共查询到20条相似文献,搜索用时 15 毫秒
1.
Earlier, we have shown that GM-CSF-exposed CD8α- DCs that express low levels of pro-inflammatory cytokines IL-12 and IL-1β can induce Foxp3+ Tregs leading to suppression of autoimmunity. Here, we examined the differential effects of IL-12 and IL-1β on Foxp3 expression in T cells when activated in the presence and absence of DCs. Exogenous IL-12 abolished, but IL-1β enhanced, the ability of GM-CSF-exposed tolerogenic DCs to promote Foxp3 expression. Pre-exposure of DCs to IL-1β and IL-12 had only a modest effect on Foxp3- expressing T cells; however, T cells activated in the absence of DCs but in the presence of IL-1β or IL-12 showed highly significant increase and decrease in Foxp3+ T cell frequencies respectively suggesting direct effects of these cytokines on T cells and a role for IL-1β in promoting Foxp3 expression. Importantly, purified CD4+CD25+ cells showed a significantly higher ability to maintain Foxp3 expression when activated in the presence of IL-1β. Further analyses showed that the ability of IL-1β to maintain Foxp3 expression in CD25+ T cells was dependent on TGF-β1 and IL-2 expression in Foxp3+Tregs and CD25- effectors T cells respectively. Exposure of CD4+CD25+ T cells to IL-1β enhanced their ability to suppress effector T cell response in vitro and ongoing experimental autoimmune thyroidits in vivo. These results show that IL-1β can help enhance/maintain Tregs, which may play an important role in maintaining peripheral tolerance during inflammation to prevent and/or suppress autoimmunity. 相似文献
2.
Bailey Dubose K Zayzafoon M Murphy-Ullrich JE 《Biochemical and biophysical research communications》2012,422(3):488-493
Transforming growth factor-β (TGF-β) is a critical regulator of bone development and remodeling. TGF-β must be activated from its latent form in order to signal. Thrombospondin-1 (TSP1) is a major regulator of latent TGF-β activation and TSP1 control of TGF-β activation is critical for regulation of TGF-β activity in multiple diseases. Bone marrow-derived mesenchymal stem cells (MSCs) have osteogenic potential and they participate in bone remodeling in injury and in response to tumor metastasis. Since both TSP1 and TGF-β inhibit osteoblast differentiation, we asked whether TSP1 blocks osteoblast differentiation of MSCs through its ability to stimulate TGF-β activation. TSP1 added to human bone marrow-derived MSCs under growth conditions increases active TGF-β. Cultured MSCs express TSP1 and both TSP1 expression and TGF-β activity decrease during osteoblast differentiation. TSP1 and active TGF-β block osteoblast differentiation of MSCs grown in osteogenic media as measured by decreased Runx2 and alkaline phosphatase expression. The inhibitory effect of TSP1 on osteoblast differentiation is due to its ability to activate latent TGF-β, since a peptide which blocks TSP1 TGF-β activation reduced TGF-β activity and restored osteoblast differentiation as measured by increased Runx2 and alkaline phosphatase expression. Anti-TGF-β neutralizing antibody also increased alkaline phosphatase expression in the presence of TSP1. These studies show that TSP1 regulated TGF-β activity is a critical determinant of osteoblast differentiation. 相似文献
3.
Fukuno N Matsui H Kanda Y Suzuki O Matsumoto K Sasaki K Kobayashi T Tamura S 《Biochemical and biophysical research communications》2011,(2):202-207
Mechanical stress plays a key role in bone remodeling. Previous studies showed that loading of mechanical stretch induces a rapid Ca2+ influx and subsequent activation of stress-activated protein kinase pathways in osteoblasts. However, the activation mechanism and its significance in bone remodeling have not been fully elucidated. Here we show that TAK1 MAPKKK was activated by cyclic stretch loading of MC3T3-E1 cells. Knockdown of TAK1 attenuated the stretch-induced activation of JNK, p38, and NF-κB. Extracellular (EGTA) or intracellular (BAPTA/AM) Ca2+ chelator prevented the stretch-induced activation of TAK1. Activation of TAK1 and its associated downstream signaling pathways were also suppressed by CaMKII inhibitors (KN-93 and KN-62). Furthermore, TAK1-mediated downstream pathways cooperatively induced the expression of IL-6 mRNA in the stretched MC3T3-E1 cells. We also confirmed that TAK1 mediates cyclic stretch-induced IL-6 protein synthesis in the cells using immunoblotting and ELISA. Finally, stretch loading of murine primary osteoblasts induced the expression of IL-6 mRNA via TAK1. Collectively, these data suggest that stretch-dependent Ca2+ influx activates TAK1 via CaMKII, leading to the enhanced expression of IL-6 through JNK, p38, and NF-κB pathways in osteoblasts. 相似文献
4.
