首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We studied the effects of four commonly used insecticides (methylparathion, endosulfan, cypermethrin and fenvalerate) on P-glycoprotein isolated from multidrug-resistant cells. All the pesticides stimulated P-glycoprotein ATPase activity, with maximum stimulation of up to 213% in a detergent-solubilized preparation, and up to 227% in reconstituted liposomes. The ATPase stimulation profiles were biphasic, displaying lower stimulation, and in the case of methylparathion, inhibition of activity, at higher insecticide concentrations. Quenching of the intrinsic Trp fluorescence of purified P-glycoprotein was used to quantitate insecticide binding; the estimated K(d) values fell in the range 4-6 microM. Transport of the fluorescent substrate tetramethylrosamine (TMR) into proteoliposomes containing P-glycoprotein was monitored in real time. The TMR concentration gradient generated by the transporter was collapsed by the addition of insecticides, and prior addition of these compounds prevented its formation. The rate of TMR transport was inhibited in a saturable fashion by all the compounds, indicating that they compete with the substrate for membrane translocation. Taken together, these data suggest that the insecticides bind to Pgp with high affinity and effectively block drug transport. Inhibition of Pgp by pesticides may compromise its ability to clear xenobiotics from the body, leading to a higher risk of toxicity.  相似文献   

2.
Helicoverpa armigera is a major pest of agricultural crops and has developed resistance to various insecticides. A P-glycoprotein (Pgp) with ATPase activity likely to be involved in insecticide resistance was purified and characterized from insecticide-resistant H. armigera. The purification was 18-fold with 3% yield. The optimum pH and temperature were found to be 7.4 and 30-40 °C, respectively. Kinetic studies indicated that this enzyme had a Km value of 1.2 mM for ATP. Pgp from H. armigera was partially sequenced and found to be homologous to conserved sequences of mammalian Pgps. Pesticides stimulated H. armigera Pgp ATPase activity with a maximum stimulation of up to 40%. Quenching of the intrinsic tryptophan fluorescence of purified Pgp was used to quantitate insecticide binding. Using the high-affinity fluorescent substrate, tetramethylrosamine, transport was monitored in real time in proteoliposomes containing H. armigera Pgp. The presence of Pgp could be one of the reasons for insecticide resistance in this pest.  相似文献   

3.
The P-glycoprotein multidrug transporter (Pgp) is an active efflux pump for chemotherapeutic drugs, natural products and hydrophobic peptides. Pgp is envisaged as a 'hydrophobic vacuum cleaner', and drugs are believed to gain access to the substrate binding sites from within the membrane, rather than from the aqueous phase. The intimate association of both Pgp and its substrates with the membrane suggests that its function may be regulated by the biophysical properties of the lipid bilayer. Using the high affinity fluorescent substrate tetramethylrosamine (TMR), we have monitored, in real time, transport in proteoliposomes containing reconstituted Pgp. The TMR concentration gradient generated by Pgp was collapsed by the addition of either the ATPase inhibitor, vanadate, or Pgp modulators. TMR transport by Pgp obeyed Michaelis--Menten kinetics with respect to both of its substrates. The Km for ATP was 0.48 mM, close to the K(m) for ATP hydrolysis, and the K(m) for TMR was 0.3 microM. TMR transport was inhibited in a concentration-dependent fashion by verapamil and cyclosporin A, and activated (probably by a positive allosteric effect) by the transport substrate colchicine. TMR transport by Pgp reconstituted into proteoliposomes composed of two synthetic phosphatidylcholines showed a highly unusual biphasic temperature dependence. The rate of TMR transport was relatively high in the rigid gel phase, reached a maximum at the melting temperature of the bilayer, and then decreased in the fluid liquid crystalline phase. This pattern of temperature dependence suggests that the rate of drug transport by Pgp may be dominated by partitioning of drug into the bilayer.  相似文献   

