首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Corneal endothelium transports fluid in the absence of net solute transport   总被引:1,自引:0,他引:1  
The corneal endothelium transports fluid from the corneal stroma to the aqueous humor, thus maintaining stromal transparency by keeping it relatively dehydrated. This fluid transport mechanism is thought to be driven by the transcellular transports of HCO(3)(-) and Cl(-) in the same direction, from stroma to aqueous. In parallel to these anion movements, for electroneutrality, there are paracellular Na(+) and transcellular K(+) transports in the same direction. The resulting net flow of solute might generate local osmotic gradients that drive fluid transport. However, there are reports that some 50% residual fluid transport remains in nominally HCO(3)(-) free solutions. We have examined the driving force for this residual fluid transport. We confirm that in nominally HCO(3)(-) free solutions, 48% of control fluid transport remains. When in addition Cl(-) channels are inhibited, 30% of control fluid movement still remains. Addition of a carbonic anhydrase inhibitor has no further effect. These manipulations combined inhibit the transcellular transport of all anions, without which there cannot be any net transport of solute and consequently no local osmotic gradients, yet there is residual fluid movement. Only the further addition of benzamil, an inhibitor of epithelial Na(+) channels, abolishes fluid transport completely. Our data are inconsistent with transcellular local osmosis and instead support the paradigm of paracellular fluid transport driven by electro-osmotic coupling.  相似文献   

2.
Summary The rate of fluid transport across rabbit corneal endothelium has been measured with an automatic volumetric method. The present resolution of the procedure is 1–3 nanoliters, and intervals of measurement can be made as small as seconds. In the presence of glucose, oxidized glutathione (GSSG), and adenosine, the maximal rates were 6.2±1.0 l/hr cm2, and 8.2±0.8 l/hr cm2 if a large portion of the stroma was dissected away. In the presence of glucose and GSSG only, the rates were lower, namely 3.7±0.5 l/hr cm2. The rates consistently increased or decreased when adenosine was added or deleted, respectively, during given experiments. The stimulation of fluid transport by adenosine was in the order of 40–50%. The results raise the possibility that this transport mechanism might be subject to metabolic control.  相似文献   

3.
The consequences of an oscillatory fluid shear mechanism on nutrient transport in bone during physical activity and ultrasonic therapy are discussed. During movement, periodic stress on bone creates transient pressure gradients that circulate interstitial fluid through calcified bone. A transport model derived from oscillatory Taylor-Aris dispersion phenomena was used to predict a ratio of effective-to-molecular diffusivity, K/D, for solutes of varying sizes up to 50 nm in diameter, in pores filled with interstitial fluid and pericellular matrix. The magnitude of the estimated transport enhancement depended on the molecular size, pore dimension, applied frequency and the displacement of the fluid during pressurization. For oscillation frequencies and amplitudes corresponding to those experienced during normal human activity, transport enhancements of up to 100 fold are expected for molecules larger than 5 nm in diameter. Enhancements of up to one order of magnitude, due to ultrasound stimulations in the MHz frequency range, are also expected for 7-nm-sized solutes. No effects are anticipated for ions, whose molecular diffusion time is too fast relative to the oscillation frequency. This model is expected to be useful for understanding differences in bone growth as a function of type of movement or to develop new physical therapies.  相似文献   

4.
Modulation of solute permeability in microvascular endothelium   总被引:9,自引:0,他引:9  
Modulation of macromolecular permeability involves creation of venular leaks in response to receptor-operated mechanisms in the endothelial cell membrane elicited by various autacoids (histamine, serotonin, bradykinin). Reversible modulations may occur within seconds in response to specific agents, which indicates receptor-mediated events that act via the endothelial cells' contractile apparatus, leading to subtle changes in junctional microtopography and allowing faster passage of small solutes. This mechanism probably involves activation of the actin-myosin system in endothelial cells. Ca2+ is an important signal substance, as reflected in the permeability-increasing effect of calcium ionophores. The junctional control system may share functional similarities with the contractile system in various types of muscle cells, in particular, smooth muscle. This suggests a function for the extensive vesicular invaginations of the plasmalemmal membrane present in endothelial cells. Rather than being a system to carry macromolecules across the endothelium, its physiological role may be to regulate free cytosolic calcium concentration. It is reminiscent of similar membrane invaginations found in muscle cells. Thus intracellular free calcium may be regulated by a combination of energy-requiring extrusion and passive influx through receptor-operated calcium channels located in the invaginated vesicular membranes, with short diffusion distances to the actin-myosin filaments in the cytoplasm.  相似文献   

