首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Heteromultimerization of Kir4.1 and Kir5.1 leads to a channel with distinct functional properties. The heteromeric Kir4.1-Kir5.1 channel is expressed in the eye, kidney and brainstem and has CO(2)/pH sensitivity in the physiological range, suggesting a candidate molecule for the regulation of K(+) homeostasis and central CO(2) chemoreception. It is known that K(+) transport in renal epithelium and brainstem CO(2) chemosensitivity are subject to modulation by hormones and neurotransmitters that activate distinct intracellular signaling pathways. If the Kir4.1-Kir5.1 channel is involved in pH-dependent regulation of cellular functions, it may also be regulated by some of the intracellular signaling systems. Therefore, we undertook studies to determine whether PKC modulates the heteromeric Kir4.1-Kir5.1 channel. The channel expressed using a Kir4.1-Kir5.1 tandem dimer construct was inhibited by the PKC activator PMA in a dose-dependent manner. The channel inhibition was produced via reduction of the P(open). The effect of PMA was abolished by specific PKC inhibitors. In contrast, exposure of oocytes to forskolin (a PKA activator) had no significant effect on Kir4.1-Kir5.1 currents. The channel inhibition appeared to be independent of PIP(2) depletion and PKC-dependent internalization. Several consensus sequences of potential PKC phosphorylation sites were identified in the Kir4.1 and Kir5.1 subunits by sequence scan. Although the C-terminal peptides of both Kir4.1 and Kir5.1 were phosphorylated in vitro, site-directed mutagenesis of individual residues failed to reveal the PKC phosphorylation sites suggesting that the channel may have multiple phosphorylation sites. Taken together, these results suggest that the Kir4.1-Kir5.1 but not the homomeric Kir4.1 channel is strongly inhibited by PKC activation.  相似文献   

2.
The heteromeric Kir4.1-Kir5.1 channel is a candidate sensing molecule for central CO(2) chemoreception. Since central CO(2) chemoreception is subject to neural modulations, we performed studies to test the hypothesis that the Kir4.1-Kir5.1 channel is modulated by the neurotransmitters critical for respiratory control, including serotonin (5-HT), substance-P (SP), and thyrotropin releasing hormone (TRH). The heteromeric Kir4.1-Kir5.1 channel was strongly inhibited by SP, TRH, and 5-HT when expressed in Xenopus oocytes, whereas these neurotransmitters had no effect on the homomeric Kir4.1 channel. Such an inhibition was dose-dependent and relied on specific G(alphaq)-protein-coupled receptors and protein kinase C (PKC). No direct interaction of the channel with G-proteins was found. Channel sensitivity to CO(2)/pH was not compromised with the inhibition by these neurotransmitters, as the channel remained to be inhibited by acidic pH following an exposure to the neurotransmitters. The firing rate of CO(2)-sensitive brainstem neurons cultured in microelectrode arrays was augmented by SP or a 5-HT2A receptor agonist, which was blocked by PKC inhibitors suggesting that PKC underscores the inhibitory effect of SP and 5-HT in cultured brainstem neurons as well. Immunostaining showed that both Kir4.1 and Kir5.1 proteins were co-localized in the cultured brainstem neurons. These results therefore indicate that the heteromeric Kir4.1-Kir5.1 channel is modulated by the neurotransmitters critical for respiratory control, suggesting a novel neuromodulatory mechanism for the chemosensitivity of brainstem neurons to elevated PCO(2) and acidic pH.  相似文献   

