首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Merozoite invasion of erythrocytes is a crucial step for the asexual cycle of Plasmodium falciparum. Multiple invasion pathways, which involve different ligand-receptor interactions, have been identified in P. falciparum by examining the entry of purified parasite into erythrocytes with different surface receptors, either mutant or under different enzyme treatments. The most critical step for a successful invasion assay is the isolation of erythrocytes infected with viable schizonts. Here, we applied a magnetic column to purify the schizonts for the erythrocyte invasion assay. Comparing to Percoll-sorbitol purification method, this modified approach showed great improvement on reproducibility and reliability of invasion assay, particularly for short-term, culture-adapted parasite isolates. The magnetic purification method is an excellent alternative for parasite isolates that do not tolerate or with unknown sensitivity to Percoll-sorbitol exposure.  相似文献   

2.
Intra-erythrocytic Plasmodium falciparum malaria parasites synthesize and export numerous proteins into the red blood cell (RBC) cytosol, where some bind to the RBC membrane skeleton. These interactions are responsible for the altered antigenic, morphological and functional properties of parasite-infected red blood cells (IRBCs). Plasmodium falciparum protein 332 (Pf332) is a large parasite protein that associates with the membrane skeleton and who's function has recently been elucidated. Using recombinant fragments of Pf332 in in vitro interaction assays, we have localised the specific domain within Pf332 that binds to the RBC membrane skeleton to an 86 residue sequence proximal to the C-terminus of Pf332. We have shown that this region partakes in a specific and saturable interaction with actin (Kd = 0.60 µM) but has no detectable affinity for spectrin. The only exported malaria protein previously known to bind to actin is PfEMP3 but here we demonstrate that there is no competition for actin-binding between PfEMP3 and Pf332, suggesting that they bind to different target sequences in actin.  相似文献   

3.
4.
Generation of phosphocholine by choline kinase is important for phosphatidylcholine biosynthesis via Kennedy pathway and phosphatidylcholine biosynthesis is essential for intraerythrocytic growth of malaria parasite. A putative gene (Gene ID PF14_0020) in chromosome 14, having highest sequence homology with choline kinase, has been identified by BLAST searches from P. falciparum genome sequence database. This gene has been PCR amplified, cloned, over-expressed and characterized. Choline kinase activity of the recombinant protein (PfCK) was validated as it catalyzed the formation of phosphocholine from choline in presence of ATP. The Km values for choline and ATP are found to be 145 ± 20 μM and 2.5 ± 0.3 mM, respectively. PfCK can phosphorylate choline efficiently but not ethanolamine. Southern blotting indicates that PfCK is a single copy gene and it is a cytosolic protein as evidenced by Western immunoblotting and confocal microscopy. A model structure of PfCK was constructed based on the crystal structure of choline kinase of C. elegans to search the structural homology. Consistent with the homology modeling predictions, CD analysis indicates that the α and β content of PfCK are 33% and 14%, respectively. Since choline kinase plays a vital role for growth and multiplication of P. falciparum during intraerythrocytic stages, we can suggest that this well characterized PfCK may be exploited in the screening of new choline kinase inhibitors to evaluate their antimalarial activity.  相似文献   

5.
A deterministic model for assessing the dynamics of mixed species malaria infections in a human population is presented to investigate the effects of dual infection with Plasmodium malariae and Plasmodium falciparum. Qualitative analysis of the model including positivity and boundedness is performed. In addition to the disease free equilibrium, we show that there exists a boundary equilibrium corresponding to each species. The isolation reproductive number of each species is computed as well as the reproductive number of the full model. Conditions for global stability of the disease free equilibrium as well as local stability of the boundary equilibria are derived. The model has an interior equilibrium which exists if at least one of the isolation reproductive numbers is greater than unity. Among the interesting dynamical behaviours of the model, the phenomenon of backward bifurcation where a stable boundary equilibrium coexists with a stable interior equilibrium, for a certain range of the associated invasion reproductive number less than unity is observed. Results from analysis of the model show that, when cross-immunity between the two species is weak, there is a high probability of coexistence of the two species and when cross-immunity is strong, competitive exclusion is high. Further, an increase in the reproductive number of species i increases the stability of its boundary equilibrium and its ability to invade an equilibrium of species j. Numerical simulations support our analytical conclusions and illustrate possible behaviour scenarios of the model.  相似文献   

