首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Megumi Hirono 《BBA》2007,1767(7):930-939
The H+-translocating inorganic pyrophosphatase is a proton pump that hydrolyzes inorganic pyrophosphate. It consists of a single polypeptide with 14−17 transmembrane domains, and is found in a range of organisms. We focused on the second quarter region of Streptomyces coelicolor A3(2) H+-pyrophosphatase, which contains long conserved cytoplasmic loops. We prepared a library of 1536 mutants that were assayed for pyrophosphate hydrolysis and proton translocation. Mutant enzymes with low substrate hydrolysis and proton-pump activities were selected and their DNAs sequenced. Of these, 34 were single-residue substitution mutants. We generated 29 site-directed mutant enzymes and assayed their activity. The mutation of 10 residues in the fifth transmembrane domain resulted in low coupling efficiencies, and a mutation of Gly198 showed neither hydrolysis nor pumping activity. Four residues in cytoplasmic loop e were essential for substrate hydrolysis and efficient H+ translocation. Pro189, Asp281, and Val351 in the periplasmic loops were critical for enzyme function. Mutation of Ala357 in periplasmic loop h caused a selective reduction of proton-pump activity. These low-efficiency mutants reflect dysfunction of the energy-conversion and/or proton-translocation activities of H+-pyrophosphatase. Four critical residues were also found in transmembrane domain 6, three in transmembrane domain 7, and five in transmembrane domains 8 and 9. These results suggest that transmembrane domain 5 is involved in enzyme function, and that energy coupling is affected by several residues in the transmembrane domains, as well as in the cytoplasmic and periplasmic loops. H+-pyrophosphatase activity might involve dynamic linkage between the hydrophilic and transmembrane domains.  相似文献   

2.
The H(+)-translocating inorganic pyrophosphatase is a proton pump that hydrolyzes inorganic pyrophosphate. It consists of a single polypeptide with 14-17 transmembrane domains (TMs). We focused on the third quarter region of Streptomyces coelicolor A3(2) H(+)-pyrophosphatase, which contains a long conserved cytoplasmic loop. We assayed 1520 mutants for pyrophosphate hydrolysis and proton translocation, and selected 34 single-residue substitution mutants with low substrate hydrolysis and proton-pump activities. We also generated 39 site-directed mutant enzymes and assayed their activity. The mutation of 5 residues in TM10 resulted in low energy-coupling efficiencies, and mutation of conserved residues Thr(409), Val(411), and Gly(414) showed neither hydrolysis nor pumping activity. The mutation of six, five, and four residues in TM11, 12, and 13, respectively, gave a negative effect. Phe(388), Thr(389), and Val(396) in cytoplasmic loop i were essential for efficient H(+) translocation. Ala(436) and Pro(560) in the periplasmic loops were critical for coupling efficiency. These low-efficiency mutants showed dysfunction of the energy-conversion and/or proton-translocation activity. The energy efficiency was increased markedly by the mutation of two and six residues in TM9 and 12, respectively. These results suggest that TM10 is involved in enzyme function, and that TM12 regulate the energy-conversion efficiency. H(+)-pyrophosphatase might involve dynamic linkage between the hydrophilic loops and TMs through the central half region of the enzyme.  相似文献   

3.
Hisatoshi Mimura 《BBA》2005,1708(3):393-403
The H+-pyrophosphatase (H+-PPase) consists of a single polypeptide, containing 16 or 17 transmembrane domains. To determine the higher order oligomeric state of Streptomyces coelicolor H+-PPase, we constructed a series of cysteine substitution mutants and expressed them in Escherichia coli. Firstly, we analyzed the formation of disulfide bonds, promoted by copper, in mutants with single cysteine substitutions. 28 of 39 mutants formed disulfide bonds, including S545C, a substitution at the periplasmic side. The formation of intermolecular disulfide bonds suppressed the enzyme activity of several, where the substituted residues were located in the cytosol. Creating disulfide links in the cytosol may interfere with the enzyme's catalytic function. Secondly, we prepared double mutants by introducing second cysteine substitutions into the S545C mutant. These double-cysteine mutants produced cross-linked complexes, estimated to be at least tetramers and possibly hexamers. Thirdly, we co-expressed epitope-tagged, wild type, and inactive mutant H+-PPases in E. coli and confirmed the formation of oligomers by co-purifying one subunit using the epitope tag used to label the other. The enzyme activity of these oligomers was markedly suppressed. We propose that H+-PPase is present as an oligomer made up of at least two or three sets of dimers.  相似文献   

