共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Voltage-gated Ca(2+) channels (VGCCs) are recognized for their superb ability for the preferred passage of Ca(2+) over any other more abundant cation present in the physiological saline. Most of our knowledge about the mechanisms of selective Ca(2+) permeation through VGCCs was derived from the studies on native and recombinant L-type representatives. However, the specifics of the selectivity and permeation of known recombinant T-type Ca(2+)-channel alpha1 subunits, Ca(v)3.1, Ca(v)3.2 and Ca(v)3.3, are still poorly defined. In the present study we provide comparative analysis of the selectivity and permeation Ca(v)3.1, Ca(v)3.2, and Ca(v)3.3 functionally expressed in Xenopus oocytes. Our data show that all Ca(v)3 channels select Ca(2+) over Na(+) by affinity. Ca(v)3.1 and Ca(v)3.2 discriminate Ca(2+), Sr(2+) and Ba(2+) based on the ion's effects on the open channel probability, whilst Ca(v)3.3 discriminates based on the ion's intrapore binding affinity. All Ca(v)3s were characterized by much smaller difference in the K(D) values for Na(+) current blockade by Ca(2+) (K(D1) approximately 6 microM) and for Ca(2+) current saturation (K(D2) approximately 2 mM) as compared to L-type channels. This enabled them to carry notable mixed Na(+)/Ca(2+) current at close to physiological Ca(2+) concentrations, which was the strongest for Ca(v)3.3, smaller for Ca(v)3.2 and the smallest for Ca(v)3.1. In addition to intrapore Ca(2+) binding site(s) Ca(v)3.2, but not Ca(v)3.1 and Ca(v)3.3, is likely to possess an extracellular Ca(2+) binding site that controls channel permeation. Our results provide novel functional tests for identifying subunits responsible for T-type Ca(2+) current in native cells. 相似文献
4.
Elia Ranzato Valeria Magnelli Simona Martinotti Zeina Waheed Stuart M. Cain Terrance P. Snutch Carla Marchetti Bruno Burlando 《Cell calcium》2014
We used MCF-7 human breast cancer cells that endogenously express Cav3.1 and Cav3.2 T-type Ca2+ channels toward a mechanistic study on the effect of EGCG on [Ca2+]i. Confocal Ca2+ imaging showed that EGCG induces a [Ca2+]i spike which is due to extracellular Ca2+ entry and is sensitive to catalase and to low-specificity (mibefradil) and high-specificity (Z944) T-type Ca2+channel blockers. siRNA knockdown of T-type Ca2+ channels indicated the involvement of Cav3.2 but not Cav3.1. Application of EGCG to HEK cells expressing either Cav3.2 or Cav3.1 induced enhancement of Cav3.2 and inhibition of Cav3.1 channel activity. Measurements of K+ currents in MCF-7 cells showed a reversible, catalase-sensitive inhibitory effect of EGCG, while siRNA for the Kv1.1 K+ channel induced a reduction of the EGCG [Ca2+]i spike. siRNA for Cav3.2 reduced EGCG cytotoxicity to MCF-7 cells, as measured by calcein viability assay. Together, data suggest that EGCG promotes the activation of Cav3.2 channels through K+ current inhibition leading to membrane depolarization, and in addition increases Cav3.2 currents. Cav3.2 channels are in part responsible for EGCG inhibition of MCF-7 viability, suggesting that deregulation of [Ca2+]i by EGCG may be relevant in breast cancer treatment. 相似文献
5.
Voltage-activated Ca2+ channels are membrane protein machinery performing selective permeation of external calcium ions. The main Ca2+ selective filters of all high-voltage-activated Ca2+ channel isoforms are commonly composed of four Glu residues (EEEE), while those of low-voltage-activated T-type Ca2+ channel isoforms are made up of two Glu and two Asp residues (EEDD). We here investigate how the Asp residues at the pore loops of domains III and IV affect biophysical properties of the Cav3.2 channel. Electrophysiological characterization of the pore mutant channels in which the pore Asp residue(s) were replaced with Glu, showed that both Asp residues critically control the biophysical properties of Cav3.2, including relative permeability between Ba2+ and Ca2+, anomalous mole fraction effect (AMFE), voltage dependency of channel activation, Cd2+ blocking sensitivity, and pH effects, in distinctive ways. 相似文献
6.