4.
Cotton bollworm, Helicoverpa armigera, is one of the most damaging polyphagous pests worldwide, which has developed high levels of resistance to commonly applied insecticides. Mitochondrial P-glycoprotein (Pgp) was detected in the insecticide-resistant strain of H. armigera using C219 antibodies, and its possible role was demonstrated in the efflux of xenobiotic compounds using spectrofluorometer. The TMR accumulated in mitochondria in the absence of ATP, and effluxed out in presence of ATP; the process of efflux was inhibited in the presence of ortho-vandate, an inhibitor of Pgp, in insecticide-resistant larvae of H. armigera. The mitochondria isolated from insecticide-resistant larvae were resistant to insecticide-induced inhibition of oxygen consumption and cytochrome c release. Membrane potential decreased in a dose-dependent manner in the presence of higher concentration of insecticides (>50 µM) in mitochondria of insecticide-resistant larvae. In conclusion, mitochondrial Pgp ATPase detected in the insecticide-resistant larvae influenced the efflux of xenobiotic compounds. Pgp might be involved in protecting the mitochondrial DNA and the components of the electron transport chain from damage due to insecticides, and contributing to the resistance to the deleterious effects of insecticides on the growth of insecticide-resistant H. armigera larvae.  相似文献   

5.
The multidrug resistance efflux pump P-glycoprotein (Pgp) couples drug export to ATP binding and hydrolysis. Details regarding drug trajectory, as well as the molecular basis for coupling, remain unknown. Nearly all drugs exported by Pgp have been assayed for competitive behavior with rhodamine123 transport at a canonical "R" drug binding site. Tetramethylrosamine (TMR) displays a relatively high affinity for Pgp when compared to other rhodamines. Here, we present the construction and characterization of a library of compounds based upon the TMR scaffold and use this set to assess the determinants of drug binding to the "R" site of Pgp. This set contained modifications in (1) the number, location, and conformational mobility of hydrogen-bond acceptors; (2) the heteroatom in the xanthylium core; and (3) the size of the substituent in the 9-position of the xanthylium core. Relative specificity for coupling to the distal ATP catalytic site was assessed by ATPase stimulation. We found marked ( approximately 1000-fold) variation in the ATPase specificity constant within the library of TMR analogues. Using established methods involving ADP-Vi trapping by wild-type Pgp and ATP binding by catalytic carboxylate mutant Pgp, these effects can be extended to ATP hydrolysis transition-state stabilization and ATP occlusion at a single site. These data support the idea that drugs trigger the engagement of ATP catalytic site residues necessary for hydrolysis. Further, the nature of the drug binding site and coupling mechanism may be dissected by variation of a drug-like scaffold. These studies may facilitate development of novel competitive inhibitors at the "R" drug site.  相似文献   

6.
The multidrug efflux pump P-glycoprotein (Pgp) couples drug transport to ATP hydrolysis. Previously, using a synthetic library of tetramethylrosamine ( TMR) analogues, we observed significant variation in ATPase stimulation ( V m (D)). Concentrations required for half-maximal ATPase stimulation ( K m (D)) correlated with ATP hydrolysis transition-state stabilization and ATP occlusion (EC 50 (D)) at a single site. Herein, we characterize several TMR analogues that elicit modest turnover ( k cat 相似文献   

7.
Organophosphorus insecticides parathion and methylparathion non-competitively inhibited the activity of (Ca2+ + Mg2+)-ATPase bound to and solubilized from pig erythrocyte membrane. Both enzyme preparations exhibited biphasic substrate curves displaying the existence of two functional active sites with low and high affinity to ATP. Also, the relationship between the activity of bound enzyme and Ca2+ concentration was biphasic. The activity reached maximum at 20 μM then dropped progressively as the Ca2+ concentration was raised. The inhibition of the activity was more pronounced for parathion than for methylparathion and the solubilized enzyme preparation was more affected than the bound one. The inhibition constants (Ki) for parathion for bound enzyme were 55 and 158 μM for high- and low-affinity active sites, respectively; for methylparathion these values equalled 74 and 263 μM, respectively. Ki values for parathion were 36 and 118 μM for solubilized enzyme (high- and low-affinity sites, respectively), for methylparathion −62 and 166 μM, respectively. The magnitude of the effect was greater for a low Ca2+ concentration, which could arise from different conformational states of the enzyme at different calcium concentrations. The results of the experiment suggest that the insecticides inhibited the ATPase by binding to a site on the enzyme rather than by the interaction with associated lipids, although lipids could weaken the action of the compounds due to the strong affinity of organophosphorus insecticides to lipids.  相似文献   