R Sarközi K Flucher VM Haller M Pirklbauer G Mayer H Schramek 《Biochemical and biophysical research communications》2012,424(4):801-806
Matricellular proteins play a critical role in the development of tubulointerstitial fibrosis and renal disease progression. Connective tissue growth factor (CTGF/CCN2), a CCN family member of matricellular proteins, represents an important mediator during development of glomerular and tubulointerstitial fibrosis in progressive kidney disease. We have recently reported that oncostatin M (OSM) is a potent inhibitor of TGF-β1-induced CTGF expression in human proximal tubular cells (PTC). In the present study we examined the role of TGF-β1- and OSM-induced signaling mechanisms in the regulation of CTGF mRNA expression in human proximal tubular HK-2 cells. Utilizing siRNA-mediated gene silencing we found that TGF-β1-induced expression of CTGF mRNA after 2h of stimulation at least partially depends on SMAD3 but not on SMAD2. In contrast to TGF-β1, OSM seems to exert a time-dependent dual effect on CTGF mRNA expression in these cells. While OSM led to a rapid and transient induction of CTGF mRNA expression between 15min and 1h of stimulation it markedly suppressed basal and TGF-β1-induced CTGF mRNA levels thereafter. Silencing of STAT1 or STAT3 attenuated basal CTGF mRNA levels indicating that both STAT isoforms may be involved in the regulation of basal CTGF mRNA expression. However, knockdown of STAT3 but not STAT1 prevented OSM-mediated suppression of basal and TGF-β1-induced upregulation of CTGF mRNA expression. Together these results suggest that the inhibitory effect of OSM on TGF-β1-induced CTGF mRNA expression is mainly driven by STAT3, thereby providing a signaling mechanism whereby OSM may contribute to tubulointerstitial protection. 相似文献
5.
《Phytomedicine》2015,22(10):885-893
BackgroundPure apocynin, which can be traditionally isolated and purified from several plant species such as Picrorhiza kurroa Royle ex Benth (Scrophulariaceae), acts as an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activity inhibiting its production of reactive oxygen species (ROS). Transforming growth factor type beta 1 (TGF-β1) is a growth factor that produces inhibition of myogenesis, diminution of regeneration and induction of atrophy in skeletal muscle. The typical signalling that is activated by TGF-β involves the Smad pathway.PurposeTo evaluate the effect of TGF-β and the effect of apocynin on TGF-β1 expression in skeletal muscle cells.Study designControlled laboratory study. In vitro assays were performed with C2C12 cells incubated with TGF-β1 in presence or absence of apocynin (NOX inhibitor), SB525334 (TGF-β-receptor I inhibitor), or chelerythrine (PKC inhibitor).MethodsTGF-β1 and atrogin-1 expression was evaluated by RT-qPCR and/or ELISA; Smad3 phosphorylation by western blot; Smad4 nuclear translocation by indirect immunofluorescence; and ROS levels by DCF probe fluorescent measurements.ResultsWe show that myoblasts respond to TGF-β1 by increasing its own gene expression in a time- and dose-dependent fashion which was abolished by SB525334 and siRNA for Smad2/3. TGF-β1 also induced ROS. Remarkably, apocynin inhibited the TGF-β1 induced ROS as well as the autoinduction of TGF-β1 gene expression. We also show that TGF-β-induced ROS production and TGF-β1 expression require PKC activity as indicated by the inhibition using chelerythrine.ConclusionThese results strongly suggest that TGF-β induces its own expression through a TGF-β-receptor/Smad-dependent mechanism and apocynin is able to inhibit this process, suggesting that requires NOX-induced ROS in skeletal muscle cells. 相似文献
6.