4.
The Vc-NhaD is an Na+/H+ antiporter from Vibrio cholerae belonging to a new family of bacterial Na+/H+ antiporters, the NhaD family. In the present work we mutagenized five conserved Asp and Glu residues and one conserved Thr residue to Ala in order to identify amino acids that are critical for the antiport activity. All mutations fall into two distinct groups: (i) four variants, Glu100Ala, Glu251Ala, Glu342Ala, and Asp393Ala, did not abolish antiport activity but shifted the pH optimum to more alkaline pH, and (ii) variants Asp344Ala, Asp344Asn, and Thr345Ala caused a complete loss of both Na+/H+ and Li+/H+ antiport activity whereas the Asp344Glu variant exhibited reduced Na+/H+ and Li+/H+ antiport activity. This is the first mutational analysis of the antiporter of NhaD type and the first demonstration of Thr residue being indispensable for Na+/H+ antiport. We discuss the possible role of Asp344 and Thr345 in the functioning of Vc-NhaD.  相似文献   

5.
Plant vacuoles were isolated from cotyledons of germinatingAcacia mangium seeds, which had been treated with or withoutcolchicine, to measure vacuolar membrane pyrophosphate (PPi)- andATP-dependent H+ transport activities, and enzymaticactivities of H+-pyrophosphatase(H+-PPase) and H+-ATPase. Innon-colchicine-treated seeds, activities of the two enzymes increasedrapidly after seed germination to almost a maximal level on the seventhday. A linear function relationship exists in magnitude between PPi- orATP-dependent H+transport activity and its correspondingenzymatic activity. The former regression equation is: PPi-dependentH+ transport activity(%A.min–1.g–1) =–0.039 + H+-PPase activity(units.mg–1) × 1.574, the latter is:ATP-dependent H+ transport activity(%A.min–1.g–1) =–0.003 + H+-ATPase activity(units.mg–1) × 0.549. In colchicine-treatedseeds, activities of the two enzymes increased very slowly during 8 daysof germination and the relationship to their respectiveH+ transport activities was not in agreement with theabove-mentioned regression equations. PPi- and ATP-dependentH+ transport activities were lower than thecorresponding values calculated from H+-PPase activityand H+-ATPase activity according to the two regressionequations, respectively. However, when sucrose, indole butyric acid(IBA), or 6-benzyladenine (6-BA) were applied exogenously to the seedsfollowing colchicine treatment for 3 days, activities ofH+-PPase, H+-ATPase, PPi- andATP-dependent H+ transport in the 6-day-old seedlingsall increased. By statistical analysis, it was concluded that colchicineinhibits cotyledon vacuolar membrane H+-PPase,H+-ATPase activities, PPi- and ATP-dependentH+ transport activities during seed germination andearly seedling growth of Acacia mangium. The inhibitory effectsof colchicine could be overcome by IBA, 6-BA and sucrose to varyingdegrees.  相似文献   

6.
The synthesis of DNA, RNA, and de novo proteins is fundamental for early development of the seedling after germination, but such processes release pyrophosphate (PPi) as a byproduct of ATP hydrolysis. The over-accumulation of the inhibitory metabolite PPi in the cytosol hinders these biosynthetic reactions. All living organisms possess ubiquitous enzymes collectively called inorganic pyrophosphatases (PPases), which catalyze the hydrolysis of PPi into two orthophosphate (Pi) molecules. Defects in PPase activity cause severe developmental defects and/or growth arrest in several organisms. In higher plants, a proton-translocating vacuolar PPase (H+­PPase) uses the energy of PPi hydrolysis to acidify the vacuole. However, the biological implications of PPi hydrolysis are vague due to the widespread belief that the major role of H+­PPase in plants is vacuolar acidification. We have shown that the Arabidopsis fugu5 mutant phenotype, caused by a defect in H+­PPase activity, is rescued by complementation with the yeast cytosolic PPase IPP1. In addition, our analyses have revealed that increased cytosolic PPi levels impair postgerminative development in fugu5 by inhibiting gluconeogenesis. This led us to the conclusion that the role of H+­PPase as a proton-pump is negligible. Here, we present further evidence of the growth-boosting effects of removing PPi in later stages of plant vegetative development, and briefly discuss the biological role of PPases and their potential applications in different disciplines and in various organisms.  相似文献   