8.
Purified P‐glycoprotein ATPase from Helicoverpa armigera (Ha‐Pgp), reconstituted in proteoliposomes composed of phospholipids and cholesterol, shows higher ATPase activity in the presence of cholesterol than in its absence. The Ha‐Pgp ATPase activity was increased 30–40% with cholesterol. The KM for ATP was found to be 1 and 0.8 mM in the absence and presence of cholesterol, respectively. The insecticide‐stimulated Ha‐Pgp ATPase activity was increased by 10–20% for all the insecticides in the reconstituted proteoliposomes containing cholesterol compared to those with no cholesterol. The effects of cholesterol on KM and Vmax values of insecticide‐stimulated Ha‐Pgp ATPase activity were unrelated to the size of the insecticide. Ha‐Pgp tryptophan fluorescence displayed a red shift of 3 and 8 nm in emission spectra upon binding of insecticides. Cholesterol enhances the interaction of insecticides with Ha‐Pgp. Kd values of different insecticides for binding to Ha‐Pgp were found to be lower in the presence of cholesterol in the proteoliposomes compared to its absence. Results suggest that cholesterol plays a role in the recognition and interaction of insecticides by modulating Ha‐Pgp ATPase and may be involved in efflux of insecticides from cells by the transporter.  相似文献   

9.
A simplified method for the expression and purification of P-glycoprotein (Pgp) is presented. This method is based on the in-frame fusion of both a polyhistidine tail and a 100-amino acid residue biotin acceptor domain of oxaloacetate decarboxylase from Klebsiella pneumoniae at the carboxyl terminus end of Pgp (Pgp-H6BD). The expression/purification protocol for Pgp-H6BD involves high-level expression of the fusion protein in the yeast Pichia pastoris, biotinylation in vitro with biotin ligase, solubilization of crude membrane fractions in detergent, and affinity purification by a combination of nickel and avidin chromatography. Biotinylated Pgp binds to immobilized monomeric avidin and can be eluted with free biotin in a high state of purity. This protocol is rapid and efficient and yields purified Pgp which shows robust ATPase activity, as determined by vanadate-induced trapping of photoactive nucleotides and by direct measurement of ATP hydrolysis by Pgp-H6BD. This method should be useful for structural studies of the protein by spectroscopic or crystallographic approaches. This purified Pgp-H6BD preparation has been used to study the enantiomer-specific effects of inhibitors of Pgp-mediated drug transport on the drug-stimulated ATPase activity of the protein. A series of 1, 4-disubstituted piperazine derivatives with a central chiral carbon and modified at the head and tail groups are shown to stimulate Pgp ATPase activity in a dose-dependent fashion. Some of these compounds are also capable of inhibiting either vinblastine or verapamil stimulation of ATPase activity of Pgp in an enantiomer-specific fashion. The enantiomeric specific inhibitory activity of these compounds suggests complex interactions at a single substrate binding site(s) on Pgp.  相似文献   

10.
Cysteine-free mouse MDR3 P-glycoprotein (Pgp) was constructed by mutagenesis of the nine natural Cys to Ala. The Cys-free protein was expressed in Pichia pastoris and purified. Yield, purity, ATPase activity, K(m)(MgATP), and stimulation of ATPase by verapamil, were similar to wild-type mouse Ppg. Mouse Cys-free Pgp was superior in yield and stability to Cys-free human MDR1 Pgp. Mutants Y1040A and Y1040C were constructed in mouse Cys-free Pgp background. Both showed extremely low ATPase activity, strongly-impaired vanadate-trapping of ADP, and reduced photolabeling by 8-azido-ATP. The results are consistent with the conclusion that Tyr-1040 is located in the MgATP-binding site in NBD2 and is required for correct binding and/or orientation of bound MgATP substrate in Pgp as previously suggested by X-ray structures of other ABC transporters and by sequencing of photolabeled Pgp. The results also support our previous conclusion that both catalytic sites must be intact for normal function in Pgp.  相似文献   

11.
Ivermectin is a potent antiparasitic drug from macrocyclic lactone (ML) family, which interacts with the ABC multidrug transporter P-glycoprotein (Pgp). We studied the interactions of ivermectin with the multidrug resistance proteins (MRPs) by combining cellular and subcellular approaches. The inhibition by ivermectin of substrate transport was measured in A549 cells (calcein or 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein, BCECF) and in HL60-MRP1 (calcein). Ivermectin induced calcein and BCECF retention in A549 cells (IC(50) at 1 and 2.5microM, respectively) and inhibited calcein efflux in HL60-MRP1 (IC(50)=3.8microM). The action of ivermectin on the transporters ATPase activity was followed on membranes from Sf9 cells overexpressing human Pgp, MRP1, 2 or 3. Ivermectin inhibited the Pgp, MRP1, 2 and 3 ATPase activities after stimulation by their respective activators. Ivermectin showed a rather good affinity for MRPs, mainly MRP1, in the micromolar range, although it was lower than that for Pgp. The transport of BODIPY-ivermectin was followed in cells overexpressing selectively Pgp or MRP1. In both cell lines, inhibition of the transporter activity induced intracellular retention of BODIPY-ivermectin. Our data revealed the specific interaction of ivermectin with MRP proteins, and its transport by MRP1. Although Pgp has been considered until now as the sole active transporter for this drug, the MRPs should be taken into account for the transport of ivermectin across cell membrane, modulating its disposition in addition to Pgp. This could be of importance for optimizing clinical efficacy of ML-based antiparasitic treatments. This offers fair perspectives for the use of ivermectin or non-toxic derivatives as multidrug resistance-reversing agents.  相似文献   