6.
The membrane-associated histidine-rich protein-1 (MAHRP-1) is a Maurer’s cleft-resident molecule that has been recently described as an important protein for the trafficking of PfEMP-1 to infected erythrocyte membrane, a major virulence factor. We have studied the specific interactions between 20-mer-long synthetic peptides spanning the complete MAHRP-1 sequence and erythrocytes. A high-activity binding peptide (HABP) with saturable binding to a 46-kDa erythrocyte membrane protein was identified and its binding was affected by chymotrypsin treatment. Random coil and α-helical features were found in the HABP’s structure. Our results suggest that MAHRP-1 specifically interacts with erythrocyte membrane through a 20-mer-long amino acid region, raising questions about this region’s potential as a therapeutic target against malaria.  相似文献   

7.
Membrane lipid rafts have been implicated in erythrocyte invasion process by Plasmodium falciparum. In this study, we examined the effect of lidocaine, a local anesthetic, which disrupts lipid rafts reversibly without affecting membrane cholesterol content on parasite invasion. In the presence of increasing concentrations of lidocaine in the culture medium, parasite invasion was progressively decreased with complete inhibition at 2 mM. Decreased invasion was also seen in erythrocytes pre-treated with lidocaine and cultured in the absence of lidocaine. This inhibitory effect on parasite invasion was reversed following removal of lidocaine from erythrocyte membranes. Our findings show that disruption of lipid rafts in the context of normal cholesterol content markedly inhibits parasite invasion and confirm an important role for lipid rafts in invasion of erythrocytes by P. falciparum.  相似文献   

8.
The resistance of malaria parasites to current anti-malarial drugs is an issue of major concern globally. Recently we identified a Plasmodium falciparum cell membrane aspartyl protease, which binds to erythrocyte band 3, and is involved in merozoite invasion. Here we report the complete primary structure of P. falciparum signal peptide peptidase (PfSPP), and demonstrate that it is essential for parasite invasion and growth in human erythrocytes. Gene silencing suggests that PfSPP may be essential for parasite survival in human erythrocytes. Remarkably, mammalian signal peptide peptidase inhibitors (Z-LL)2-ketone and L-685,458 effectively inhibited malaria parasite invasion as well as growth in human erythrocytes. In contrast, DAPT, an inhibitor of a related γ-secretase/presenilin-1, was ineffective. Thus, SPP inhibitors specific for PfSPP may function as potent anti-malarial drugs against the blood stage malaria.  相似文献   

9.
Plasmodium falciparum belongs to a group of eukaryotes expressing an ortholog of the prokaryotic T1-threonine peptidase, heat shock locus V (HslV). Bacterial HslV is a particularly well studied protease, due to its structural and biochemical similarity to the eukaryotic proteasome. Plasmodium falciparum HslV (PfHslV) is expressed in schizonts and merozoites of the asexual blood stage. Strong sequence conservation between plasmodial species, absence of HslV homologs in the human genome, and availability of specific inhibitors led us to explore its function and potential use as a drug target. In a first step, we investigated localization of PfHslV, using a bioinformatics approach and a transgenic P. falciparum line expressing a PfHslV-enhanced yellow fluorescent protein (EYFP) fusion protein from the endogenous pfhslV locus. PfHslV-EYFP was found in the mitochondrial matrix under fluorescence and immunoelectron microscopy. Endogenous, non-modified PfHslV was present in purified mitochondria and interference with mitochondrial membrane potential by drug treatment led to impairment of PfHslV processing. Import of heterologous EYFP into the plasmodial mitochondrion is mediated by the N-terminal 37 amino acids of PfHslV. PfHslV’s targeting sequence is also functional in human cells, demonstrating strong conservation of mitochondrial targeting in eukaryotes. In conclusion, our data shows that PfHslV is located to the plasmodial mitochondrion and presumably has vital function within this organelle which makes it an attractive target for interventions.  相似文献   