5.
6.
7.
The mechanism by which fluid is transported across epithelial layers is still unclear. The prevalent idea is that fluid traverses these layers transcellularly, driven by local osmotic gradients secondary to electrolyte transport and utilizing the high osmotic permeability of aquaporins. However, recent findings that some aquaporin knockout mice epithelia transport fluid sow doubts on local osmosis. This review discusses recent evidence in corneal endothelium that points instead to electro-osmosis as the mechanism underlying fluid transport. In this concept, a local recirculating electrical current would result in electro-osmotic coupling at the level of the intercellular junctions, dragging fluid via the paracellular route. The text also mentions possible mechanisms for apical bicarbonate exit from endothelial cells, and discusses whether electro-osmosis could be a general mechanism.  相似文献   

8.
9.
The mechanism of transepithelial fluid transport remains unclear. The prevailing explanation is that transport of electrolytes across cell membranes results in local concentration gradients and transcellular osmosis. However, when transporting fluid, the corneal endothelium spontaneously generates a locally circulating current of approximately 25 microA cm(-2), and we report here that electrical currents (0 to +/-15 microA cm(-2)) imposed across this layer induce fluid movements linear with the currents. As the imposed currents must be approximately 98% paracellular, the direction of induced fluid movements and the rapidity with which they follow current imposition (rise time < or =3 sec) is consistent with electro-osmosis driven by sodium movement across the paracellular pathway. The value of the coupling coefficient between current and fluid movements found here (2.37 +/- 0.11 microm cm(2) hr(-1) microA (-1), suggests that: 1) the local endothelial current accounts for spontaneous transendothelial fluid transport; 2) the fluid transported becomes isotonically equilibrated. Ca(++)-free solutions or endothelial damage eliminate the coupling, pointing to the cells and particularly their intercellular junctions as a main site of electro-osmosis. The polycation polylysine, which is expected to affect surface charges, reverses the direction of current-induced fluid movements. Fluid transport is proportional to the electrical resistance of the ambient medium. Taken together, the results suggest that electro-osmosis through the intercellular junctions is the primary process in a sequence of events that results in fluid transport across this preparation.  相似文献   

10.
11.
This study presents experiments related to the role of solvent drag and solute drag in the transmembrane movement of nonelectrolytes in a perfused rat intestine preparation. Conditions were chosen to simulate the effects of luminal hyperosmolarity on the permeability of tracer solutes. Data are presented on net water flux, transepithelial potentials, and lumen-to-blood and blood-to-lumen tracer solute movements during control electrolyte perfusion and after making the perfusate hyperosmotic. The results indicate that both solvent drag and solute drag can play significant roles in the transepithelial movement of solute and solute permeabilities in the rat ileum preparation. It is suggested that the potential roles of solvent drag and solute drag should be accounted for or considered during the characterization of the mechanisms of biological membrane function.  相似文献   

12.
Most patients with acute lung injury (ALI) have reduced alveolar fluid clearance that has been associated with higher mortality. Several mechanisms may contribute to the decrease in alveolar fluid clearance. In this study, we tested the hypothesis that pulmonary edema fluid from patients with ALI might reduce the expression of ion transport genes responsible for vectorial fluid transport in primary cultures of human alveolar epithelial type II cells. Following exposure to ALI pulmonary edema fluid, the gene copy number for the major sodium and chloride transport genes decreased. By Western blot analyses, protein levels of alphaENaC, alpha1Na,K-ATPase, and cystic fibrosis transmembrane conductance regulator decreased as well. In contrast, the gene copy number for several inflammatory cytokines increased markedly. Functional studies demonstrated that net vectorial fluid transport was reduced for human alveolar type II cells exposed to ALI pulmonary edema fluid compared with plasma (0.02 +/- 0.05 versus 1.31 +/- 0.56 microl/cm2/h, p < 0.02). An inhibitor of p38 MAPK phosphorylation (SB202190) partially reversed the effects of the edema fluid on net fluid transport as well as gene and protein expression of the main ion transporters. In summary, alveolar edema fluid from patients with ALI induced a significant reduction in sodium and chloride transport genes and proteins in human alveolar epithelial type II cells, effects that were associated with a decrease in net vectorial fluid transport across human alveolar type II cell monolayers.  相似文献   

