首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background  

The ability to visualize genomic features and design experimental assays that can target specific regions of a genome is essential for modern biology. To assist in these tasks, we present Genomorama, a software program for interactively displaying multiple genomes and identifying potential DNA hybridization sites for assay design.  相似文献   

2.
Rearrangements of the genome can be detected by microarray methods and massively parallel sequencing, which identify copy-number alterations and breakpoint junctions, but these techniques are poorly suited to reconstructing the long-range organization of rearranged chromosomes, for example, to distinguish between translocations and insertions. The single-DNA-molecule technique HAPPY mapping is a method for mapping normal genomes that should be able to analyse genome rearrangements, i.e. deviations from a known genome map, to assemble rearrangements into a long-range map. We applied HAPPY mapping to cancer cell lines to show that it could identify rearrangement of genomic segments, even in the presence of normal copies of the genome. We could distinguish a simple interstitial deletion from a copy-number loss at an inversion junction, and detect a known translocation. We could determine whether junctions detected by sequencing were on the same chromosome, by measuring their linkage to each other, and hence map the rearrangement. Finally, we mapped an uncharacterized reciprocal translocation in the T-47D breast cancer cell line to about 2 kb and hence cloned the translocation junctions. We conclude that HAPPY mapping is a versatile tool for determining the structure of rearrangements in the human genome.  相似文献   

3.
Genome rearrangement events, including inversions and translocations, are frequently observed across related microbial species, but the impact of such events on functional diversity is unclear. To clarify this relationship, we compared 4 members of the Gram-negative Burkholderia family (Burkholderia pseudomallei, Burkholderia mallei, Burkholderia thailandensis, and Burkholderia cenocepacia) and identified a core set of 2,590 orthologs present in all 4 species (metagenes). The metagenes were organized into 255 synteny blocks whose relative order has been altered by a predicted minimum of 242 genome rearrangement events. Functionally, metagenes within individual synteny blocks were often related. The molecular divergence of metagenes adjacent to synteny breakpoints (boundary metagenes) was significantly greater compared with metagenes within blocks, suggesting an association between breakpoint locations and local fine-scale nucleotide alterations. This phenomenon, referred to as boundary element associated divergence, was also observed in Pseudomonas and Shigella, suggesting that this is a common phenomenon in prokaryotes. We also observed preferential localization of species-specific genes and insertion sequence element to synteny breakpoints in Burkholderia. Our results suggest that in prokaryotes, genome rearrangements may influence functional diversity through the enhanced divergence of boundary genes and the creation of foci for acquiring and deleting species-specific genes.  相似文献   

4.

Background

Annotating mammalian genomes for noncoding RNAs (ncRNAs) is nontrivial since far from all ncRNAs are known and the computational models are resource demanding. Currently, the human genome holds the best mammalian ncRNA annotation, a result of numerous efforts by several groups. However, a more direct strategy is desired for the increasing number of sequenced mammalian genomes of which some, such as the pig, are relevant as disease models and production animals.

Results

We present a comprehensive annotation of structured RNAs in the pig genome. Combining sequence and structure similarity search as well as class specific methods, we obtained a conservative set with a total of 3,391 structured RNA loci of which 1,011 and 2,314, respectively, hold strong sequence and structure similarity to structured RNAs in existing databases. The RNA loci cover 139 cis-regulatory element loci, 58 lncRNA loci, 11 conflicts of annotation, and 3,183 ncRNA genes. The ncRNA genes comprise 359 miRNAs, 8 ribozymes, 185 rRNAs, 638 snoRNAs, 1,030 snRNAs, 810 tRNAs and 153 ncRNA genes not belonging to the here fore mentioned classes. When running the pipeline on a local shuffled version of the genome, we obtained no matches at the highest confidence level. Additional analysis of RNA-seq data from a pooled library from 10 different pig tissues added another 165 miRNA loci, yielding an overall annotation of 3,556 structured RNA loci. This annotation represents our best effort at making an automated annotation. To further enhance the reliability, 571 of the 3,556 structured RNAs were manually curated by methods depending on the RNA class while 1,581 were declared as pseudogenes. We further created a multiple alignment of pig against 20 representative vertebrates, from which RNAz predicted 83,859 de novo RNA loci with conserved RNA structures. 528 of the RNAz predictions overlapped with the homology based annotation or novel miRNAs. We further present a substantial synteny analysis which includes 1,004 lineage specific de novo RNA loci and 4 ncRNA loci in the known annotation specific for Laurasiatheria (pig, cow, dolphin, horse, cat, dog, hedgehog).