3.
This work demonstrates that extracellular Na+ modulates the cloned inwardly rectifying K+ channels Kir4.1 and Kir4.1-Kir5.1. Whole-cell patch clamp studies on astrocytes have previously indicated that inward potassium currents are regulated by external Na+. We expressed Kir4.1 and Kir4.1-Kir5.1 in Xenopus oocytes to disclose if Kir4.1 and/or Kir4.1-Kir5.1 at the molecular level are responsible for the observed effect of [Na+]o and to investigate the regulatory mechanism of external cations further. Our results showed that Na+ has a biphasic modulatory effect on both Kir4.1 and Kir4.1-Kir5.1 currents. Depending on the Na+-concentration and applied voltage, the inward Kir4.1/Kir4.1-Kir5.1 currents are either enhanced or reduced by extracellular Na+. The Na+ activation was voltage-independent, whereas the Na+-induced reduction of the Kir4.1 and Kir4.1-Kir5.1 currents was both concentration-, time- and voltage-dependent. Our data indicate that the biphasic effect of extracellular Na+on the Kir4.1 and Kir4.1-Kir5.1 channels is caused by two separate mechanisms.  相似文献   

4.
Several inward rectifier K+ (Kir) channels are inhibited by hypercapnic acidosis and may be involved in CO2 central chemoreception. Among them are Kir1.1, Kir2.3, and Kir4.1. The Kir4.1 is expressed predominantly in the brainstem. Although its CO2 sensitivity is low, coexpression of Kir4.1 with Kir5.1 in Xenopus oocytes greatly enhances the CO2/pH sensitivities of the heteromeric channels. If these Kir channels play a part in the central CO2 chemosensitivity, they should be expressed in neurons of brainstem cardio-respiratory nuclei. To test this hypothesis, we performed in-situ hybridization experiments in which the expression of Kir1.1, Kir2.3, Kir4.1 and Kir5.1, and coexpression of Kir4.1 and Kir5.1 were studied in brainstem neurons using non-radioactive riboprobes. We found that mRNAs of these Kir channels were present in several brainstem nuclei, especially those involved in cardio-respiratory controls. Strong labeling was observed in the locus coeruleus, ventralateral medulla, parabrachial-Kölliker-Fuse nuclei, solitary tract nucleus, and area postrema. Strong expression was also seen in several cranial motor nuclei, including the nucleus of ambiguus, hypoglossal nucleus, facial nucleus and dorsal vagus motor nucleus. In general, the expression of Kir5.1 and Kir4.1 was much more prominent than that of Kir1.1 and Kir2.3 in all the nuclei. Evidence for the coexpression of Kir4.1 and Kir5.1 was found in a good number of neurons in these nuclei. The expression and coexpression of these CO2/pH-sensitive Kir channels suggest that they are likely to contribute to CO2 chemosensitivity of the brainstem neurons.  相似文献   

5.
CO2 chemoreception may be related to modulation of inward rectifier K+ channels (Kir channels) in brainstem neurons. Kir4.1 is expressed predominantly in the brainstem and inhibited during hypercapnia. Although the homomeric Kir4.1 only responds to severe intracellular acidification, coexpression of Kir4.1 with Kir5.1 greatly enhances channel sensitivities to CO2 and pH. To understand the biophysical and molecular mechanisms underlying the modulation of these currents by CO2 and pH, heteromeric Kir4. 1-Kir5.1 were studied in inside-out patches. These Kir4.1-Kir5.1 currents showed a single channel conductance of 59 pS with open-state probability (P(open)) approximately 0.4 at pH 7.4. Channel activity reached the maximum at pH 8.5 and was completely suppressed at pH 6.5 with pKa 7.45. The effect of low pH on these currents was due to selective suppression of P(open) without evident effects on single channel conductance, leading to a decrease in the channel mean open time and an increase in the mean closed time. At pH 8.5, single-channel currents showed two sublevels of conductance at approximately 1/4 and 3/4 of the maximal openings. None of them was affected by lowering pH. The Kir4.1-Kir5.1 currents were modulated by phosphatidylinositol-4,5-bisphosphate (PIP2) that enhanced baseline P(open) and reduced channel sensitivity to intracellular protons. In the presence of 10 microM PIP2, the Kir4.1-Kir5.1 showed a pKa value of 7.22. The effect of PIP2, however, was not seen in homomeric Kir4.1 currents. The CO2/pH sensitivities were related to a lysine residue in the NH2 terminus of Kir4.1. Mutation of this residue (K67M, K67Q) completely eliminated the CO2 sensitivity of both homomeric Kir4.1 and heteromeric Kir4.1-Kir5.1. In excised patches, interestingly, the Kir4.1-Kir5.1 carrying K67M mutation remained sensitive to low pHi. Such pH sensitivity, however, disappeared in the presence of PIP2. The effect of PIP2 on shifting the titration curve of wild-type and mutant channels was totally abolished when Arg178 in Kir5.1 was mutated. Thus, these studies demonstrate a heteromeric Kir channel that can be modulated by both acidic and alkaline pH, show the modulation of pH sensitivity of Kir channels by PIP2, and provide information of the biophysical and molecular mechanisms underlying the Kir modulation by intracellular protons.  相似文献   

