首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
100-ns molecular dynamics simulations of fluid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers, both pure and containing 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) acyl-chain labeled fluorescent analogs (C6-NBD-PC and C12-NBD-PC), are described. These molecules are widely used as probes for lipid structure and dynamics. The results obtained here for pure DPPC agree with both experimental and theoretical published works. We verified that the NBD fluorophore of both derivatives loops to a transverse location closer to the interface than to the center of the bilayer. Whereas this was observed previously in experimental literature works, conflicting transverse locations were proposed for the NBD group. According to our results, the maximum of the transverse distribution of NBD is located around the glycerol backbone/carbonyl region, and the nitro group is the most external part of the fluorophore. Hydrogen bonds from the NH group of NBD (mostly to glycerol backbone lipid O atoms) and to the nitro O atoms of NBD (from water OH groups) are continuously observed. Rotation of NBD occurs with approximately 2.5-5 ns average correlation time for these probes, but very fast, unresolved reorientation motions occur in <20 ps, in agreement with time-resolved fluorescence anisotropy measurements. Finally, within the uncertainty of the analysis, both probes show lateral diffusion dynamics identical to DPPC.  相似文献   

2.
We present a combined theoretical (molecular dynamics, MD) and experimental (differential scanning calorimetry, DSC) study of the effect of 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) acyl chain-labeled fluorescent phospholipid analogs (C6-NBD-PC and C12-NBD-PC) on 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) bilayers. DSC measurements reveal that < 1 mol% of NBD-PC causes elimination of the pre-transition and a large loss of cooperativity of the main transition of DPPC. Labeling with C6-NBD-PC or C12-NBD-PC shifts the main transition temperature to lower or higher values, respectively. Following our recent report on the location and dynamics of these probes (BBA 1768 (2007) 467-478) in fluid phase DPPC, we present a detailed analysis of 100-ns MD simulations of systems containing either C6-NBD-PC or C12-NBD-PC, focused on their influence on several properties of the host bilayer. Whereas most monitored parameters are not severely affected for 1.6 mol% of probe, for the higher concentration studied (6.2 mol%) important differences are evident. In agreement with published reports, we observed that the average area per phospholipid molecule increases, whereas DPPC acyl chain order parameters decrease. Moreover, we predict that incorporation of NBD-PC should increase the electrostatic potential across the bilayer and, especially for C12-NBD-PC, slow lateral diffusion of DPPC molecules and rotational mobility of DPPC acyl chains.  相似文献   

3.
Location and dynamic reorientation of the fluorophore 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) covalently attached to a short (C6) or a long (C12) sn2 acyl chain of a phosphatidylcholine molecule was investigated by fluorescence and solid-state NMR spectroscopy. 2H NMR lipid chain order parameters indicate a perturbation of the phospholipid packing density in the presence of NBD. Specifically, a decrease of molecular order was found for acyl chain segments of the lower, more hydrophobic region. Molecular collision probabilities determined by 1H magic angle spinning nuclear Overhauser enhancement spectroscopy indicate a highly dynamic reorientation of the probe in the membrane due to thermal fluctuations. A broad distribution of the fluorophore in the lipid bilayer is observed with a preferential location in the upper acyl chain/glycerol region. The distribution of the NBD group in the membrane is quite similar for both the long- and the short-chain analog. However, a slight preference of the NBD group for the lipid-water interface is found for C12-NBD-PC in comparison with C6-NBD-PC. Indeed, as shown by dithionite fluorescence assay, the long-chain analog reacts more favorably with dithionite, indicating a better accessibility of the probe by dithionite present in the aqueous phase. Forces determining the location of the fluorophore in the lipid water interface are discussed.  相似文献   