Conclusions

We have obtained one of the most comprehensive annotations for structured ncRNAs of a mammalian genome, which is likely to play central roles in both health modelling and production. The core annotation is available in Ensembl 70 and the complete annotation is available at http://rth.dk/resources/rnannotator/susscr102/version1.02.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-459) contains supplementary material, which is available to authorized users.  相似文献   

5.
Lee W  Chen SL 《BioTechniques》2002,33(6):1334-1341
Genome-tools is a Perl module, a set of programs, and a user interface that facilitates access to genome sequence information. The package is flexible, extensible, and designed to be accessible and useful to both nonprogrammers and programmers. Any relatively well-annotated genome available with standard GenBank genome files may be used with genome-tools. A simple Web-based front end permits searching any available genome with an intuitive interface. Flexible design choices also make it simple to handle revised versions of genome annotation files as they change. In addition, programmers can develop cross-genomic tools and analyses with minimal additional overhead by combining genome-tools modules with newly written modules. Genome-tools runs on any computer platform for which Perl is available, including Unix, Microsoft Windows, and Mac OS. By simplifying the access to large amounts of genomic data, genome-tools may be especially useful for molecular biologists looking at newly sequenced genomes, for which few informatics tools are available. The genome-tools Web interface is accessible at http://genome-tools.sourceforge.net, and the source code is available at http://sourceforge.net/projects/genome-tools.  相似文献   

6.
GRIMM: genome rearrangements web server   总被引:14,自引:0,他引:14  
SUMMARY: Genome Rearrangements In Man and Mouse (GRIMM) is a tool for analyzing rearrangements of gene orders in pairs of unichromosomal and multichromosomal genomes, with either signed or unsigned gene data. Although there are several programs for analyzing rearrangements in unichromosomal genomes, this is the first to analyze rearrangements in multichromosomal genomes. GRIMM also provides a new algorithm for analyzing comparative maps for which gene directions are unknown. AVAILABILITY: A web server, with instructions and sample data, is available at http://www-cse.ucsd.edu/groups/bioinformatics/GRIMM.  相似文献   

7.
DAGchainer: a tool for mining segmental genome duplications and synteny   总被引:8,自引:0,他引:8  
SUMMARY: Given the positions of protein-coding genes along genomic sequence and probability values for protein alignments between genes, DAGchainer identifies chains of gene pairs sharing conserved order between genomic regions, by identifying paths through a directed acyclic graph (DAG). These chains of collinear gene pairs can represent segmentally duplicated regions and genes within a single genome or syntenic regions between related genomes. Automated mining of the Arabidopsis genome for segmental duplications illustrates the use of DAGchainer.  相似文献   

8.
Mitochondrial (mt) genome organization in soybean was examined at the molecular level. This study builds upon previous reports that four soybean cytoplasmic groups, Bedford, Arksoy, Lincoln, and soja-forage, are differentiated by polymorphisms detected with a 2.3 kb Hind III mtDNA probe [12]. The variation detected results from DNA alterations in a region within and around a 4.8 kb repeat. The Bedford-type cytoplasm is the only cytoplasm that contains copies of a 4.8 kb repeat in four different genomic environments, evidence that it is recombinationally active. The Lincoln- and Arksoy-type cytoplasms each contain two copies of the repeat, as well as unique fragments that appear to result from rare recombination events outside, but near, the repeat. The soja-forage-type cytoplasm contains no complete copies of the repeat, but does contain a unique truncated version of the repeat. Sequence analysis indicates that the truncation is a result of recombination across a 9 bp repeated sequence, CCCCTCCCC. The structural rearrangements that have occurred in the region surrounding the 4.8 kb repeat may provide a means to dissect species relationships and evolution within the subgenus soja.  相似文献   