6.
Inwardly rectifying K+ channels (Kir) comprise seven subfamilies that can be subdivided further on the basis of cytosolic pH (pHi) sensitivity, rectification strength and kinetics, and resistance to run-down. Although distinct residues within each channel subunit define these properties, heteromeric association with other Kir subunits can modulate them. We identified such an effect in the wild-type forms of Kir4.2 and Kir5.1 and used this to further understand how the functional properties of Kir channels relate to their structures. Kir4.2 and a Kir4.2-Kir5.1 fusion protein were expressed in HEK293 cells. Inward currents from Kir4.2 were stable over 10 min and pHi-insensitive (pH 6 to 8). Conversely, currents from Kir4.2-Kir5.1 exhibited a pHi-sensitive run-down at slightly acidic pHi. At pHi 7.2, currents in response to voltage steps positive to EK were essentially time independent for Kir4.2 indicating rapid block by Mg2+. Coexpression with Kir5.1 significantly increased the blocking time constant, and increased steady-state outward current characteristic of weak rectifiers. Recovery from blockade at negative potentials was voltage dependent and 2 to 10 times slower in the homomeric channel. These results show that Kir5.1 converts Kir4.2 from a strong to a weak rectifier, rendering it sensitive to pHi, and suggesting that Kir5.1 plays a role in fine-tuning Kir4.2 activity.  相似文献   

7.
Inhibition by intracellular H+ (pH gating) and activation by phosphoinositides such as PIP2 (PIP2 gating) are key regulatory mechanisms in the physiology of inwardly-rectifying potassium (Kir) channels. Our recent findings suggest that PIP2 gating and pH gating are controlled by an intrasubunit H-bond at the helix-bundle crossing between a lysine in TM1 and a backbone carbonyl group in TM2. This interaction only occurs in the closed state and channel opening requires this H-bond to be broken, thereby influencing the kinetics of PIP2- and pH-gating in Kir channels. In this addendum, we explore the role of H-bonding in heteromeric Kir4.1/Kir5.1 channels. Kir5.1 subunits do not possess a TM1 lysine. However, homology modelling and molecular dynamics simulations demonstrate that the TM1 lysine in Kir4.1 is capable of H-bonding at the helix-bundle crossing. Consistent with this, the rates of pH and PIP2 gating in Kir4.1/Kir5.1 channels (two H-bonds) were intermediate between those of wild-type homomeric Kir4.1 (four H-bonds) and Kir4.1(K67M) channels (no H-bonds) suggesting that the number of H-bonds in the tetrameric channel complex determines the gating kinetics. Furthermore, in heteromeric Kir4.1(K67M)/Kir5.1 channels, where the two remaining H-bonds are disrupted, we found that the gating kinetics were similar to Kir4.1(K67M) homomeric channels despite the fact that these two channels differ considerably in their PIP2 affinities. This indicates that Kir channel PIP2 affinity has little impact on either the PIP2- or pH-gating kinetics.  相似文献   