4.
Nitro-2,1,3-benzoxadiazol-4-yl (NBD) group is a widely used, environment-sensitive fluorescent probe. The negatively charged dithionite rapidly reduces the accessible NBD-labeled lipids in liposomes to their corresponding nonfluorescent derivatives. In this study both the phospholipid headgroup and acyl chain NBD-labeled L-alpha-1,2-dipalmitoyl-sn-glycero-3-phospho-[N-(4-nitrobenz-2-oxa-1,3-diazole)-ethanolamine] (DPPN) and 1-acyl-2-[12-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-sn-glycero-3-phosphocholine (NBD-PC), respectively, were employed. The correlation of both the rate coefficient k(1) of the redox reaction and the fluorescence properties of the two probes with the membrane dipole potential Psi in fluid dipalmitoylglycerophosphocholine (DPPC) liposomes is demonstrated. When Psi of the bilayer was varied (decreased by phloretin or increased by 6-ketocholestanol), the value for k1 decreased for both DPPN and NBD-PC with increasing Psi. For both fluorophores a positive correlation to Psi was evident for the relative fluorescence emission intensity (RFI, normalized to the emission of the fluorophore in a DPPC matrix). The relative changes in emission intensity as a function of Psi were approximately equal for both NBD derivatives. Changes similar to those caused by phloretin were seen when dihexadecylglycerophosphocholine (DHPC) was added to DPPC liposomes, in keeping with the lower dipole potential for the former lipid compound compared with DPPC. These effects of Psi on NBD fluorescence should be taken into account when interpreting data acquired using NBD-labeled lipids as fluorescent probes.  相似文献   

5.
Steady-state and time-resolved fluorescence properties of the 7-nitrobenz-2-oxa-1, 3-diazole-4-yl (NBD) fluorophore attached either to the sn-2 acyl chain of various phospholipids (phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and phosphatidic acid) or to the polar headgroup of phosphatidylethanolamine were studied after insertion of these NBD-labeled lipid probes into unilamellar vesicles of phosphatidylcholine, phosphatidylglycerol, phosphatidic acid, and phosphatidylserine. The fluorescence response of the NBD group was observed to strongly depend on the chemical structure and physical state of the host phospholipids and on the chemical structure of the lipid probe itself. Among the various fluorescence parameters studied, i.e., Stokes' shifts, lifetimes, and quantum yields, the quantum yields were by far the most affected by these structural and environmental factors, whereas the Stokes' shifts were practically unaffected. Thus, depending on the phospholipid probe and the host phospholipid, the fluorescence emission of the NBD group was found to vary by a factor of up to 5. Careful analysis of the data shows that for the various couples of probe and host lipid molecules studied, deexcitation of the fluorophore was dominated by nonradiative deactivation processes. This great sensitivity of the NBD group to environmental factors originates from its well-known solvatochromic properties, and comparison of these knr values with those obtained for n-propylamino-NBD in a set of organic solvents covering a large scale of polarity indicates that in phospholipids, the NBD fluorophore experiences a dielectric constant of around 27-41, corresponding to a medium of relatively high polarity. From these epsilon values and on the basis of models of the dielectric transition that characterizes any water-phospholipid interface, it can be inferred that for all of the phospholipid probes and host phospholipids tested, the NBD group is located in the region of the polar headgroups, near the phosphoglycerol moiety of the lipids.  相似文献   

6.
The distribution of 1H-pyrrolo[3,2-h]quinoline (PQ), 11H-dipyrido[2,3-a]carbazole (PC) and 7-azaindole (7AI) at a water/membrane interface has been investigated by molecular dynamics (MD) simulations. The MD study focused on favorable binding sites of the azaaromatic probes across a dipalmitoylphosphatidylcholine (DPPC) bilayer. Our simulations show that PQ and PC are preferably accommodated at the hydrocarbon core of the bilayer below the glycerol moiety. In addition, it is found that the hydrophobic aromatic parts of the probes are located inside a more ordered region of DPPC, consisting of hydrophobic lipid chains. In contrast to PQ and PC, 7AI is characterized by a broad distribution between a DPPC interface and water, so that the three preferable binding sites are found across a water/membrane interface. It is found that in the sequence 7AI-PQ-PC, due to the increase of the number of aromatic rings and, hence, the hydrophobic character of the probes, the depth of the probe localization is gradually shifted deeper inside the hydrocarbon core of the bilayer. We found that the probe-lipid hydrogen-bonding contributes weakly to the favorable localizations of the azaaromatic probes inside the DPPC bilayer, so that the probe localization is mainly driven by electrostatic dipole-dipole and van der Waals interactions.  相似文献   

