefficient substrate of Chl a oxygenase. The presence of pheide b in this organism suggests a breakdown of Chl b via a pathway that does not involve conversion to a-type pigments. When the PS I-less/chlL(-) control strain was grown in darkness, Chl degradation was much slower than in the PS I-less/chlL(-)/lhcb(+)/cao(+) strain, suggesting that the presence of Chl b leads to more rapid turnover of Chl-binding proteins and/or a more active Chl degradation pathway. Levels and biosynthesis kinetics of Chl and of its biosynthetic intermediates are very different in the PS I-less/chlL(-)/lhcb(+)/cao(+) strain versus in the control. Moreover, when grown in darkness for 14 days, upon the addition of delta-aminolevulinic acid, the level of magnesium-protoporphyrin IX increased 60-fold in the PS I-less/chlL(-)/lhcb(+)/cao(+) strain (only approximately 2-fold in the PS I-less/chlL(-) control strain), whereas the PChlide and protoheme levels remained fairly constant. We propose that a b-type PChlide, Chl, or pheide in the PS I-less/chlL(-)/lhcb(+)/cao(+) strain may bind to tetrapyrrole biosynthesis regulatory protein(s) (for example, the small Cab-like proteins) and thus affect the regulation of this pathway.  相似文献   

17.
Single molecule spectroscopy experiments are reported for native peridinin-chlorophyll a-protein (PCP) complexes, and three reconstituted light-harvesting systems, where an N-terminal construct of native PCP from Amphidinium carterae has been reconstituted with chlorophyll (Chl) mixtures: with Chl a, with Chl b and with both Chl a and Chl b. Using laser excitation into peridinin (Per) absorption band we take advantage of sub-picosecond energy transfer from Per to Chl that is order of magnitude faster than the Förster energy transfer between the Chl molecules to independently populate each Chl in the complex. The results indicate that reconstituted PCP complexes contain only two Chl molecules, so that they are spectroscopically equivalent to monomers of native-trimeric-PCP and do not aggregate further. Through removal of ensemble averaging we are able to observe for single reconstituted PCP complexes two clear steps in fluorescence intensity timetraces attributed to subsequent bleaching of the two Chl molecules. Importantly, the bleaching of the first Chl affects neither the energy nor the intensity of the emission of the second one. Since in strongly interacting systems Chl is a very efficient quencher of the fluorescence, this behavior implies that the two fluorescing Chls within a PCP monomer interact very weakly with each other which makes it possible to independently monitor the fluorescence of each individual chromophore in the complex. We apply this property, which distinguishes PCP from other light-harvesting systems, to measure the distribution of the energy splitting between two chemically identical Chl a molecules contained in the PCP monomer that reaches 280 cm− 1. In agreement with this interpretation, stepwise bleaching of fluorescence is also observed for native PCP complexes, which contain six Chls. Most PCP complexes reconstituted with both Chl a and Chl b show two emission lines, whose wavelengths correspond to the fluorescence of Chl a and Chl b. This is a clear proof that these two different chromophores are present in a single PCP monomer. Single molecule fluorescence studies of PCP complexes, both native and artificially reconstituted with chlorophyll mixtures, provide new and detailed information necessary to fully understand the energy transfer in this unique light-harvesting system.  相似文献   

18.
A universal set of equations for determining chlorophyll (Chl) a, accessory Chl b, c, and d, and total Chl have been developed for 90 % acetone, 100 % methanol, and ethanol solvents suitable for estimating Chl in extracts from natural assemblages of algae. The presence of phaeophytin (Ph) a not only interferes with estimates of Chl a but also with Chl b and c determinations. The universal algorithms can hence be misleading if used on natural collections containing large amounts of Ph. The methanol algorithms are severely affected by the presence of Ph and so are not recommended. The algorithms were tested on representative mixtures of Chls prepared from extracts of algae with known Chl composition. The limits of detection (and inherent error, ±95 % confidence limit) for all the Chl equations were less than 0.03 g m−3. The algorithms are both accurate and precise for Chl a and d but less accurate for Chl b and c. With caution the algorithms can be used to calculate a Chl profile of natural assemblages of algae. The relative error of measurements of Chls increases hyperbolically in diluted extracts. For safety reasons, efficient extraction of Chls and the convenience of being able to use polystyrene cuvettes, the algorithms for ethanol are recommended for routine assays of Chls in natural assemblages of aquatic plants.  相似文献   

19.
Absorption and magnetic circular dichroism (MCD) spectra are reported for chlorophyll (Chl) a and Chl b dissolved in nematic liquid crystal solvents. The spectra were measured with the dye molecules oriented uniaxially along the direction of. the magnetic field and measuring light beam. It is significant that under such conditions the MCD spectra recorded in the wavelength region of the Q and Soret bands of the chlorophyll are essentially unchanged with respect to rotation of the sample cell around this axis, even though there is almost complete orientation of the chlorophyll molecules by the liquid crystals. The MCD spectra of Chl a and b in the nematic liquid crystal solvents used in this study are surprisingly similar to the spectra obtained under isotropic conditions. These results illustrate an important technique with which to examine the optical spectra of dyes oriented in liquid crystal matrices in which the anisotropic effects can be reduced the negligible proportions by the application of a strong magnetic field parallel to the direction of the measuring light beam. The first deconvolution calculations are reported that describe the deconvolution of pairs of absorption and MCD spectra, in the Q and B band regions, for both Chl a and b. The spectral analysis to obtain quantitative estimates of transition energies was accomplished by carrying out detailed deconvolution calculations in which the both the absorption and MCD spectral envelopes were fitted with the same number of components; each pair of components had the same hand centres and bandwidth values. This procedure resulted in an assignment of each of the main transitions in the absorption spectra of both Chl a and b. Chl a is clearly monomeric, with Qy, Qx, By and Bx located at 671, 582, 439 and 431 nm, respectively. Analysis of the spectral data for Chl b located Qy, By and Bx, at 662, 476 and 464 nm, respectively.  相似文献   

20.
Toneva  V.  Gechev  T.  Minkov  I. 《Photosynthetica》2001,39(4):597-601
The photodynamic damage of the sensitive plants wheat and mustard, treated with chlorophyll (Chl) precursors 5-aminolevulinic acid (ALA) and glutamic acid (Glu) and with 1,10-phenanthroline (Phen), was caused by tetrapyrroles, which accumulated after 17 h in the dark period, followed by 12 h of irradiation with white light. The effect of accumulated Chl in mustard plants was accompanied by changes in the amounts of the Chls and carotenoids and by dehydration of the tissues, partial chlorosis, and necrosis. The molecular nature of the specific photodynamic sensitivity of the mustard and wheat plants under the influence of Phen and Chl precursors was important: accumulation of tetrapyrroles was a necessary, but not only reason for photodynamic damage of the plants. The degree of leaf damage was related to the amount and chemical nature of accumulated tetrapyrroles and to the greening group to which the investigated plant belongs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号