We studied the peculiarities of permeability with respect to the main extracellular cations, Na+ and Ca2+, of cloned low-threshold calcium channels (LTCCs) of three subtypes, Cav3.1 (α1G), Cav3.2 (α 1H), and Cav3.3 (α1I), functionally expressed in Xenopus oocytes. In a calcium-free solution containing 100 mM Na+ and 5 mM calcium-chelating EGTA buffer (to eliminate residual concentrations of Ca2+) we observed considerable integral currents possessing the kinetics of inactivation typical of LTCCs and characterized by
reversion potentials of −10 ± 1, −12 ± 1, and −18 ± 2 mV, respectively, for Cav3.1, Cav3.2, and Cav3.3 channels. The presence of Ca2+ in the extracellular solution exerted an ambiguous effect on the examined currents. On the one hand, Ca2+ effectively blocked the current of monovalent cations through cloned LTCCs (K
d = 2, 10, and 18 μM for currents through channels Cav3.1, Cav3.2, and Cav3.3, respectively). On the other hand, at the concentration of 1 to 100 mM, Ca2+ itself functioned as a carrier of the inward current. Despite the fact that the calcium current reached the level of saturation
in the presence of 5 mM Ca2+ in the external solution, extracellular Na+ influenced the permeability of these channels even in the presence of 10 mM Ca2+. The Cav3.3 channels were more permeable with respect to Na+ (P
Ca/P
Na ∼ 21) than Cav3.1 and Cav3.2 (P
Ca/P
Na ∼ 66). As a whole, our data indicate that cloned LTCCs form multi-ion Ca2+-selective pores, as these ions possess a high affinity for certain binding sites. Monovalent cations present together with
Ca2+ in the external solution modulate the calcium permeability of these channels. Among the above-mentioned subtypes, Cav3.3 channels show the minimum selectivity with respect to Ca2+ and are most permeable for monovalent cations.
Neirofiziologiya/Neurophysiology, Vol. 38, No. 3, pp. 183–192, May–June, 2006. 相似文献
7.
Shcheglovitov A. K. Zhelay T. I. Kondratskii A. P. Naidenov V. G. Shuba Ya. M. 《Neurophysiology》2004,36(2):93-101
We analyzed the effects of nifedipine on a family of recombinant low-threshold Ca2+ channels functionally expressed in Xenopus oocytes and formed by three different subunits (1G, 1H, and 1I). The 1G and 1I channels demonstrated a low sensitivity to nifedipine even in high concentrations (IC50 = 98 and 243 M, maximum blocking intensity Amax = 25 and 47%, respectively). At the same time, the above agent effectively blocked channels formed by the 1H-subunit (IC50 = 5 M and Amax = 41%). The nifedipine-caused effects were voltage-dependent, and their changes depended on the initial state of the channel. In the case of 1G-subunits, the blockade was determined mostly by binding of nifedipine with closed channels, whereas in the cases of 1H- and 1I-subunits this resulted from binding of nifedipine with channels in the activated and inactivated states. The obtained data allow us to obtain estimates of the pharmacological properties of the above three subtypes of recombinant channels and, in the future, to compare these characteristics with the properties of low-threshold Ca2+ channels in native cells. 相似文献
8.