7.
Agents capable of scavenging ROS have attracted attention recently because of their potential use as antioxidative agents. Amifostine, a ROS scavenger, has the potential to be used as an antioxidant in therapeutic applications. In this study, the effect of amifostine on neutral zwitterionic dipalmitoylphosphatidylcholine (DPPC) and anionic dipalmitoylphosphatidylglycerol (DPPG) model membranes' structure and dynamics is aimed to be examined by Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). Our results revealed that amifostine at concentrations used (1–24 mol%) does not induce any important alteration in the shape of phase transition curve and phase transition temperature in the DPPC and DPPG membranes. High concentrations of amifostine slightly increased the acyl chain flexibility of DPPC membranes in the liquid crystalline phase and DPPG membranes in the gel phase. A lessening in the dynamics of DPPC liposomes was observed for all concentrations of amifostine in both phases but slight dual effect was observed only in the gel phase as a decrease in dynamics at low concentrations and an increase at higher concentrations of amifostine in DPPG liposomes. Additionally, strong hydrogen bonding was observed for both CO and PO2 groups in case of DPPC and for PO2 groups in case of DPPG. Dehydration around the CO regions occurred in case of DPPG. Accordingly, amifostine is proposed to be interacting strongly with zwitterionic and negatively charged membrane head groups and glycerol backbone in all concentrations and because of this interaction it causes some changes in lipid order and dynamics especially at high concentrations.  相似文献   

8.
We investigate the interaction between dipalmitoylphosphatidylcholine (DPPC) and a nitroxide spin label in order to understand its influences on lipid structure and dynamics using molecular dynamics simulations. The system was modified by covalently attaching nitroxide spin labels to the headgroups of two DPPC molecules. (S-(2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)methyl methanesulfonothioate) (MTSL) was used as the spin label. The label position and dynamics were analyzed as was the impact of the modified DPPC on the structure of the surrounding lipids. The modified DPPC molecules locate closer to the center of the membrane than unmodified DPPC molecules. The rotation of the spin label is unrestricted, but there are favored orientations. MTSL depresses the deuterium order parameters of the carbon atoms close to the headgroup in surrounding DPPC molecules. The spin label has no impact on order parameters of carbon atoms at the end of the lipid tails. The lateral diffusion constant of the modified DPPC is indistinguishable from unmodified DPPC molecules. These novel computational results suggest an experimental validation.  相似文献   

9.
Lipids that are labeled with the NBD (7-nitrobenz-2-oxa-1,3-diazol-4-yl) group are widely used as fluorescent analogues of native lipids in biological and model membranes to monitor a variety of processes. NBD-labeled lipids have previously been used to monitor the organization and dynamics of molecular assemblies such as membranes, micelles and reverse micelles utilizing the wavelength-selective fluorescence approach. In this paper, we have characterized the organization and dynamics of various NBD-labeled lipids using red edge excitation shift (REES) and other fluorescence approaches which include analysis of membrane penetration depths of the NBD group using the parallax method. We show here that the environment and location experienced by the NBD group of the NBD-labeled lipids could depend on the ionization state of the lipid. This could have potentially important implications in future studies involving NBD-labeled lipids as tracers in a cellular context.  相似文献   