10.
11.
Sulfadoxine-pyrimethamine (SP) treatment increases the rate of gametocyte carriage and selects SP resistance-conferring mutations in Plasmodium falciparum dihydrofolate reductase (DHFR) and dihydropteroate synthase (DHPS), raising concerns of increased malaria transmission and spread of drug resistance. In a setting in Mali where SP was highly efficacious, we measured the prevalence of DHFR and DHPS mutations in P. falciparum infections with microscopy-detected gametocytes following SP treatment, and used direct feeding to assess infectivity to Anopheles gambiae sensu lato. Children and young adults presenting with uncomplicated malaria were treated with SP or chloroquine and followed for 28 days. Gametocyte carriage peaked at 67% 1 week after treatment with a single dose of SP. Those post-SP gametocytes carried significantly more DHFR and DHPS mutations than pre-treatment asexual parasites from the same population. Only 0.5% of 1728 mosquitoes fed on SP-treated gametocyte carriers developed oocysts, while 11% of 198 mosquitoes fed on chloroquine-treated gametocyte carriers were positive for oocysts. This study shows that in an area of high SP efficacy, although SP treatment sharply increased gametocyte carriage, the infectiousness of these gametocytes to the vector may be very low. Accurate and robust methods for measuring infectivity are needed to guide malaria control interventions that affect transmission.  相似文献   

12.
Alteration of the adhesive and mechanical properties of red blood cells caused by infection with the malaria parasite Plasmodium falciparum underpin both its survival and extreme pathogenicity. A unique family of parasite putative exported kinases, collectively called FIKK (Phenylalanine (F) – Isoleucine (I) – Lysine (K) – Lysine (K)), has recently been implicated in these pathophysiological processes, however, their precise function in P. falciparum-infected red blood cells or their likely role in malaria pathogenesis remain unknown. Here, for the first time, we demonstrate that one member of the FIKK family, FIKK4.2, can function as an active kinase and is localised in a novel and distinct compartment of the parasite-infected red blood cell which we have called K-dots. Notably, targeted disruption of the gene encoding FIKK4.2 (fikk4.2) dramatically alters the parasite’s ability to modify and remodel the red blood cells in which it multiplies. Specifically, red blood cells infected with fikk4.2 knockout parasites were significantly less rigid and less adhesive when compared with red blood cells infected with normal parasites from which the transgenic clones had been derived, despite expressing similar levels of the major cytoadhesion ligand, PfEMP1, on the red blood cell surface. Notably, these changes were accompanied by dramatically altered knob-structures on infected red blood cells that play a key role in cytoadhesion which is responsible for much of the pathogenesis associated with falciparum malaria. Taken together, our data identifies FIKK4.2 as an important kinase in the pathogenesis of P. falciparum malaria and strengthens the attractiveness of FIKK kinases as targets for the development of novel next-generation anti-malaria drugs.  相似文献   

13.
Invasion of erythrocytes is a prerequisite in the life history of the malaria parasite. Members of the reticulocyte-binding homologue family (PfRh) have been implicated in the invasion process and in some cases have been shown to act as adhesins, binding to specific receptors on the erythrocyte surface. We have identified a further, putatively essential, PfRh family member in the most virulent human malaria Plasmodium falciparum, called PfRh5, which binds to an unknown class of glycosylated receptors on the erythrocyte surface. This protein is an atypical PfRh family member, being much smaller than others and lacking a transmembrane and cytosolic region at the C-terminus. This suggests it may be part of a functional protein complex. PfRh5 localises to the rhoptries in merozoites and follows the tight junction during the process of erythrocyte invasion. Furthermore, rabbit immune serum raised against a portion of the ecto-domain, inhibits parasite invasion in vitro. We hypothesise an essential role for the PfRh5 adhesin in erythrocyte selection and commitment to invasion. Given its small size, we believe PfRh5 may prove to be a valuable candidate for inclusion in a multi-component anti-malarial vaccine.  相似文献   