12.
Natural products represent the fourth generation of multidrug resistance (MDR) reversal agents that resensitize MDR cancer cells overexpressing P-glycoprotein (Pgp) to cytotoxic agents. We have developed an effective synthetic route to prepare various Strychnos alkaloids and their derivatives. Molecular modeling of these alkaloids docked to a homology model of Pgp was employed to optimize ligand–protein interactions and design analogues with increased affinity to Pgp. Moreover, the compounds were evaluated for their (1) binding affinity to Pgp by fluorescence quenching, and (2) MDR reversal activity using a panel of in vitro and cell-based assays and compared to verapamil, a known inhibitor of Pgp activity. Compound 7 revealed the highest affinity to Pgp of all Strychnos congeners (Kd = 4.4 μM), the strongest inhibition of Pgp ATPase activity, and the strongest MDR reversal effect in two Pgp-expressing cell lines. Altogether, our findings suggest the clinical potential of these synthesized compounds as viable Pgp modulators justifies further investigation.  相似文献   

13.
The influence of P-glycoprotein (ABCB1) in drug resistance as well as drug absorption and disposition is an important factor to be considered during the development of new drugs. Thus, the early identification and exclusion of compounds showing a high affinity towards P-glycoprotein can help to select drug candidates. The aim of our study was to implement a label-free assay for the identification of P-glycoprotein substrates in living cells. For this approach, a multiparametric, chip-based sensor system was used to determine extracellular acidification, cell respiration and adhesion upon stimulation with P-glycoprotein substrates. Using L-MDR1 cells, a human P-glycoprotein overexpressing cell line, the influence of P-glycoprotein activity was determined for seven different compounds, demonstrating the applicability of the system for P-glycoprotein substrate identification. Effects were concentration dependent, as shown for the P-glycoprotein substrate verapamil, and were associated with cellular acidification and respiration. P-glycoprotein ATPase activation by verapamil could be described by a Michaelis-Menten type kinetic profile showing saturation at high substrate concentrations. The Michaelis-Menten constants K(M) were determined to be 0.92μM (calculated based on extracellular acidification) and 4.9μM (calculated based on cellular respiration). Control experiments using 100nM of the P-glycoprotein inhibitor elacridar indicated that the observed effects were related to P-glycoprotein ATPase activity. In contrast, wild-type LLC-PK1 cells not expressing P-glycoprotein were not responsive towards stimulation with different P-glycoprotein substrates. Summarizing these findings, the used microsensor system is a generic system suitable for the identification of P-glycoprotein substrates. In contrast to biochemical P-glycoprotein assays, activation of the drug efflux pump can be monitored on-line in living cells to identify P-glycoprotein substrates and to study the molecular mechanisms of adenosintriphosphate-dependent active transport.  相似文献   

14.
P-glycoprotein (Pgp, ABCB1) is an ATP-Binding Cassette (ABC) transporter that is associated with the development of multidrug resistance in cancer cells. Pgp transports a variety of chemically dissimilar amphipathic compounds using the energy from ATP hydrolysis. In the present study, to elucidate the binding sites on Pgp for substrates and modulators, we employed site-directed mutagenesis, cell- and membrane-based assays, molecular modeling and docking. We generated single, double and triple mutants with substitutions of the Y307, F343, Q725, F728, F978 and V982 residues at the proposed drug-binding site with cys in a cysless Pgp, and expressed them in insect and mammalian cells using a baculovirus expression system. All the mutant proteins were expressed at the cell surface to the same extent as the cysless wild-type Pgp. With substitution of three residues of the pocket (Y307, Q725 and V982) with cysteine in a cysless Pgp, QZ59S-SSS, cyclosporine A, tariquidar, valinomycin and FSBA lose the ability to inhibit the labeling of Pgp with a transport substrate, [125I]-Iodoarylazidoprazosin, indicating these drugs cannot bind at their primary binding sites. However, the drugs can modulate the ATP hydrolysis of the mutant Pgps, demonstrating that they bind at secondary sites. In addition, the transport of six fluorescent substrates in HeLa cells expressing triple mutant (Y307C/Q725C/V982C) Pgp is also not significantly altered, showing that substrates bound at secondary sites are still transported. The homology modeling of human Pgp and substrate and modulator docking studies support the biochemical and transport data. In aggregate, our results demonstrate that a large flexible pocket in the Pgp transmembrane domains is able to bind chemically diverse compounds. When residues of the primary drug-binding site are mutated, substrates and modulators bind to secondary sites on the transporter and more than one transport-active binding site is available for each substrate.  相似文献   