7.
Zandonadi DB  Canellas LP  Façanha AR 《Planta》2007,225(6):1583-1595
Increasing evidences have indicated that humic substances can induce plant growth and productivity by functioning as an environmental source of auxinic activity. Here we comparatively evaluate the effects of indole-3-acetic acid (IAA) and humic acids (HA) isolated from two different soils (Inseptsol and Ultisol) and two different organic residues (vermicompost and sewage sludge) on root development and on activities of plasmalemma and tonoplast H+ pumps from maize roots. The data show that HA isolated from these different sources as well as low IAA concentrations (10−10 and 10−15 M) improve root growth through a markedly proliferation of lateral roots along with a differential activation not only of the plasmalemma but also of vacuolar H+-ATPases and H+-pyrophosphatase. Further, the vacuolar H+-ATPase had a peak of stimulation in a range from 10−8 to 10−10 M IAA, whereas the H+-pyrophosphatase was sensitive to a much broader range of IAA concentrations from 10−3 to 10−15 M. It is proposed a complementary view of the acid growth mechanism in which a concerted activation of the plasmalemma and tonoplast H+ pumps plays a key role in the root cell expansion process driven by environment-derived molecules endowed with auxinic activity, such as that of humic substances.  相似文献   

8.
ShaA, a member of a multigene-encoded Na+/H+ antiporter in B. subtilis, is a large integral membrane protein consisting of 20 transmembrane helices (TM). Conservation of ShaA-like protein subunits in several cation-coupled enzymes, including the NuoL (ND5) subunit of the H+-translocating complex I, suggests the involvement of ShaA in cation transport. Bacillus subtilis ShaA contains six acidic residues that are conserved in ShaA homologues and are located in putative transmembrane helices. We examined the functional involvement of the six transmembrane acidic residues of ShaA by site-directed mutagenesis. Mutation in glutamate (Glu)-113 in TM-4, Glu-657 in TM-18, aspartate (Asp)-734 and Glu-747 in TM-20 abolished the antiport activity, suggesting that these residues play important roles in the ion transport of Sha. The acidic group was necessary and sufficient in Glu-657 and Asp-743, while it was not true of Glu-113 and Glu-747. Mutation in Asp-103 in TM-3, which is conserved in ShaA-types but not in ShaAB-types, partially affected on the antiport activity. Mutation in Asp-50 in TM-2 resulted in a unexpected phenotype: mutants retained the wild type level of ability to confer NaCl resistance to the Na+/H+ antiporter-deficient E. coli KNabc, but showed a very low antiport activity. The acidic group of Asp-50 and Asp-103 was not essential for the function. Our results suggested that these acidic residues are functionally involved in the ion transport of Sha, and some of them probably in cation binding and/or translocation.  相似文献   

9.
Ru C. Van 《BBA》2005,1709(1):84-94
Vacuolar H+-translocating inorganic pyrophosphatase (V-PPase; EC 3.6.1.1) is a homodimeric proton translocase consisting of a single type of polypeptide with a molecular mass of approximately 81 kDa. Topological analysis tentatively predicts that mung bean V-PPase contains 14 transmembrane domains. Alignment analysis of V-PPase demonstrated that the transmembrane domain 5 (TM5) of the enzyme is highly conserved in plants and located at the N-terminal side of the putative substrate-binding loop. The hydropathic analysis of V-PPase showed a relatively lower degree of hydrophobicity in the TM5 region as compared to other domains. Accordingly, it appears that TM5 is probably involved in the proton translocation of V-PPase. In this study, we used site-directed mutagenesis to examine the functional role of amino acid residues in TM5 of V-PPase. A series of mutants singly replaced by alanine residues along TM5 were constructed and over-expressed in Saccharomyces cerevisiae; they were then used to determine their enzymatic activities and proton translocations. Our results indicate that several mutants displayed minor variations in enzymatic properties, while others including those mutated at E225, a GYG motif (residues from 229 to 231), A238, and R242, showed a serious decline in enzymatic activity, proton translocation, and coupling efficiency of V-PPase. Moreover, the mutation at Y230 relieved several cation effects on the V-PPase. The GYG motif presumably plays a significant role in maintaining structure and function of V-PPase.  相似文献   