8.
We recently reported that zacopride is a selective inward rectifier potassium current (IK1 ) channel agonist, suppressing ventricular arrhythmias without affecting atrial arrhythmias. The present study aimed to investigate the unique pharmacological properties of zacopride. The whole-cell patch-clamp technique was used to study IK1 currents in rat atrial myocytes and Kir2.x currents in human embryonic kidney (HEK)-293 cells transfected with inward rectifier potassium channel (Kir)2.1, Kir2.2, Kir2.3, or mutated Kir2.1 (at phosphorylation site S425L). Western immunoblots were performed to estimate the relative protein expression levels of Kir2.x in rat atria and ventricles. Results showed that zacopride did not affect the IK1 and transmembrane potential of atrial myocytes. In HEK293 cells, zacopride increased Kir2.1 homomeric channels by 40.7%±9.7% at 50 mV, but did not affect Kir2.2 and Kir2.3 homomeric channels, and Kir2.1-Kir2.2, Kir2.1-Kir2.3 and Kir2.2-Kir2.3 heteromeric channels. Western immunoblots showed that similar levels of Kir2.3 protein were expressed in rat atria and ventricles, but atrial Kir2.1 protein level was only 25% of that measured in the ventricle. In addition, 5-hydroxytryptamine (5-HT) 3 receptor was undetectable, whereas 5-HT 4 receptor was weakly expressed in HEK293 cells. The Kir2.1-activating effect of zacopride in these cells was abolished by inhibition of protein kinase A (PKA), but not PKC or PKG. Furthermore, zacopride did not activate the mutant Kir2.1 channel in HEK293 cells but selectively activated the Kir2.1 homomeric channel via a PKA-dependent pathway, independent to that of the 5-HT receptor.  相似文献   

9.
Inwardly rectifying potassium (Kir) channels are broadly expressed in both excitable and nonexcitable tissues, where they contribute to a wide variety of cellular functions. Numerous studies have established that rectification of Kir channels is not an inherent property of the channel protein itself, but rather reflects strong voltage dependence of channel block by intracellular cations, such as polyamines and Mg2+. Here, we identify a previously unknown mechanism of inward rectification in Kir4.1/Kir5.1 channels in the absence of these endogenous blockers. This novel intrinsic rectification originates from the voltage-dependent behavior of Kir4.1/Kir5.1, which is generated by the flux of potassium ions through the channel pore; the inward K+-flux induces the opening of the gate, whereas the outward flux is unable to maintain the gate open. This gating mechanism powered by the K+-flux is convergent with the gating of PIP2 because, at a saturating concentration, PIP2 greatly reduces the inward rectification. Our findings provide evidence of the coexistence of two rectification mechanisms in Kir4.1/Kir5.1 channels: the classical inward rectification induced by blocking cations and an intrinsic voltage-dependent mechanism generated by the K+-flux gating.  相似文献   

10.
Kir5.1 is an inwardly rectifying K+ channel subunit whose functional role has not been fully elucidated. Expression and distribution of Kir5.1 in retina were examined with a specific polyclonal antibody. Kir5.1 immunoreactivity was detected in glial Müller cells and in some retinal neurons. In the Kir5.1-positive neurons the expression of glutamic acid decarboxylase (GAD65) was detected, suggesting that they may be GABAergic-amacrine cells. In Müller cells, spots of Kir5.1 immunoreactivity distributed diffusely at the cell body and in the distal portions, where Kir4.1 immunoreactivity largely overlapped. In addition, Kir4.1 immunoreactivity without Kir5.1 was strongly concentrated at the endfoot of Müller cells facing the vitreous surface or in the processes surrounding vessels. The immunoprecipitant obtained from retina with anti-Kir4.1 antibody contained Kir5.1. These results suggest that heterotetrameric Kir4.1/Kir5.1 channels may exist in the cell body and distal portion of Müller cells, whereas homomeric Kir4.1 channels are clustered in the endfeet and surrounding vessels. It is possible that homomeric Kir4.1 and heteromeric Kir4.1/Kir5.1 channels play different functional roles in the K+-buffering action of Müller cells. inwardly rectifying potassium channel; heteromerization; glial Müller cells; amacrine cells; potassium siphoning  相似文献   