Takebayashi S Li Y Kaku T Inagaki S Hashimoto Y Kimura K Miyamoto S Hadama T Ono K 《Biochemical and biophysical research communications》2006,345(2):766-773
We utilized Wistar rats with monocrotaline (MCT)-induced right ventricular hypertrophy (RVH) in order to evaluate the T-type Ca2+ channel current (ICaT) for myocardial contraction. RT-PCR provides that mRNA for T-type Ca2+ channel alpha1-subunits in hypertrophied myocytes was significantly higher than those in control rats (alpha1G; 264+/-36%, alpha1H; 191+/-34%; P<0.05). By whole-cell patch-clamp study, ICaT was recorded only in hypertrophied myocytes but not in control myocytes. The application of 50 nmol/L nifedipine reduced the twitch tension of the right ventricles equally in the control and RVH rats. On the other hand, 0.5 micromol/L mibefradil, a T-type Ca2+ channel blocker, strongly inhibited the twitch tension of the RVH muscle (control 6.4+/-0.8% vs. RVH 20.0+/-2.3% at 5 Hz; P<0.01). In conclusion, our results indicate the functional expression of T-type Ca2+ channels in the hypertrophied heart and their contribution to the remodeling of excitation-contraction coupling in the cardiac myocyte. 相似文献
9.
Giordanetto F Knerr L Selmi N Llinàs A Lindqvist A Wang QD Ståhlberg P Thorstensson F Ullah V Nilsson K O'Mahony G Högberg G Lindhardt E Strand A Duker G 《Bioorganic & medicinal chemistry letters》2011,21(18):5557-5561
Chemical evolution of a HTS-based fragment hit resulted in the identification of N-(1-adamantyl)-2-[4-(2-tetrahydropyran-4-ylethyl)piperazin-1-yl]acetamide, a novel, selective T-type calcium channel (Ca(v)3.2) inhibitor with in vivo antihypertensive effect in rats. 相似文献
10.
11.
Bkaily Ghassan Sculptoreanu Adrian Jacques Danielle Jasmin Gaétan 《Molecular and cellular biochemistry》1997,176(1-2):199-204
In the present study, the whole-cell voltage clamp technique was used in order to record the T- and L-type Ca2+ currents in single heart cells of newborn and young normal and hereditary cardiomyopathic hamsters. Our results showed that the I/V relationship curve as well as the kinetics of the L-type Ca2+ currents (ICa(L)) in both normal and cardiomyopathic heart cells were the same. However, the proportion of myocytes from normal heart hamster that showed L-type ICa was less than that of heart cells from cardiomyopathic hamster. The I/V relationship curve of the T-type ICa (ICa(T)) was the same in myocytes of both normal and cardiomyopathic hamsters. The main differences between ICa(T) of cardiomyopathic and normal hamster are a larger window current and the proportion of ventricular myocytes that showed this type of current in cardiomyopathic hamster. The high density of ICa(T) as well as the large window current and proportion of myocytes showing ICa(T) may explain in part Ca2+ overload observed in cardiomyopathic heart cells of the hamster. 相似文献
12.
Kim T Choi J Kim S Kwon O Nah SY Han YS Rhim H 《Biochemical and biophysical research communications》2004,324(1):401-408
In order to investigate the currently unknown cellular signaling pathways of T-type Ca(2+) channels, we decided to construct a new cell line which would stably express alpha(1G) and Kir2.1 subunits in HEK293 cells (HEK293/alpha(1G)/Kir2.1). Compared to cells which only expressed alpha(1G) (HEK293/alpha(1G)), HEK293/alpha(1G)/Kir2.1 cells produced an enormous inward rectifying current which was blocked by external Ba(2+) and Cs(+) in a concentration-dependent manner. The expression of Kir2.1 channels contributed significantly to the shift of membrane potential from -12.2+/-2.8 to -57.3+/-3.7mV. However, biophysical and pharmacological properties of alpha(1G)-mediated Ca(2+) channels remained unaffected by the expression of Kir2.1 subunits, except for the enlarging of the window current region. Biochemical activation of alpha(1G) channels using 150mM KCl brought about an increase in [Ca(2+)](i), which was blocked by mibefradil, the T-type Ca(2+) channel blocker. These data suggest that the HEK293/alpha(1G)/Kir2.1 cell line would have potential uses in the study of T-type Ca(2)(+) channel-mediated signaling pathways and possibly useful in the development of new therapeutic drugs associated with T-type Ca(2)(+) channels. 相似文献
13.