10.
Plant vacuolar H+-translocating inorganic pyrophosphatase (V-PPase EC 3.6.1.1) utilizes inorganic pyrophosphate (PPi) as an energy source to generate a H+ gradient potential for the secondary transport of ions and metabolites across the vacuole membrane. In this study, functional roles of arginine residues in mung bean V-PPase were determined by site-directed mutagenesis. Alignment of amino-acid sequence of K+-dependent V-PPases from several organisms showed that 11 of all 15 arginine residues were highly conserved. Arginine residues were individually substituted by alanine residues to produce R → A-substituted V-PPases, which were then heterologously expressed in yeast. The characteristics of mutant variants were subsequently scrutinized. As a result, most R → A-substituted V-PPases exhibited similar enzymatic activities to the wild-type with exception that R242A, R523A, and R609A mutants markedly lost their abilities of PPi hydrolysis and associated H+-translocation. Moreover, mutation on these three arginines altered the optimal pH and significantly reduced K+-stimulation for enzymatic activities, implying a conformational change or a modification in enzymatic reaction upon substitution. In particular, R242A performed striking resistance to specific arginine-modifiers, 2,3-butanedione and phenylglyoxal, revealing that Arg242 is most likely the primary target residue for these two reagents. The mutation at Arg242 also removed F inhibition that is presumably derived from the interfering in the formation of substrate complex Mg2+-PPi. Our results suggest accordingly that active pocket of V-PPase probably contains the essential Arg242 which is embedded in a more hydrophobic environment.  相似文献   

11.
Sod2 is the plasma membrane Na+/H+ exchanger of the fission yeast Schizosaccharomyces pombe. It provides salt tolerance by removing excess intracellular sodium (or lithium) in exchange for protons. We examined the role of amino acid residues of transmembrane segment IV (TM IV) (126FPQINFLGSLLIAGCITSTDPVLSALI152) in activity by using alanine scanning mutagenesis and examining salt tolerance in sod2-deficient S. pombe. Two amino acids were critical for function. Mutations T144A and V147A resulted in defective proteins that did not confer salt tolerance when reintroduced into S. pombe. Sod2 protein with other alanine mutations in TM IV had little or no effect. T144D and T144K mutant proteins were inactive; however, a T144S protein was functional and provided lithium, but not sodium, tolerance and transport. Analysis of sensitivity to trypsin indicated that the mutations caused a conformational change in the Sod2 protein. We expressed and purified TM IV (amino acids 125–154). NMR analysis yielded a model with two helical regions (amino acids 128–142 and 147–154) separated by an unwound region (amino acids 143–146). Molecular modeling of the entire Sod2 protein suggested that TM IV has a structure similar to that deduced by NMR analysis and an overall structure similar to that of Escherichia coli NhaA. TM IV of Sod2 has similarities to TM V of the Zygosaccharomyces rouxii Na+/H+ exchanger and TM VI of isoform 1 of mammalian Na+/H+ exchanger. TM IV of Sod2 is critical to transport and may be involved in cation binding or conformational changes of the protein.  相似文献   