10.
To investigate the effect of fluorescent probe on the properties of membranes, we studied model membranes composed of 1,2- dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1-palmitoyl 2-oleoyl-sn-glycero-3-phosphocholine (POPC) in the presence and absence of fluorescent probe. The morphology of giant unilamellar vesicles (GUVs) has been observed as a function of temperature and composition by fluorescence microscopy using NBD-DOPE or C6-NBD-PC as the probe. The phase behavior of model membranes containing no fluorescent probe was investigated by 2H-NMR spectroscopy. We found that the bright phase observed on GUVs was the fluid phase enriched in POPC and the dark phase was the gel phase enriched in DPPC. NBD-DOPE and C6-NBD-PC preferentially participated in the fluid-phase domains when GUVs were in the gel?+?fluid phase coexistence. Inclusion of both fluorescent probes (1?mol%) lowered the transition temperature of POPC/DPPC membranes. In addition, C6-NBD-PC exhibited a stronger effect than NBD-DOPE, which was considered to be associated with the structures of fluorescent molecules.  相似文献   

11.
A series of cholesterol (Chol) probes with NBD and Dansyl fluorophores attached to the 3-hydroxyl position via carbamate linkers has been designed and synthesized and their ability to mimic the behavior of natural cholesterol in bilayer membranes has been examined. Fluorescence spectroscopy data indicate that the NBD-labeled lipids are located in the polar headgroup region of the bilayer with their position varying with the method of fluorophore attachment and the linker length. The partitioning of the Chol probes between liquid-ordered (Lo) and liquid-disordered (Lo) phases in supported bilayers prepared from ternary lipid mixtures of DOPC, Chol and either egg sphingomyelin or DPPC was examined by fluorescence microscopy. The carbamate-linked NBD-Chols show a stronger preference for partitioning into Lo domains than does a structurally similar probe with an ester linkage, indicating the importance of careful optimization of probe and linker to provide the best Chol mimic. Comparison of the partitioning of NBD probes to literature data for native Chol indicates that the probes reproduce well the modest enrichment of Chol in Lo domains as well as the ceramide-induced displacement of Chol. One NBD probe was used to follow the dynamic redistribution of Chol in phase separated membranes in response to in situ ceramide generation. This provides the first direct optical visualization of Chol redistribution during enzymatic ceramide generation and allows the assignment of new bilayer regions that exclude dye and have high lateral adhesion to ceramide-rich regions.  相似文献   

12.
The thermotropic phase behavior of aqueous dispersions of dipalmitoylphosphatidylcholine (DPPC) and its 1,2-dialkyl, 1-acyl 2-alkyl and 1-alkyl 2-acyl analogs was examined by differential scanning calorimetry, and the organization of these molecules in those hydrated bilayers was studied by Fourier transform infrared spectroscopy. The calorimetric data indicate that substitution of either or both of the acyl chains of DPPC with the corresponding ether-linked hydrocarbon chain results in relatively small increases in the temperature (< 4 degrees C) and enthalpy (< 1 kcal/mol) of the lipid chain-melting phase transition. The spectroscopic data reveal that replacement of one or both of the ester-linked hydrocarbon chains of DPPC with its ether-linked analog causes structural changes in the bilayer assembly, which result in an increase in the polarity of the local environments of the phosphate headgroups and of the ester carbonyl groups at the bilayer polar/apolar interface. The latter observation is unexpected, given that ester linkages are considered to be intrinsically more polar that ether linkages. This finding cannot be satisfactorily rationalized unless the conformation of the glycerol backbones of the analogs containing ether-linked hydrocarbon chains differs significantly from that of diacyl glycerolipids such as DPPC. A comparison of the alpha-methylene scissoring bands and the methylene wagging band progressions of these lipids with the corresponding absorption bands of specifically chain-perdeuterated analogs of DPPC also supports the conclusion that replacement of the ester-linked hydrocarbon chains of DPPC with the corresponding ether-linked analog induces conformational changes in the lipid glycerol backbone. The suggestion that the conformation of glycerol backbones in the alkyl-acyl and dialkyl derivatives of DPPC differs from that of the naturally occurring 1,2-diacyl glycerolipid suggests that mono- and di-alkyl glycerolipids may not be good models of their diacyl analogs. These results, and previously published evidence that DPPC analogs with ether-linked hydrocarbon chains spontaneously form chain-interdigitated gel phases at low temperatures, clearly indicate that the properties of lipid bilayers can be substantially altered by small changes in the chemical structures of their polar/polar interfaces, and highlight the critical role of the interfacial region as a determinant of the structure and organization of lipid assemblies.  相似文献   