Katarina Ondacova Maria Karmazinova Joanna Lazniewska Norbert Weiss 《Channels (Austin, Tex.)》2016,10(3):175-184
Low-voltage-gated T-type calcium channels are expressed throughout the nervous system where they play an essential role in shaping neuronal excitability. Defects in T-type channel expression have been linked to various neuronal disorders including neuropathic pain and epilepsy. Currently, little is known about the cellular mechanisms controlling the expression and function of T-type channels. Asparagine-linked glycosylation has recently emerged as an essential signaling pathway by which the cellular environment can control expression of T-type channels. However, the role of N-glycans in the conducting function of T-type channels remains elusive. In the present study, we used human Cav3.2 glycosylation-deficient channels to assess the role of N-glycosylation on the gating of the channel. Patch-clamp recordings of gating currents revealed that N-glycans attached to hCav3.2 channels have a minimal effect on the functioning of the channel voltage-sensor. In contrast, N-glycosylation on specific asparagine residues may have an essential role in the conducting function of the channel by enhancing the channel permeability and / or the pore opening of the channel. Our data suggest that modulation of N-linked glycosylation of hCav3.2 channels may play an important physiological role, and could also support the alteration of T-type currents observed in disease states. 相似文献
14.
Nundehui Díaz-Lezama Alejandro Sandoval Ricardo Felix 《Biochemical and biophysical research communications》2010,403(1):24-69
Ghrelin is a multifunctional peptide hormone with roles in growth hormone release, food intake and cell proliferation. With ghrelin now recognized as important in neoplastic processes, the aim of this report is to present findings from a series of in vitro studies evaluating the cellular mechanisms involved in ghrelin regulation of proliferation in the PC-3 human prostate carcinoma cells. The results showed that ghrelin significantly decreased proliferation and induced apoptosis. Consistent with a role in apoptosis, an increase in intracellular free Ca2+ levels was observed in the ghrelin-treated cells, which was accompanied by up-regulated expression of T-type voltage-gated Ca2+ channels. Interestingly, T-channel antagonists were able to prevent the effects of ghrelin on cell proliferation. These results suggest that ghrelin inhibits proliferation and may promote apoptosis by regulating T-type Ca2+ channel expression. 相似文献
15.
Leung YM Ahmed I Sheu L Tsushima RG Diamant NE Gaisano HY 《Biochemical and biophysical research communications》2006,345(1):340-344
In low or absence of glucose, alpha-cells generate rhythmic action potentials and secrete glucagon. alpha-Cell T-type Ca(2+) channels are believed to be pacemaker channels, which are expected to open near the resting membrane potential (around -60 mV) to initiate a small depolarization. A previous publication, however, showed that alpha-cell T-type Ca(2+) channels have an activation threshold of -40 mV, which does not appear to fulfill their role as pacemakers. In this work, we investigated the Ca(2+) channel characteristics in alpha-cells of mouse-insulin-promoter green-fluorescent-protein (MIP-GFP) mouse. The beta-cells of MIP-GFP were conveniently distinguished as green cells, while immunostaining indicated that the majority of non-green cells were alpha-cells. We found that majority of alpha-cells possessed T-type Ca(2+) channels having an activation threshold of -40 mV; these cells also had high-voltage-activated (HVA) Ca(2+) channels (activation threshold of -20 mV). A novel finding here is that a minority of alpha-cells had T-type Ca(2+) channels with an activation threshold of -60 mV. This minor population of alpha-cells was, surprisingly, devoid of HVA Ca(2+) channels. We suggest that this alpha-cell subpopulation may act as pacemaker cells in low or absence of glucose. 相似文献
16.