12.
Previous literature has shown the presence of a plasma membrane (PM) localized type I H+-PPase in sieve elements of Ricinus communis. Unfortunately, the physiological relevance of these findings remains obscure due to the lack of genetic and molecular reagents to study R. communis. The availability of H+-PPase gain and loss-of-function mutants in Arabidopsis thaliana makes this plant an attractive genetic model to address the question, but data on the PM localization of this H+-PPase in A. thaliana are limited to two proteomic approaches. Here we present the first report on the localization of the type I H+-PPase AVP1 in sieve element-companion cell complexes (SE-CCc) from A. thaliana. Double epifluorescence and immunogold labeling experiments are consistent with the co-localization of AVP1 and PIP1 (a bona fide PM maker) in PM of SE-CCc from A. thaliana.  相似文献   

13.
Mimura H  Nakanishi Y  Maeshima M 《FEBS letters》2005,579(17):3625-3631
Redox control of disulfide-bond formation in the H+-pyrophosphatase of Streptomyces coelicolor was investigated using cysteine mutants expressed in Escherichia coli. The wild-type enzyme, but not a cysteine-less mutant, was reversibly inactivated by oxidation. To determine the residues involved in oxidative inactivation, different cysteine residues were replaced. Analysis with a cysteine-modifying reagent revealed that the formation of a disulfide bond between cysteines 253 and 621 was responsible for enzyme inactivation. This result suggests that residues in different cytoplasmic loops are close to each other in the tertiary structure. Both cysteine residues are conserved in K+-independent (type II) H+-pyrophosphatases.  相似文献   

14.
H+-translocating pyrophosphatase (H+-PPase, EC 3.6.1.1) plays an important role in acidifying vacuoles by transporting protons across membranes at the expense of pyrophosphate (PPi) hydrolysis. Vigna radiata H+-PPase (VrH+-PPase) contains 16 transmembrane helices (TMs). The hydrophobicity of TM3 is relatively lower than that of most other TMs, and the amino acids in this TM are highly conserved in plants. Furthermore, TM5 and -6, which are the core TMs involving in H+-PPase functions, are near TM3. It is thus proposed that TM3 is associated with H+-PPase activity. To address this possibility, site-directed mutagenesis was applied in this investigation to determine the role of TM3 in VrH+-PPase. Upon alanine/serine substitution, T138 and S142, whose side chains face toward the center TMs, were found to be involved in efficient proton transport. G149/S153 and G160/A164 pairs at the crucial termini of the two GxxxG-like motifs are indispensable in maintaining enzymatic activities and conformational stability. Moreover, stability in the vicinity surrounding G149 is pivotal for efficient expression. S153, M161 and A164 are critical for the K+-mediated stimulation of H+-PPase. Taken together, our results demonstrate that TM3 plays essential roles in PPi hydrolysis, proton transport, expression, and K+ stimulation of H+-PPase.  相似文献   

15.
The vacuolar H+-pyrophosphatase (V-PPase) is an electrogenic H+ pump localized in the plant vacuolar membrane. V-PPase from many species has been characterized previously and the corresponding genes/cDNAs have been cloned. Cloning of the V-PPase genes from many plant species has revealed conserved motifs that may correspond to catalytic sites. The completion of the entire DNA sequence of Oryza sativa (430 Mb) presented an opportunity to study the structure and function of V-PPase proteins, and also to identify new members of this family in Oryza sativa. Our analysis identified three novel V-PPase proteins in the Oryza sativa genome that contain functional domains typical of V-PPase. We have designated them as OVP3 to OVP5. The new predicted OVPs have chromosomal locations different from previously characterized V-PPases (OVP1 and OVP2) located on chromosome 6. They all contain three characteristic motifs of V-PPase and also a conserved motif [DE]YYTS, specific to type I V-PPases and involved in coupling PPi hydrolysis to H+ translocation.  相似文献   