13.
The spectroscopic and ionization properties of various lipids labeled with the 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) group have been studied in model membranes using fluorescence, absorbance and electrophoretic mobility measurements. Electrophoretic measurements show that the NBD group is uncharged at neutral pH. However, at high pH, hydroxyl addition or deprotonation occurs with a pKa, depending upon conditions, of 11.5-11.8 for the NBD group of headgroup-labeled phosphatidylethanolamine (NBD-PE) and 11.1-11.5 for NBD labels placed at the end of one fatty acyl chain of a phosphatidylcholine (6-NBD-PC and 12-NBD-PC). This type of behavior is not observed in the case of a methylated NBD label placed in the flexible 'tail' of cholesterol (NBD-cholesterol). The similarity in pKa for NBD-PE and NBD-PCs suggests that in these cases the NBD group is at a similar depth in the membrane. This was examined further by comparison of the fluorescence emission maximum of the NBD group in model membranes with that in solvents of varying polarity. The apparent polarity experienced by NBD groups in model membranes indicates that for NBD-PE and 12-NBD-PC they are located at the polar region whereas the NBD group of NBD-cholesterol is deeply buried in a nonpolar region of the membrane. This conclusion is supported further by fluorescence quenching experiments measuring NBD exposure to the aqueous quencher Co2+. The results of this study confirm the tentative conclusions of our previous fluorescence quenching studies on the location of NBD groups in model membranes.  相似文献   

14.
13C-NMR spectra have been obtained at 50.3 MHz for monoarachidoylphosphatidylcholine (MAPC) and dipalmitoylphosphatidylcholine (DPPC) dispersions from 25 degrees C to 55 degrees C and for DPPC polycrystals at 25 degrees C using the cross polarization/magic angle spinning technique. Differential scanning calorimetric studies on DPPC and MAPC dispersions show comparable lipid phase transitions with transition temperatures at 41 degrees C and 45 degrees C, respectively, and thus enable the comparison of thermal, structural and dynamic differences between these two systems at corresponding temperatures. Conformational-dependent 13C chemical shift studies on DPPC dispersions demonstrate not only the coexistence of the tilted gel (L beta') and liquid-crystalline (L alpha) phases in the rippled gel (P beta') phase, but also the presence of an intermediate third microscopic phase as evidenced by three resolvable peaks for omega - 1 methylene carbon signals at the temperature interval between Tp and Tm. By comparing chemical shifts of MAPC in the hydrocarbon chain region with those of DPPC at similar reduced temperatures, it can be concluded that the packings are perturbed markedly in the middle segment of the fatty acyl chain during the lamellar to micellar transition. However, terminal methylene and methyl groups of interdigitated MAPC lamellae were found to be more ordered than those of non-interdigitated DPPC bilayers in the gel state. Interestingly, the terminal methyl groups of MAPC in the micelles remain to be relatively ordered; in fact, they are more ordered than the corresponding acyl chain end of DPPC in the liquid-crystalline state. Analysis of data obtained from rotating frame proton spin-lattice relaxation measurements shows a highly mobile phosphocholine headgroup, a rigid carbonyl group and an ordered hydrocarbon chain for lamellar MAPC in the interdigitated state. Furthermore, results suggest that free rotations of the glycerol C2-C3 bond within MAPC molecules may occur in the interdigitated bilayer, whereas intramolecular exchange between two conformations of the glycerol backbone in DPPC become possible at temperatures close to the pretransition temperature. Without isotope enrichment, we conclude that high-resolution solid-state 13C-NMR is indeed a useful technique which can be employed to study the packing and dynamics of phospholipids.  相似文献   