11.
Several inward rectifier K(+) (Kir) channels are pH-sensitive, making them potential candidates for CO(2) chemoreception in cells. However, there is no evidence showing that Kir channels change their activity at near physiological level of P(CO(2)), as most previous studies were done using high concentrations of CO(2). It is known that the heteromeric Kir4.1-Kir5.1 channels are highly sensitive to intracellular protons with pKa value right at the physiological pH level. Such a pKa value may allow these channels to regulate membrane potentials with modest changes in P(CO(2)). To test this hypothesis, we studied the Kir4.1-Kir5.1 currents expressed in Xenopus oocytes and membrane potentials in the presence and absence of bicarbonate. Evident inhibition of these currents (by approximately 5%) was seen with P(CO(2)) as low as 8 torr. Higher P(CO(2)) levels (23-60 torr) produced stronger inhibitions (by 30-40%). The inhibitions led to graded depolarizations (5-45 mV with P(CO(2)) 8-60 torr). Similar effects were observed in the presence of 24 mM bicarbonate and 5% CO(2). Indeed, the Kir4.1-Kir5.1 currents were enhanced with 3% CO(2) and suppressed with 8% CO(2) in voltage clamp, resulting in hyper- (-9 mV) and depolarization (16 mV) in current clamp, respectively. With physiological concentration of extracellular K(+), the Kir4.1-Kir5.1 channels conduct substantial outward currents that were similarly inhibited by CO(2) as their inward rectifying currents. These results therefore indicate that the heteromeric Kir4.1-Kir5.1 channels are modulated by a modest change in P(CO(2)) levels. Such a modulation alters cellular excitability, and enables the cell to detect hypercapnia and hypocapnia in the presence of bicarbonate.  相似文献   

12.
Vascular ATP-sensitive K(+) channels are inhibited by multiple vasoconstricting hormones via the protein kinase C (PKC) pathway. However, the molecular substrates for PKC phosphorylation remain unknown. To identify the PKC sites, Kir6.1/SUR2B and Kir6.2/SUR2B were expressed in HEK293 cells. Following channel activation by pinacidil, the catalytic fragment of PKC inhibited the Kir6.1/SUR2B currents but not the Kir6.2/SUR2B currents. Phorbol 12-myristate 13-acetate (a PKC activator) had similar effects. Using Kir6.1-Kir6.2 chimeras, two critical protein domains for the PKC-dependent channel inhibition were identified. The proximal N terminus of Kir6.1 was necessary for channel inhibition. Because there was no PKC phosphorylation site in the N-terminal region, our results suggest its potential involvement in channel gating. The distal C terminus of Kir6.1 was crucial where there are several consensus PKC sites. Mutation of Ser-354, Ser-379, Ser-385, Ser-391, or Ser-397 to nonphosphorylatable alanine reduced PKC inhibition moderately but significantly. Combined mutations of these residues had greater effects. The channel inhibition was almost completely abolished when 5 of them were jointly mutated. In vitro phosphorylation assay showed that 4 of the serine residues were necessary for the PKC-dependent (32)P incorporation into the distal C-terminal peptides. Thus, a motif containing four phosphorylation repeats is identified in the Kir6.1 subunit underlying the PKC-dependent inhibition of the Kir6.1/SUR2B channel. The presence of the phosphorylation motif in Kir6.1, but not in its close relative Kir6.2, suggests that the vascular K(ATP) channel may have undergone evolutionary optimization, allowing it to be regulated by a variety of vasoconstricting hormones and neurotransmitters.  相似文献   