13.
AlthoughNa+-K+-2Cl cotransport has beendemonstrated in cultured bovine corneal endothelial cells, its presenceand role in the native tissue have been disputed. Using RT-PCR we havenow identified a partial clone of the cotransporter protein in freshly dissected as well as in cultured corneal endothelial and epithelial cells. The deduced amino acid sequence of this protein segment is 99%identical to that of the bovine isoform (bNKCC1).[3H]bumetanide binding shows that the cotransporter sitesare located in the basolateral membrane region at a density of 1.6 pmol/mg of protein, close to that in lung epithelium.Immunocytochemistry confirms the basolateral location of thecotransporter. We calculate the turnover rate of the cotransporter tobe 83 s1. Transendothelial fluid transport, determinedfrom deepithelialized rabbit corneal thickness measurements, ispartially inhibited (30%) by bumetanide in a dose-dependent manner.Our results demonstrate thatNa+-K+-2Cl cotransporters arepresent in the basolateral domain of freshly dissected bovine cornealendothelial cells and contribute to fluid transport across cornealendothelial preparations.

  相似文献   

14.
Diffusive transport must play an important role in transporting nutrients into cartilage due to its avascular nature. Recent theoretical studies generally support the idea that cyclic loading enhances large molecule transport through advection. However, to date, reactive transport, i.e. the effects of solute binding, has not yet been taken into consideration in cyclically deformed cartilage. In the present study, we develop a reactive transport model to describe the potential role of binding of solute within cyclically deformed cartilage. Our results show that binding does have a significant effect on transport, particularly for the low IGF-I concentrations typical of synovial fluid. A dynamic loading regime of high strain magnitudes (up to 10%) in combination with high frequencies (e.g. 1 Hz) was seen to produce the most dramatic results with enhanced total uptake ratio as high as 25% averaged over the first 5h of cyclic loading.  相似文献   

15.
Energy transduction and solute transport in streptococci   总被引:7,自引:1,他引:7  
Metabolic energy in lactic streptococci can be generated by substrate level phosphorylation and by efflux of end-products in symport with protons. During growth on lactose or glucose Streptococcus cremoris maintains a high proton motive force and phosphate potential. Both energy intermediates dissipate rapidly when the energy supply stops. In the initial phase of starvation the internal phosphoenolpyruvate (PEP) pool increases rapidly and this enables the organism for a prolonged period during starvation to accumulate the energy source via a PEP-dependent uptake system.  相似文献   

16.
Some transport lessons taught by the organic solute   总被引:3,自引:0,他引:3  
  相似文献   

17.
18.
19.
20.
Proteins and vesicular transport in capillary endothelium   总被引:2,自引:0,他引:2  
Plasma proteins interact with vascular endothelium in such a way as to render it less permeable to other macromolecules. Evidence from a variety of sources indicates that this may result from interaction of the circulating macromolecules with the negatively charged glycoprotein layer on the surface of endothelial cells, and that this layer may be responsible for some of the known molecular sieving properties attributed to the endothelium. Experiments with the fluorocarbon exchange-transfused rat are described, which suggest that there may be mechanisms other than vesicular translocation that facilitate the passage of macromolecules across endothelium. Such mechanisms include, among others, the formation of transient transendothelial channels that appear to be less sensitive than pinocytotic vesicles to the concentration of ambient protein. Recent evidence suggests that, in addition to molecular size and charge, glycosylation of protein molecules and cell membranes themselves may facilitate vesicular uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号