The use of methamphetamine (MA) has increased in recent years, and is a major health concern throughout the world. The use of MA has been associated with an increased risk of acquiring HIV-1, along with an increased probability of the acquisition of various sexually transmitted infections. In order to determine the potential effects of MA exposure in the context of an infectious agent, U937 macrophages were exposed to various combinations of MA and bacterial lipopolysaccharide (LPS). Treatment with MA alone caused significant increases in the levels of TNF-α, while treatment with both MA and LPS resulted in significant increases in TNF-α, IL-1β and the chemokine IL-8. The increases in cytokine or chemokine levels seen when cells were treated with both LPS and MA were generally greater than those increases observed when cells were treated with only LPS. Treatment with chemical inhibitors demonstrated that the signal transduction pathways including NF-kB, MAPK, and PI3-Akt were involved in mediating the increased inflammatory response. As discussed in the paper, these pathways appear to be utilized by both MA and LPS, in the induction of these inflammatory mediators. Since these pathways are involved in the induction of inflammation in response to other pathogens, this suggests that MA-exacerbated inflammation may be a common feature of infectious disease in MA abusers. 相似文献
7.
Periostin inhibits hypoxia-induced apoptosis in human periodontal ligament cells via TGF-β signaling
Paveenarat Aukkarasongsup Naoto Haruyama Tsutomu Matsumoto Momotoshi Shiga Keiji Moriyama 《Biochemical and biophysical research communications》2013
Periostin (POSTN) is an extracellular matrix protein expressed predominantly in periodontal ligament (PDL) cells. The aim of this study was to investigate the effects of POSTN on human PDL cell apoptosis under hypoxic conditions. The percentage of apoptotic PDL cells under hypoxia was increased significantly when the endogenous POSTN gene was silenced using siRNA, but decreased when cells were treated with recombinant human POSTN (rhPOSTN), or when mouse Postn was overexpressed in vitro. Silencing POSTN during hypoxia decreased the expression of HIF prolyl-hydroxylase 2 (PHD2), but increased HIF-1α protein level. Conversely, treating hypoxic cells with rhPOSTN or overexpressing Postn increased PHD2 expression but decreased HIF-1α levels. The addition of rhPOSTN in the absence of a TGF-β receptor inhibitor (SB525334) significantly decreased hypoxia-induced apoptosis, while the effects of rhPOSTN were abolished when cells were co-treated with SB525334. Consistent with this, the phosphorylation of SMAD2 was increased in hypoxic PDL cells by the knockdown of POSTN, but decreased by treatment with rhPOSTN. Under normoxia, the PHD2 expression, HIF-1α level, and apoptosis were unaffected by POSTN siRNA, rhPOSTN, or Postn overexpression. These findings suggest that, under hypoxic conditions, POSTN regulates PHD2 expression and HIF-1α levels by modulating TGF-β1 signaling, leading to decreased apoptosis. 相似文献
8.
Andrea Staršíchová Eva Lincová Zuzana Pernicová Alois Kozubík Karel Souček 《Cellular signalling》2010,22(11):1734-1744
Chronic inflammation plays an important role in the initiation and progression of various human diseases including benign prostatic hyperplasia or prostate cancer. Here we show that the proinflammatory cytokine interleukin-6 (IL-6) has prosurvival effects and chronically activates the Jak2/STAT3 signalling pathway in a model of benign prostatic hyperplasia (BPH-1). We demonstrate that the antiinflammatory cytokine transforming growth factor-β1 (TGF-β1), which also permanently activates its canonical signalling pathway through SMAD proteins in BPH-1 cells, modifies the effects of IL-6 on cell proliferation. Importantly, TGF-β1 inhibits IL-6 signal transduction by decreasing the phosphorylation levels of STAT3. This effect is associated with decreased expression of Jak2 at both mRNA and protein levels. Moreover, we showed that TGF-β1 inhibits IL-6-induced expression of the cancer-associated gene MUC1. These observations demonstrated a novel interaction between TGF-β1 and IL-6 signalling and suggested another mechanism of how defects in TGF-β signalling, frequently associated with prostate pathologies, can contribute to the disruption of tissue homeostasis. 相似文献
9.
10.