16.
The effects of indole-3-acetic acid (IAA), abscisic acid (ABA), gibberellic acid (GA3) and kinetin on the hydrolytic activity of proton pumps (adenosine triphosphatase, H+-ATPase, pyrophosphatase, H+-PPase) of tonoplasts isolated from stored red beet (Beta vulgaris L. cv. Bordo) roots were studied. Results suggest that the phytohormones can regulate the hydrolytic activities of H+-ATPase and H+-PPase of the vacuolar membrane. Each of the proton pumps of the tonoplast has its own regulators in spite of similar localization and functions. IAA and kinetin seem to be regulators of the hydrolytic activity for H+-PPase whereas for H+-ATPase it may be GA3. Stimulation of enzyme activity by all hormones occurred at concentrations of 10–6 to 10–7 M.Abbreviations IAA indole-3-acetic acid - ABA abscisic acid - GA3 gibberellic acid - H+-ATPase adenosine triphosphatase - H+-PPase pyrophosphatase - ATP adenosine triphosphate - Tris Tris (hydroxymethyl)-aminomethane - MES (2[N-Morpholino]) ethane sulfonic acid - EDTA ethylene diamine tetraacetic acid - Pi inorganic phosphate  相似文献   

17.
The H+-translocating inorganic pyrophosphatase is a proton pump that hydrolyzes inorganic pyrophosphate. It consists of a single polypeptide with 14-17 transmembrane domains, and is found in a range of organisms. We focused on the second quarter region of Streptomyces coelicolor A3(2) H+-pyrophosphatase, which contains long conserved cytoplasmic loops. We prepared a library of 1536 mutants that were assayed for pyrophosphate hydrolysis and proton translocation. Mutant enzymes with low substrate hydrolysis and proton-pump activities were selected and their DNAs sequenced. Of these, 34 were single-residue substitution mutants. We generated 29 site-directed mutant enzymes and assayed their activity. The mutation of 10 residues in the fifth transmembrane domain resulted in low coupling efficiencies, and a mutation of Gly198 showed neither hydrolysis nor pumping activity. Four residues in cytoplasmic loop e were essential for substrate hydrolysis and efficient H+ translocation. Pro189, Asp281, and Val351 in the periplasmic loops were critical for enzyme function. Mutation of Ala357 in periplasmic loop h caused a selective reduction of proton-pump activity. These low-efficiency mutants reflect dysfunction of the energy-conversion and/or proton-translocation activities of H+-pyrophosphatase. Four critical residues were also found in transmembrane domain 6, three in transmembrane domain 7, and five in transmembrane domains 8 and 9. These results suggest that transmembrane domain 5 is involved in enzyme function, and that energy coupling is affected by several residues in the transmembrane domains, as well as in the cytoplasmic and periplasmic loops. H+-pyrophosphatase activity might involve dynamic linkage between the hydrophilic and transmembrane domains.  相似文献   

18.
19.
Bacteria have adapted their NhaA Na+/H+ exchangers responsible for salt homeostasis to their different habitats. We present an electrophysiological and kinetic analysis of NhaA from Helicobacter pylori and compare it to the previously investigated exchangers from Escherichia coli and Salmonella typhimurium. Properties of all three transporters are described by a simple model using a single binding site for H+ and Na+. We show that H.pylori NhaA only has a small acidic shift of its pH-dependent activity profile compared to the other transporters and discuss why a more drastic change in its pH activity profile is not physiologically required.  相似文献   

20.
Sod2 is the Na+/H+ exchanger of the fission yeast Schizosaccharomyces pombe that is principally responsible for salt tolerance. We examined the role of nine polar, membrane associated amino acids in the ability of the protein to confer salt tolerance in S. pombe. Wild type sod2 protein with a C-terminal GFP tag effectively rescued salt tolerance in S. pombe with deleted endogenous sod2. Sod2 protein with the mutations P163A, P183A, D298N, D389N, E390Q, E392Q and E397Q also conveyed salt tolerance as effectively as the wild type sod2 protein. In contrast, the mutation P146A resulted in a protein that did not convey salt tolerance nearly as effectively as the wild type and did not extrude Na+ as well as the wild type. Mutation of Pro146 to Ser, Asp or Lys had an intermediate effect. Mutation of Thr142 to Ser resulted in a slightly defective protein. Western blot analysis showed that all mutant proteins were expressed at similar levels as wild type sod2 protein. Examination of the localization of the proteins showed that wild type and most sod2 mutants were present in the plasma membrane while the P146A mutant had an intracellular localization. Limited tryptic digestion suggested that the P146A sod2 protein had a change in conformation in comparison to the wild type protein. The results suggest that Pro146 is an amino acid critical to sod2 structure, function and localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号