Selectivity of ATP-activated GTP-dependent Ca2+-permeable channels in rat macrophage plasma membrane
A. P. Naumov E. V. Kaznacheyeva Y. A. Kuryshev G. N. Mozhayeva 《The Journal of membrane biology》1995,148(1):91-98
Outside-out configuration of the patch clamp technique was used to test whether an intracellular application of G protein activator (GTPS) affects ATP-activated Ca2+-permeable channels in rat macrophages without any agonist in the bath solution. With 145 mm K+ (pCa 8.0) in the pipette solution, activity of channels permeable to a variety of divalent cations and Na+ was observed and general channel characteristics were found to be identical to those of ATP-activated ones. Absence of extracellular ATP makes it possible to avoid the influence of ATP receptor desensitization and to study the channel selectivity using a number of divalent cations (105 mm) and Na+ (145 mm) as the charge carriers. Permeability sequence estimated by extrapolated reversal potential measurements was: Ca2+ Ba2+ Mn2+ Sr2+ Na+ K+ = 68 30 26 10 3.5 1. Slope conductances (in pS) for permeant ions rank as follows: Ca2+ Sr2+ Na+ Mn2+ Ba2+ = 19 18 14 12 10. Unitary Ca2+ currents display a tendency to saturate with the Ca2+ concentration increase with apparent dissociation constant (K
d
) of 10 mm. No block of Na+ permeation by extracellular Ca2+ in millimolar range was found. The data obtained suggest that (i) activation of some G protein is sufficient to gate the channels without the ATP receptor being occupied, (ii) the ATP receptor activation results in the gating of a special channel with the properties that differ markedly from those of the receptoroperated or voltage-gated Ca2+-permeable channels on the other cell types.DeceasedThe authors are grateful to K. Kiselyov and A. Mamin for technical assistance. The work was supported by the Russian Basic Research Foundation, Grant N 93-04-21722 and was made possible in part by Grant N R4A000 from the International Science Foundation. 相似文献
17.
18.
Wang D Hirase T Inoue T Node K 《Biochemical and biophysical research communications》2006,347(2):394-400
Ca2+ channels are involved in the regulation of vascular functions. Angiotensin II is implicated in the development of atherosclerosis and vascular remodeling. In this study, we demonstrated that angiotensin II preferentially increased the expression of alpha1G, a T-type Ca2+ channel subunit, via AT1 receptors in endothelial cells. Angiotensin II-induced expression of alpha1G was inhibited by pretreatment with atorvastatin and the MEK1/2 inhibitor, PD98059. The effect of atorvastatin was reversed by mevalonate and farnesyl pyrophosphate which implicates the activation of the small GTP-binding protein, Ras. Our data indicate that angiotensin II induces alpha1G expression in endothelial cells via AT1 receptors, Ras and MEK. Angiotensin II-induced migration of endothelial cells in a wound healing model was inhibited by incubation with mibefradil, a T-type Ca2+ channel blocker. Our data indicate that angiotensin II induces T-type Ca2+ channels in endothelial cells, which may play a role in the development of vascular disorders. 相似文献
19.
20.
Kim Y Park MK Uhm DY Chung S 《Biochemical and biophysical research communications》2007,358(3):796-801
Corticotrophin-releasing factor (CRF) is the main regulator of the body's stress axis and its signal is translated through G-protein-coupled CRF receptors (CRF-R1, CRF-R2). Even though CRF receptors are present in the midbrain dopamine neurons, the cellular mechanism of CRF action is not clear yet. Since voltage-dependent Ca(2+) channels are highly expressed and important in dopamine neuronal functions, we tested the effect of CRF on voltage-dependent Ca(2+) channels in MN9D cells, a model of dopamine neurons. The application of CRF-related peptide, urocortin 1, reversibly inhibited T-type Ca(2+) currents, which was a major Ca(2+) channel in the cells. The effect of urocortin was abolished by specific CRF-R1 antagonist and was mimicked by protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate. PKC inhibitors abolished the effect of urocortin. These results suggest that urocortin modulates T-type Ca(2+) channel by interacting with CRF-R1 via the activation of PKC signal pathway in MN9D cells. 相似文献