This study was conducted to evaluate the efficacy of hesperetin in regulating interleukin-1β (IL-1β)-induced production of the matrix metalloproteinase (MMP)-3 and IL-6 in human synovial cell line, SW982. Treatment with hesperetin at 1 or 10 μM significantly (P < 0.05) inhibited IL-1β-induced MMP-3 and IL-6 production when measured by enzyme-linked immunosorbent assay (ELISA). The effects of hesperetin on the activation of mitogen-activated protein kinases (MAPKs) were also examined in SW982 cells by ELISA assay. IL-1β-induced JNK activation was inhibited by hesperetin. These results suggest that hesperetin reduces the production of MMP and IL-6 in SW982 synovial cells by inhibiting JNK. 相似文献
11.
Angel Jemima Ebenezer Kavya Prasad Sanjana Rajan 《Journal of receptor and signal transduction research》2018,38(3):204-212
Context: Mast cell (MC) activation through H4R releases various inflammatory mediators which are associated with allergic asthma.Objectives: To investigate the siRNA-mediated gene silencing effect of H4R on human mast cells (HMCs) functions and the activation of stress-activated protein kinases (SAPK)/jun amino-terminal kinases (JNK) signaling pathways for the release of ineterleukin-1β (IL-1β) in HMCs.Materials and methods: H4R expression was analyzed by RT-PCR and western blotting in human mast cell line-1 (HMC-1) cells and H4RsiRNA transfected cells. The effect of H4RsiRNA and H4R-antagonist on H4R mediated MC functions such as intracellular Ca2+ release, degranulation, IL-6 and IL-1β release, and the activation SAPK/JNK signaling pathways were studied. HMC-1 cells were stimulated with 10?μM of histamine (His) and 4-methylhistamine (4-MH) and pretreated individually with H4R-antagonist JNJ7777120 (JNJ), histamine H1 receptor (H1R)-antagonist mepyramine, and signaling molecule inhibitors SP600125 (SP) and Bay117082.Results: We found that the HMC-1 cells expressed H4R and H4RsiRNA treatment down regulated the H4R expression in HMC-1 cells. Both His and 4-MH induced the intracellular Ca2+ release and degranulation whereas; H4R siRNA and JNJ inhibited the effect. Furthermore, the activation of H4R caused the phosphorylation of SAPK/JNK pathways. H4R gene silencing and pretreatment with SP and JNJ decreased His and 4-MH induced phosphorylation of SAPK/JNK. We found that the activation of H4R caused the release of IL-1β (124.22?pg/ml) and IL-6 (122.50?pg/ml) on HMC-1 cells. Whereas, SAPK/JNK inhibitor (68.36?pg/ml) inhibited the H4R mediated IL-1β release.Conclusions: Taken together, the silencing of H4R inhibited the H4R mediated MC functions and SAPK/JNK phosphorylation. Furthermore, the H4R activation utilized SAPK/JNK signaling pathway for IL-1β release in HMC-1 cells. 相似文献
12.
Background
Endothelial cells (ECs) are continuously exposed to hemodynamic forces imparted by blood flow. While it is known that endothelial behavior can be influenced by cytokine activation or fluid shear, the combined effects of these two independent agonists have yet to be fully elucidated.Methodology
We investigated EC response to long-term inflammatory cues under physiologically relevant shear conditions via E-selectin expression where monolayers of human umbilical vein ECs were simultaneously exposed to laminar fluid shear and interleukin-1ß (shear-cytokine activation) in a parallel plate flow chamber.Results and Conclusion
Naïve ECs exposed to shear-cytokine activation display significantly higher E-selectin expression for up to 24 hr relative to ECs activated in static (static-cytokine). Peak E-selectin expression occurred after 8–12 hr of continuous shear-cytokine activation contrary to the commonly observed 4–6 hr peak expression in ECs exposed to static-cytokine activation. Cells with some history of high shear conditioning exhibited either high or muted E-selectin expression depending on the durations of the shear pre-conditioning and the ensuing shear-cytokine activation. Overall, the presented data suggest that a high laminar shear enhances acute EC response to interleukin-1ß in naïve or shear-conditioned ECs as may be found in the pathological setting of ischemia/reperfusion injury while conferring rapid E-selectin downregulation to protect against chronic inflammation. 相似文献13.