9.
10.
11.
12.
Magnifying Genomes (MaGe) is a microbial genome annotation system based on a relational database containing information on bacterial genomes, as well as a web interface to achieve genome annotation projects. Our system allows one to initiate the annotation of a genome at the early stage of the finishing phase. MaGe's main features are (i) integration of annotation data from bacterial genomes enhanced by a gene coding re-annotation process using accurate gene models, (ii) integration of results obtained with a wide range of bioinformatics methods, among which exploration of gene context by searching for conserved synteny and reconstruction of metabolic pathways, (iii) an advanced web interface allowing multiple users to refine the automatic assignment of gene product functions. MaGe is also linked to numerous well-known biological databases and systems. Our system has been thoroughly tested during the annotation of complete bacterial genomes (Acinetobacter baylyi ADP1, Pseudoalteromonas haloplanktis, Frankia alni) and is currently used in the context of several new microbial genome annotation projects. In addition, MaGe allows for annotation curation and exploration of already published genomes from various genera (e.g. Yersinia, Bacillus and Neisseria). MaGe can be accessed at http://www.genoscope.cns.fr/agc/mage.  相似文献   

13.
《Genomics》2020,112(1):286-288
Synteny and collinearity analysis is a standard investigative strategy done in many comparative genomic studies to understand genomic conservation and evolution. Currently, most visualization toolkits of synteny and collinearity do not emphasize the graphical representation of the results, especially the lack of extensible format on vector graphics outputs. This limitation becomes more apparent as 3rd generation sequencing brings high-throughput data, requiring relatively higher resolution for the resulting images. We developed VGSC2, the 2nd version of the web-based vector graph toolkit for genome synteny and collinearity analysis. The updated version enables four types of plots for synteny and collinearity, and three types of plots for gene family evolutionary research. Using web-based technologies, VGSC2 provides an easy-to-use user interface to display the homologous genomic result into vector graphs such as SVG, EPS, and PDF, as well as an online editor. VGSC2 is open source and freely available for use online through the web server available at http://bio.njfu.edu.cn/vgsc2.  相似文献   

14.

Background  

It is difficult to accurately interpret chromosomal correspondences such as true orthology and paralogy due to significant divergence of genomes from a common ancestor. Analyses are particularly problematic among lineages that have repeatedly experienced whole genome duplication (WGD) events. To compare multiple "subgenomes" derived from genome duplications, we need to relax the traditional requirements of "one-to-one" syntenic matchings of genomic regions in order to reflect "one-to-many" or more generally "many-to-many" matchings. However this relaxation may result in the identification of synteny blocks that are derived from ancient shared WGDs that are not of interest. For many downstream analyses, we need to eliminate weak, low scoring alignments from pairwise genome comparisons. Our goal is to objectively select subset of synteny blocks whose total scores are maximized while respecting the duplication history of the genomes in comparison. We call this "quota-based" screening of synteny blocks in order to appropriately fill a quota of syntenic relationships within one genome or between two genomes having WGD events.  相似文献   