13.
The inwardly rectifying potassium channel (Kir), Kir4.1 mediates spatial K+-buffering in the CNS. In this process the channel is potentially exposed to a large range of extracellular K+ concentrations ([K+]o). We found that Kir4.1 is regulated by K+o. Increased [K+]o leads to a slow (mins) increase in the whole-cell currents of Xenopus oocytes expressing Kir4.1. Conversely, removing K+ from the bath solution results in a slow decrease of the currents. This regulation is not coupled to the pHi-sensitive gate of the channel, nor does it require the presence of K67, a residue necessary for K+o-dependent regulation of Kir1.1. The voltage-dependent blockers Cs+ and Ba2+ substitute for K+ and prevent deactivation of the channel in the absence of K+o. Cs+ blocks and regulates the channel with similar affinity, consistent with the regulatory sites being in the selectivity-filter of the channel. Although both Rb+ and NH4+ permeate Kir4.1, only Rb+ is able to regulate the channel. We conclude that Kir4.1 is regulated by ions interacting with specific sites in the selectivity filter. Using a kinetic model of the permeation process we show the plausibility of the channel’s sensing the extracellular ionic environment through changes in the selectivity occupancy pattern, and that it is feasible for an ion with the selectivity properties of NH4+ to permeate the channel without inducing these changes.  相似文献   

14.
The inwardly-rectifying potassium channel subunit Kir5.1 selectively co-assembles with members of the Kir4.0 subfamily to form novel pH-sensitive heteromeric channels with unique single channel properties. In this study, we have cloned orthologs of Kir4.1 and Kir5.1 from the genome of the amphibian, Xenopus tropicalis (Xt). Heteromeric XtKir4.1/XtKir5.1 channels exhibit similar macroscopic current properties to rat Kir4.1/Kir5.1 with a faster time-dependent rate of activation. However, single channel analysis of heteromeric XtKir4.1/XtKir5.1 channels reveals that they have markedly different long-lived, multi-level subconductance states. Furthermore, we demonstrate that the XtKir5.1 subunit is responsible for these prominent subconductance levels. These results are consistent with a model in which the slow transitions between sublevel states represent the movement of individual subunits. These novel channels now provide an excellent model system to determine the structural basis of subconductance levels and contribution of heteromeric pore architecture to this process.  相似文献   

15.
The Kir4.1/Kir5.1 channel mediates basolateral K+ recycling in renal distal tubules; this process is critical for Na+ reabsorption at the tubules. Mutations in Kir4.1 are associated with EAST/SeSAME syndrome, a genetic disorder characterized by renal salt wasting. In this study, we found that MAGI-1 anchors Kir4.1 channels (Kir4.1 homomer and Kir4.1/Kir5.1 heteromer) and contributes to basolateral K+ recycling. The Kir4.1 A167V mutation associated with EAST/SeSAME syndrome caused mistrafficking of the mutant channels and inhibited their expression on the basolateral surface of tubular cells. These findings suggest mislocalization of the Kir4.1 channels contributes to renal salt wasting.  相似文献   

16.
Parkinson’s disease (PD) can be triggered by genetic or environmental factors. Although the precise etiopathogenesis of the disease remains unknown, recent studies focusing on the K+ channel gene have uncovered the dysfunctions in various K+ channels (e.g., Kir2, Kv, KATP, and SKCa) that are involved in the pathological mechanisms underlying PD. Here we show that Kir2.3 overexpression can protect against rotenone-induced apoptosis in cell models in the neurodegenerative process, suggesting Kir2.3’s general neuroprotective function. The protection of Kir2.3 against neurodegeneration may be associated with the protein kinase C (PKC) pathway, as PKC is downregulated by Kir2.3 overexpression and the PKC activator can reduce the protective effect of Kir2.3. Our studies provide an entry point for understanding the novel roles of Kir2.3 in cell models of PD, and they offer clues for the common mechanisms underlying different neurodegenerative conditions.  相似文献   