High mobility group box chromosomal protein 1 (HMGB-1) is a widely studied, ubiquitous nuclear protein that is present in eukaryotic cells, and plays a crucial role in inflammatory response. However, the effects of HMGB-1 on human synovial fibroblasts are largely unknown. In this study, we investigated the intracellular signaling pathway involved in HMGB-1-induced IL-6 production in human synovial fibroblast cells. HMGB-1 caused concentration- and time-dependent increases in IL-6 production. HMGB-1-mediated IL-6 production was attenuated by receptor for advanced glycation end products (RAGE) monoclonal antibody (Ab) or siRNA. Pretreatment with c-Src inhibitor (PP2), Akt inhibitor and NF-κB inhibitor (pyrrolidine dithiocarbamate and L-1-tosylamido-2-phenylenylethyl chloromethyl ketone) also inhibited the potentiating action of HMGB-1. Stimulation of cells with HMGB-1 increased the c-Src and Akt phosphorylation. HMGB-1 increased the accumulation of p-p65 in the nucleus, as well as NF-κB luciferase activity. HMGB-1-mediated increase of NF-κB luciferase activity was inhibited by RAGE Ab, PP2 and Akt inhibitor or RAGE siRNA, or c-Src and Akt mutant. Our results suggest that HMGB-1-increased IL-6 production in human synovial fibroblasts via the RAGE receptor, c-Src, Akt, p65, and NF-κB signaling pathways. 相似文献
14.
The circadian clock is a specialised cell signalling circuit present in almost all cells. It controls the timing of key cell activities such as proliferation and differentiation. In osteoarthritis, expression of two components of the circadian clock, BMAL1 and PER2 is altered in chondrocytes and this change has been causally linked with the increase in proliferation and altered chondrocyte differentiation in disease. IL-1β, an inflammatory cytokine abundant in OA joints, has previously been shown to induce changes in BMAL1 and PER2 expression in chondrocytes. The purpose of this study is to identify the mechanism involved.We found IL-1β treatment of primary human chondrocytes led to activation of NMDA receptors as evidenced by an increase in phosphorylation of GluN1 and an increase in intracellular calcium which was blocked by the NMDAR antagonist MK801. Levels of phosphorylated CREB were also elevated in IL-1β treated cells and this effect was blocked by co-treatment of cells with IL-1β and the NMDAR antagonist MK-801. Knockdown of CREB or inhibition of CREB activity prevented the IL-1β induced increase in PER2 expression in chondrocytes but had no effect on BMAL1. Phosphorylated p65 levels were elevated in IL-1β treated chondrocytes indicating increased NF-κB activation. Inhibition of NF-κB activity prevented the IL-1β induced reduction in BMAL1 expression and partially mitigated the IL-1β induced increase in PER2 expression in chondrocytes. These data indicate that the NMDAR/CREB and NF-κB signalling pathways regulate the core circadian clock components PER2 and BMAL1 in chondrocytes. Given that changes in expression of these clock components have been observed in a wide range of diseases, these findings may be broadly relevant for understanding the mechanism leading to circadian clock changes in pathology. 相似文献
15.
Bone morphogenetic protein 6 (BMP6) and transforming growth factor-β1 (TGF-β1) are key intraovarian regulators that play essential roles in regulating mammalian follicular function and promoting oocyte maturation. Furin, a member of the subtilisin-like proprotein convertase family, promotes the activation of diverse functional proteins by cleaving protein precursors in the secretory pathway. The aim of this study was to investigate the effect and underlying molecular mechanisms by which BMP6 regulates the expression of furin to increase TGF-β1 production. Primary and immortalized (SVOG) human granulosa-lutein (hGL) cells were used as study models. Our results show that BMP6 significantly up-regulated the expression of furin and increased the production of TGF-β1 in hGL cells. Using dual inhibition approaches (kinase receptor inhibitors and small interfering RNA-targeted knockdown), we demonstrate that both activin receptor-like (ALK)2 and ALK3 are involved in the BMP6-induced up-regulation of furin. Additionally, knockdown of furin abolished BMP6-induced increases in TGF-β1 production. Moreover, knockdown of endogenous SMAD4 reversed the BMP6-induced increase in furin expression. These results indicate that the ALK2/3-mediated canonical SMAD signaling pathway is required for the stimulatory effect of BMP6 on furin expression, which in turn increases the production of TGF-β1 in hGL cells. Our findings provide insights into the molecular interactions and mechanisms of two intrafollicular growth factors in hGL cells. 相似文献
16.