15.
Analysis of evolution of paralogous genes in a genome is central to our understanding of genome evolution. Comparison of closely related bacterial genomes, which has provided clues as to how genome sequences evolve under natural conditions, would help in such an analysis. With species Staphylococcus aureus, whole-genome sequences have been decoded for seven strains. We compared their DNA sequences to detect large genome polymorphisms and to deduce mechanisms of genome rearrangements that have formed each of them. We first compared strains N315 and Mu50, which make one of the most closely related strain pairs, at the single-nucleotide resolution to catalogue all the middle-sized (more than 10 bp) to large genome polymorphisms such as indels and substitutions. These polymorphisms include two paralogous gene sets, one in a tandem paralogue gene cluster for toxins in a genomic island and the other in a ribosomal RNA operon. We also focused on two other tandem paralogue gene clusters and type I restriction-modification (RM) genes on the genomic islands. Then we reconstructed rearrangement events responsible for these polymorphisms, in the paralogous genes and the others, with reference to the other five genomes. For the tandem paralogue gene clusters, we were able to infer sequences for homologous recombination generating the change in the repeat number. These sequences were conserved among the repeated paralogous units likely because of their functional importance. The sequence specificity (S) subunit of type I RM systems showed recombination, likely at the homology of a conserved region, between the two variable regions for sequence specificity. We also noticed novel alleles in the ribosomal RNA operons and suggested a role for illegitimate recombination in their formation. These results revealed importance of recombination involving long conserved sequence in the evolution of paralogous genes in the genome.  相似文献   

16.
Summary: DNAPlotter is an interactive Java application for generatingcircular and linear representations of genomes. Making use ofthe Artemis libraries to provide a user-friendly method of loadingin sequence files (EMBL, GenBank, GFF) as well as data fromrelational databases, it filters features of interest to displayon separate user-definable tracks. It can be used to producepublication quality images for papers or web pages. Availability: DNAPlotter is freely available (under a GPL licence)for download (for MacOSX, UNIX and Windows) at the WellcomeTrust Sanger Institute web sites: http://www.sanger.ac.uk/Software/Artemis/circular/ Contact: artemis{at}sanger.ac.uk Associate Editor: John Quackenbush  相似文献   

17.
VisGenome visualizes single and comparative representations for the rat, the mouse and the human chromosomes at different levels of detail. The tool offers smooth zooming and panning which is more flexible than seen in other browsers. It presents information available in Ensembl for single chromosomes, as well as homologies (orthologue predictions including ortholog one2one, apparent ortholog one2one, ortholog many2many) for any two chromosomes from different species. The application can query supporting data from Ensembl by invoking a link in a browser.  相似文献   

18.
A panel of 36 hamster-bovine hybrid cell lines was used to assign 15 bovine microsatellites. Locus identification, synteny group and/or chromosome assignment and registration number were as follows: ILSTS001 (U22, Chr07, D7S13), ILSTS002 (U09, Chr18, D18S7), ILSTS004 (U10, Chr01, D1S28), ILSTS005 (U05, Chr10, D10S25). ILSTS006 (U22, Chr07, D7S8), ILSTS008 (U24, Chr14, D14S15), ILSTS010 (U27, DU27S11), ILSTS011 (U24, Chr14, D14S16), ILSTS012 (U16, Chr11, D11S26), ILSTS015 (U07, Chr25, D25S3), ILSTS016 (U04, Chr21, D21S22), ILSTS017 (X, DXS11), ILSTS018 (U15, Chr06, D6S15), ILSTS019 (U07, Chr25, D25S7) and ILSTS020 (U05, Chr10, D10S27). These results contribute to the international effort to improve the bovine genetic map.  相似文献   

19.
We present an ontology for describing genomes, genome comparisons, their evolution and biological function. This ontology will support the development of novel genome comparison algorithms and aid the community in discussing genomic evolution. It provides a framework for communication about comparative genomics, and a basis upon which further automated analysis can be built. The nomenclature defined by the ontology will foster clearer communication between biologists, and also standardize terms used by data publishers in the results of analysis programs. The overriding aim of this ontology is the facilitation of consistent annotation of genomes through computational methods, rather than human annotators. To this end, the ontology includes definitions that support computer analysis and automated transfer of annotations between genomes, rather than relying upon human mediation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号