17.
Comparison of the crystal structures of the KcsA and MthK potassium channels suggests that the process of opening a K+ channel involves pivoted bending of the inner pore-lining helices at a highly conserved glycine residue. This bending motion is proposed to splay the transmembrane domains outwards to widen the gate at the “helix-bundle crossing”. However, in the inwardly rectifying (Kir) potassium channel family, the role of this “hinge” residue in the second transmembrane domain (TM2) and that of another putative glycine gating hinge at the base of TM2 remain controversial. We investigated the role of these two positions in heteromeric Kir4.1/Kir5.1 channels, which are unique amongst Kir channels in that both subunits lack a conserved glycine at the upper hinge position. Contrary to the effect seen in other channels, increasing the potential flexibility of TM2 by glycine substitutions at the upper hinge position decreases channel opening. Furthermore, the contribution of the Kir4.1 subunit to this process is dominant compared to Kir5.1, demonstrating a non-equivalent contribution of these two subunits to the gating process. A homology model of heteromeric Kir4.1/Kir5.1 shows that these upper “hinge” residues are in close contact with the base of the pore α-helix that supports the selectivity filter. Our results also indicate that the highly conserved glycine at the “lower” gating hinge position is required for tight packing of the TM2 helices at the helix-bundle crossing, rather than acting as a hinge residue.  相似文献   

18.
The physiological role of the inwardly rectifying potassium channel, Kir5.1, is poorly understood, as is the molecular identity of many renal potassium channels. In this study we have used Kir5.1-specific antibodies to reveal abundant expression of Kir5.1 in renal tubular epithelial cells, where Kir4.1 is also expressed. Moreover, we also show that Kir5.1/Kir4.1 heteromeric channel activity is extremely sensitive to inhibition by intracellular acidification and that this novel property is conferred predominantly by the Kir5.1 subunit. These findings suggest that Kir5.1/Kir4.1 heteromeric channels are likely to exist in vivo and implicate an important and novel functional role for the Kir5.1 subunit.  相似文献   

19.
Heteromultimerization between different potassium channel subunits can generate channels with novel functional properties and thus contributes to the rich functional diversity of this gene family. The inwardly rectifying potassium channel subunit Kir5.1 exhibits highly selective heteromultimerization with Kir4.1 to generate heteromeric Kir4.1/Kir5.1 channels with unique rectification and kinetic properties. These novel channels are also inhibited by intracellular pH within the physiological range and are thought to play a key role in linking K+ and H+ homeostasis by the kidney. However, the mechanisms that control heteromeric K+ channel assembly and the structural elements that generate their unique functional properties are poorly understood. In this study we identify residues at an intersubunit interface between the cytoplasmic domains of Kir5.1 and Kir4.1 that influence the novel rectification and gating properties of heteromeric Kir4.1/Kir5.1 channels and that also contribute to their pH sensitivity. Furthermore, this interaction presents a structural mechanism for the functional coupling of these properties and explains how specific heteromeric interactions can contribute to the novel functional properties observed in heteromeric Kir channels. The highly conserved nature of this structural association between Kir subunits also has implications for understanding the general mechanisms of Kir channel gating and their regulation by intracellular pH.  相似文献   

20.
Kir2.3 plays an important part in the maintenance of membrane potential in neurons and myocardium. Identification of intracellular signaling molecules controlling this channel thus may lead to an understanding of the regulation of membrane excitability. To determine whether Kir2.3 is modulated by direct phosphorylation of its channel protein and identify the phosphorylation site of protein kinase C (PKC), we performed experiments using several recombinant and mutant Kir2.3 channels. Whole-cell Kir2.3 currents were inhibited by phorbol 12-myristate 13-acetate (PMA) in Xenopus oocytes. When the N-terminal region of Kir2.3 was replaced with that of Kir2.1, another member in the Kir2 family that is insensitive to PMA, the chimerical channel lost its PMA sensitivity. However, substitution of the C terminus was ineffective. Four potential PKC phosphorylation sites in the N terminus were studied by comparing mutations of serine or threonine with their counterpart residues in Kir2.1. Whereas substitutions of serine residues at positions 5, 36, and 39 had no effect on the channel sensitivity to PMA, mutation of threonine 53 completely eliminated the channel response to PMA. Interestingly, creation of this threonine residue at the corresponding position (I79T) in Kir2.1 lent the mutant channel a PMA sensitivity almost identical to the wild-type Kir2.3. These results therefore indicate that Kir2.3 is directly modulated by PKC phosphorylation of its channel protein and threonine 53 is the PKC phosphorylation site in Kir2.3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号