17.
Jing Sun Su-zhi Liu Yan Lin Xiao-pan Cao Jia-ming Liu 《Biochemical and biophysical research communications》2014
While there were certain studies focusing on the mechanism of TGF-β promoting the growth of glioma cells, the present work revealed another novel mechanism that TGF-β may promote glioma cell growth via enhancing Nodal expression. Our results showed that Nodal expression was significantly upregulated in glioma cells when TGF-β was added, whereas the TGF-β-induced Nodal expression was evidently inhibited by transfection Smad2 or Smad3 siRNAs, and the suppression was especially significant when the Smad3 was downregulated. Another, the attenuation of TGF-β-induced Nodal expression was observed with blockade of the ERK1/2 pathway also. Further detection of the proliferation, apoptosis, and invasion of glioma cells indicated that Nodal overexpression promoted the proliferation and invasion of tumor cells and inhibited their apoptosis, resembling the effect of TGF-β addition. Downregulation of Nodal expression via transfection Nodal-specific siRNA in the presence of TGF-β weakened the promoting effect of the latter on glioma cells growth, and transfecting Nodal siRNA alone in the absence of exogenous TGF-β more profoundly inhibited the growth of glioma cells. These results demonstrated that while both TGF-β and Nodal promoted glioma cells growth, the former might exert such effect by enhancing Nodal expression, which may form a new target for glioma therapy. 相似文献
18.
Yiru Xu Siliang Xue Jin Zhou John J. Voorhees Gary J. Fisher 《Molecular biology of the cell》2015,26(6):1199-1206
Receptor protein tyrosine phosphatase-κ (PTPRK) specifically and directly dephosphorylates epidermal growth factor receptor (EGFR), thereby limiting EGFR function in primary human keratinocytes. PTPRK expression is increased by the TGF-β/Smad3 pathway and cell–cell contact. Because the Notch receptor pathway is responsive to cell–cell contact and regulates keratinocyte growth and differentiation, we investigated the interplay between Notch and TGF-β pathways in regulation of PTPRK expression in human keratinocytes. Suppression of Notch signaling by γ-secretase inhibitors substantially reduced cell contact induction of PTPRK gene expression. In sparse keratinocyte cultures, addition of soluble Notch-activating ligand jagged one peptide (Jag1) induced PTPRK. Of interest, cell contact–induced expression of TGF-β1 and TGF-β receptor inhibitor SB431542 inhibited contact-induced expression of PTPRK. Furthermore, inhibition of Notch signaling, via knockdown of Notch1 or by γ-secretase inhibitors, significantly reduced TGF-β–induced PTPRK gene expression, indicating that Notch and TGF-β pathways function together to regulate PTPRK. Of importance, the combination of Jag1 plus TGF-β results in greater PTPRK expression and lower EGFR tyrosine phosphorylation than either ligand alone. These data indicate that Notch and TGF-β act in concert to stimulate induction of PTPRK, which suppresses EGFR activation in human keratinocytes. 相似文献
19.
Zuopei Wang Yi Lu Bo Sheng Yi Ding Xiaoke Cheng 《Journal of cellular biochemistry》2019,120(2):2251-2258
Catalpol, one of the main active ingredients isolated from Rehmannia glutinosa, was reported to possess anticancer activity. However, the role of catalpol in transforming growth factor β1 (TGF-β1)-induced epithelial-mesenchymal transition (EMT) in human non–small-cell lung cancer (NSCLC) cells has not been elucidated. The objective of this study was to investigate the effect of catalpol on EMT in human NSCLC cells. Our results showed that catalpol significantly inhibited the TGF-β1-induced cell migration and invasion of A549 cells, as well as repressed matrix metalloproteinase (MMP)2 and MMP9 expression induced by TGF-β1 in A549 cells. In addition, catalpol markedly repressed the EMT process in A549 cells in response to TGF-β1. Furthermore, catalpol prevented the activation of Smad2/3 and nuclear factor κB (NF-κB) signaling pathways induced by TGF-β1 in A549 cells. In conclusion, these findings indicated that catalpol inhibits TGF-β1-induced EMT in human NSCLC cells through the inactivation of Smad2/3 and NF-κB signaling pathways. Thus, catalpol may be a promising agent for the treatment of NSCLC. 相似文献