14.
The cell division cycle and mitosis of intra-erythrocytic (IE) Plasmodium falciparum are poorly understood aspects of parasite development which affect malaria molecular pathogenesis. Specifically, the timing of the multiple gap (G), DNA synthesis (S) and chromosome separation (M) phases of parasite mitosis are not well defined, nor whether genome divisions are immediately followed by cleavage of the nuclear envelope. Curiously, daughter merozoite numbers do not follow the geometric expansion expected from equal numbers of binary divisions, an outcome difficult to explain using the standard model of cell cycle regulation. Using controlled synchronisation techniques, confocal microscopy to visualise key organelles and fluorescence in situ hybridization (FISH) to follow the movements and replication of genes and telomeres, we have re-analysed the timing and progression of mitotic events. The asynchronous duplications of the P. falciparum centrosome equivalents, the centriolar plaques, are established and these are correlated with chromosome and nuclear divisions in a new model of P. falciparum schizogony. Our results improve the resolution of the cell cycle and its phases during P. falciparum IE development, showing that asynchronous, independent nuclear division occurs during schizogony, with the centriolar plaques playing a major role in regulating mitotic progression.  相似文献   

15.
Quassia amara L. (Family Simaroubaceae) is known to have several medicinal properties including the activity against malaria. An HPLC method was employed for purification of the biologically active quassinoids; quassin (Q) and neo-quassin (NQ), further characterized by MALDI-TOF analyses. Purified Q, NQ and the crude bark extract (S1) along with artesunate (AS) were studied for their in vitro anti-plasmodial activity. The in vivo toxicity studies at intraperitoneal doses with higher concentrations of the crude bark extract (S1) in Balb/C mice ruled out the apprehension of toxicity. Interaction studies between the test compounds among themselves (Q + NQ) and individually with artesunate (AS + Q, AS + NQ), were carried out in vitro at four ratios (1:5, 1:2, 2:1 and 5:1) on chloroquine sensitive (MRC-pf-20) and resistant (MRC-pf-303) strains of Plasmodium falciparum. The crude bark extracts of Q. amara exhibited higher P. falciparum inhibitory activity (IC50 = 0.0025 μg/ml) as compared to that of the isolated compounds, quassin (IC50 = 0.06 μg/ml, 0.15 μM), neo-quassin (IC50 = 0.04 μg/ml, 0.1 μM) and also to the positive control, artesunate (IC50 = 0.02 μg/ml, 0.05 μM). The in vitro drug interaction study revealed the compounds, quassin and neo-quassin to be additive to each other. At lower ratios, artesunate was found to be a potential combination partner with both the compounds. It was interesting to note that none of the combinations exhibited antagonistic interactions. This phenomenon offers the opportunity for further exploration of novel therapeutic concentrations and combinations.  相似文献   

16.
Malaria parasite cloning is traditionally carried out mainly by using the limiting dilution method, which is laborious, imprecise, and unable to distinguish multiply-infected RBCs. In this study, we used a parasite engineered to express green fluorescent protein (GFP) to evaluate a single-cell sorting method for rapidly cloning Plasmodium falciparum. By dividing a two-dimensional scattergram from a cell sorter into 17 gates, we determined the parameters for isolating singly-infected erythrocytes and sorted them into individual cultures. Pre-gating of the engineered parasites for GFP allowed the isolation of almost 100% GFP-positive clones. Compared with the limiting dilution method, the number of parasite clones obtained by single-cell sorting was much higher. Molecular analyses showed that parasite isolates obtained by single-cell sorting were highly homogenous. This highly efficient single-cell sorting method should prove very useful for cloning both P. falciparum laboratory populations from genetic manipulation experiments and clinical samples.  相似文献   