15.
The P-glycoprotein multidrug transporter (Pgp; ABCB1) is an ATP-binding cassette (ABC) protein that has been implicated in the multidrug resistance of human cancers. Pgp couples ATP hydrolysis to active extrusion from the cell of a broad array of amphipathic compounds via an ill-defined mechanism. Substrates are believed to interact with Pgp within the membrane. Reconstituted Pgp functions as an ATP-dependent flippase for a variety of fluorescently labelled membrane lipids. The protein may also function as a drug 'flippase', moving its substrates from the inner to the outer leaflet of the bilayer. We show that lipid-based anti-cancer drugs, such as miltefosine, and signaling molecules, such as platelet-activating factors, bind saturably to Pgp with Kd values in the low micromolar range, and modulate its ATPase activity. These compounds also inhibit Pgp-mediated flipping of fluorescent lipids and transport of Hoechst 33342 and tetramethylrosamine, which occupy different subsites in the drug-binding pocket. Bacterial lipid A modulates Pgp ATPase activity, and glycolipid flipping is inhibited by unlabelled glucosylceramide, suggesting that these lipids also interact with the transporter. These results indicate that Pgp treats a variety of lipid-based molecules as substrates, and likely interacts with lipids and drugs in the same manner.  相似文献   

16.
P-glycoprotein (Pgp) is a drug-translocating ATPase responsible for multidrug resistance in cancer. Although it is well-established that Pgp exhibits drug-dependent ATPase and ATP-dependent drug transport functions, the mechanism by which these two reactions are coupled remains unclear. We have shown recently that proteolytic cleavage of the linker region, which joins the NH2 and COOH halves of the Pgp molecule, results in a Pgp form that exhibits drug-independent and -dependent ATPase activities (Nuti et al., (2000) Biochemistry 39, 3424-3432; Nuti, S. L., and Rao, U. S. (2002) J. Biol. Chem. 277, 29417-29423). To understand the mechanism underlying this phenomenon, we used the procedure of vanadate-mediated trapping of the Pgp transport cycle intermediates to determine the steps in the catalytic cycle that are being regulated by the linker region. We show that vanadate stably traps Pgp under two different conditions, one in the presence of ATP alone and the other in the presence of ATP and drug, suggesting the existence of two Pgp conformations. These two conformations, one mediating basal and the other drug-stimulated ATPase reactions, represent different transport cycle intermediates of Pgp, because arresting Pgp in either conformation prevents the catalytic cycle from proceeding to completion. The results also show that these two conformations are uncoupled and appear simultaneously in Pgp that was cleaved in the linker region. These results together suggest that Pgp assumes at least two distinct conformational states, which catalyze two ATP hydrolysis events in the drug transport cycle, and the linker region mediates the transition between these two states of Pgp.  相似文献   

17.
In vitro studies of multidrug-resistant cell lines have shown that a membrane protein, the P-glycoprotein, is responsible for resistance to a wide range of structurally and functionally dissimilar anti-cancer drugs. The amino-acid sequence of P-glycoprotein (Pgp) indicates two consensus sequences for ATP binding and the purified protein has been reported to possess a low level of ATPase activity. As part of our goal to further characterize the ATPase activity of P-glycoprotein, we have developed a procedure for rapid partial purification of the protein in a highly active form. Plasma membrane vesicles from multidrug-resistant CHRC5 Chinese hamster ovary cells were subjected to a two-step procedure involving selective extraction with different concentrations of the zwitterionic detergent CHAPS. The resulting extract was enriched in P-glycoprotein (around 30% pure) and displayed an ATPase activity (specific activity 543 nmol mg-1 min-1) that was not found in a similar preparation from drug-sensitive cells. The ATPase specific activity was over 10-fold higher than that previously reported for immunoprecipitated Pgp and 280-fold higher than that of immunoaffinity-purified Pgp. This ATPase activity could be distinguished from that of other ion-motive ATPases and membrane-associated phosphatases and is, thus, proposed to be directly attributable to P-glycoprotein. Optimal P-glycoprotein ATPase activity required Mg2+ at an ATP: Mg2+ molar ratio of 0.75:1 and the apparent Km for ATP was 0.88 mM. P-Glycoprotein ATPase could be completely inhibited by vanadate and by the sulfhydryl-modifying reagents N-ethylmaleimide, HgCl2 and p-chloromercuribenzenesulfonate. Certain drugs and chemosensitizers, including colchicine, progesterone, nifedipine, verapamil and trifluoperazine, produced up to 50% activation of P-glycoprotein ATPase activity.  相似文献   