17.
Recent reports demonstrate that failure of artemisinin-based antimalarial therapies is associated with an altered response of early blood stage Plasmodium falciparum. This has led to increased interest in the use of pulse assays that mimic clinical drug exposure for analysing artemisinin sensitivity of highly synchronised ring stage parasites. We report a methodology for the reliable execution of drug pulse assays and detail a synchronisation strategy that produces well-defined tightly synchronised ring stage cultures in a convenient time-frame.  相似文献   

18.
In pregnant women infected with Plasmodium falciparum, the infected red blood cells (IRBCs) sequester in placenta by binding to the chondroitin 4-sulfate (C4S) chains of low sulfated chondroitin sulfate proteoglycan (CSPG). Placental CSPG, the natural receptor for IRBC adherence in the placenta, is the ideal molecule for studying structural interactions in IRBC adhesion to C4S, adhesion inhibitory antibody responses, and identification of parasite adhesive protein(s). However, because of difficulty involved in purifying placental CSPG, the commercially available bovine tracheal chondroitin sulfate A (bCSA), a copolymer having structural features of both C4S and C6S, has been widely used. To determine the validity of bCSA for C4S-IRBC interaction studies, we comparatively evaluated the characteristics of IRBC binding to placental CSPG and bCSA using three commonly used parasite strains. The results indicate that, in all three parasites studied, the characteristics of IRBC binding to placental CSPG and bCSA are qualitatively similar, but the binding capacity with respect to both the number of IRBCs bound per unit area of coated surface and binding strength is significantly higher for CSPG than bCSA regardless of whether parasites were selected on CSPG or bCSA. These results demonstrate that placental CSPG is best suited for studying interactions between parasite adhesive protein(s) and C4S, and have implications in understanding C4S-IRBC structural interactions.  相似文献   

19.
Plasmodium falciparum parasites express and traffick numerous proteins into the red blood cell (RBC), where some associate specifically with the membrane skeleton. Importantly, these interactions underlie the major alterations to the modified structural and functional properties of the parasite-infected RBC. P. falciparum Erythrocyte Membrane Protein 3 (PfEMP3) is one such parasite protein that is found in association with the membrane skeleton. Using recombinant PfEMP3 proteins in vitro, we have identified the region of PfEMP3 that binds to the RBC membrane skeleton, specifically to spectrin and actin. Kinetic studies revealed that residues 38-97 of PfEMP3 bound to purified spectrin with moderately high affinity (K(D(kin))=8.5 x 10(-8) M). Subsequent deletion mapping analysis further defined the binding domain to a 14-residue sequence (IFEIRLKRSLAQVL; K(D(kin))=3.8 x 10(-7) M). Interestingly, this same domain also bound to F-actin in a specific and saturable manner. These interactions are of physiological relevance as evidenced by the binding of this region to the membrane skeleton of inside-out RBCs and when introduced into resealed RBCs. Identification of a 14-residue region of PfEMP3 that binds to both spectrin and actin provides insight into the potential function of PfEMP3 in P. falciparum-infected RBCs.  相似文献   

20.
There is growing evidence that Plasmodium falciparum parasites in southeastern Asia have developed resistance to artemisinin combination therapy. The resistance phenotype has recently been shown to be associated with four single nucleotide polymorphisms in the parasite’s genome. We assessed the prevalence of two of these single nucleotide polymorphisms in P. falciparum parasites imported into Scotland between 2009 and 2012, and in additional field samples from six countries in southeastern Asia. We analysed 28 samples from 11 African countries, and 25 samples from nine countries in Asia/southeastern Asia/Oceania. Single nucleotide polymorphisms associated with artemisinin combination therapy resistance were not observed outside Thailand and Cambodia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号