18.
Three major curcuminoids (I, II and III) were purified from turmeric and tested for their ability to modulate the function of P-glycoprotein ATPase of the insecticide-resistant pest Helicoverpa armigera (Ha-Pgp). The curcumin mixture inhibited the activity of Ha-Pgp ATPase by 80–90% at 100 μM concentration. Along with curcuminoids I, II and III, it inhibited the verapamil- and ethylparaoxon-stimulated Ha-Pgp ATPase activity. Curcuminoid binding was quantitated by quenching the intrinsic Trp fluorescence of purified Ha-Pgp ATPase. Transport was monitored in proteoliposomes containing Ha-Pgp ATPase using the high-affinity fluorescent substrate tetramethylrosamine (TMR) in real time. Addition of the curcuminoid mixture collapsed the TMR concentration gradient generated by Ha-Pgp ATPase. Inhibition studies on Ha-Pgp ATPase activity are important to develop strategies to overcome insecticide resistance in this pest.  相似文献   

19.
Given the widespread use of formulations combining anthelmintics which are possible P-glycoprotein interfering agents, the understanding of drug interactions with efflux ABC transporters is of concern for improving anthelmintic control. We determined the ability of 14 anthelmintics from different classes to interact with abcb1a (mdr1a, P-glycoprotein, Pgp) by following the intracellular accumulation of rhodamine 123 (Rho 123), a fluorescent Pgp substrate, in LLC-PK1 cells overexpressing Pgp. The cytotoxicity of the compounds that are able to interfere with Pgp activity was evaluated in cells overexpressing Pgp and compared with parental cells using the MTS viability assay. Among all the anthelmintics used, ivermectin (IVM), triclabendazole (TCZ), triclabendazole sulfoxide (TCZ-SO), closantel (CLOS) and rafoxanide (RAF) increased the intracellular Rho 123 in Pgp overexpressing cells, while triclabendazole sulfone, albendazole, mebendazole, oxfendazole, thiabendazole, nitroxynil, levamisole, praziquantel and clorsulon failed to have any effect. The concentration needed to reach the maximal Rho 123 accumulation (Emax) was obtained with 10 μM for IVM, 80 μM for CLOS, 40 μM for TCZ and TCZ-SO, and 80 μM for RAF. We showed that for these five drugs parental cell line was more sensitive to drug toxicity compared with Pgp recombinant cell line.Such in vitro approach constitutes a powerful tool to predict Pgp–drug interactions when formulations combining several anthelmintics are administered and may contribute to the required optimization of efficacy of anthelmintics.  相似文献   

20.
Characterization and functional reconstitution of the multidrug transporter   总被引:2,自引:0,他引:2  
P-Glycoprotein, the multidrug transporter, is isolated from the plasma membrane of CHRC5 cells using a selective two-step detergent extraction procedure. The partially purified protein displays a high level of ATPase activity, which has a highK M for ATP, is stimulated by drugs, and can be distinguished from that of other membrane ATPases by its unique inhibition profile. Delipidation completely inactivates ATPase activity, which is restored by the addition of fluid lipid mixtures. P-Glycoprotein was reconstituted into lipid bilayers with retention of both drug transport and ATPase activity. Proteoliposomes containing P-glycoprotein display osmotically sensitive ATP-dependent accumulation of3H-colchicine in the vesicle lumen. Drug transport is active, generating a stable 5.6-fold concentration gradient, and can be blocked by compounds in the multidrug resistance spectrum. Reconstituted P-glycoprotein also exhibits a high level of ATPase activity which is further stimulated by various drugs. P-Glycoprotein therefore functions as an active drug transporter with constitutive ATPase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号