15.
Quantitative structures were obtained for the fully hydrated fluid phases of dioleoylphosphatidylcholine (DOPC) and dipalmitoylphosphatidylcholine (DPPC) bilayers by simultaneously analyzing x-ray and neutron scattering data. The neutron data for DOPC included two solvent contrasts, 50% and 100% D2O. For DPPC, additional contrast data were obtained with deuterated analogs DPPC_d62, DPPC_d13, and DPPC_d9. For the analysis, we developed a model that is based on volume probability distributions and their spatial conservation. The model's design was guided and tested by a DOPC molecular dynamics simulation. The model consistently captures the salient features found in both electron and neutron scattering density profiles. A key result of the analysis is the molecular surface area, A. For DPPC at 50°C A = 63.0 Å2, whereas for DOPC at 30°C A = 67.4 Å2, with estimated uncertainties of 1 Å2. Although A for DPPC agrees with a recently reported value obtained solely from the analysis of x-ray scattering data, A for DOPC is almost 10% smaller. This improved method for determining lipid areas helps to reconcile long-standing differences in the values of lipid areas obtained from stand-alone x-ray and neutron scattering experiments and poses new challenges for molecular dynamics simulations.  相似文献   

16.
We have determined the average location and dynamic reorientation of the fluorophore 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD) attached to a C12 sn-2 chain of a phosphatidylserine (PS) analogue (C12-NBD-PS) in zwitterionic phosphatidylcholine (PC) and negatively charged phosphatidylserine (PS) host membranes. (1)H magic angle spinning nuclear Overhauser enhancement spectroscopy indicates a highly dynamic reorientation of the aromatic molecule in the membrane. The average location of NBD is characterized by a broad distribution function along the membrane director with a maximum indicating the location of the probe in the lipid/water interface of the lipid membrane. This behavior can be explained by a backfolding of the sn-2 chain towards the aqueous phase. Small differences in the distribution profiles of the NBD group along the membrane normal between PC and PS host membranes were found: in a PC host membrane, the NBD distribution has its maximum in the glycerol region; in a PS host membrane, NBD resides mostly in the upper chain region. These differences may be accounted for by packing differences in the PC versus PS host membranes. As seen by (2)H NMR order parameters, PS bilayers show a much higher packing density compared to PC membranes. Consequently, backfolding of the sn-2 chain with the NBD group attached causes a larger decrease of molecular order of the sn-1 chain in PS than in PC membranes. The broad distributions obtained for lipid chain attached NBD molecules reflect the motional freedom and molecular disorder in the liquid-crystalline lipid membrane.  相似文献   

17.
Successful use of fluorescence sensing in elucidating the biophysical properties of lipid membranes requires knowledge of the distribution and location of an emitting molecule in the bilayer. We report here that 2,6-bis(1H-benzimidazol-2-yl)pyridine (BBP), which is almost non-fluorescent in aqueous solutions, reveals a strong emission enhancement in a hydrophobic environment of a phospholipid bilayer, making it interesting for fluorescence probing of water content in a lipid membrane. Comparing the fluorescence behavior of BBP in a wide variety of solvents with those in phospholipid vesicles, we suggest that the hydrogen bonding interactions between a BBP fluorophore and water molecules play a crucial role in the observed “light switch effect”. Therefore, the loss of water-induced fluorescence quenching inside a membrane are thought to be due to deep penetration of BBP into the hydrophobic, water-free region of a bilayer. Characterized by strong quenching by transition metal ions in solution, BBP also demonstrated significant shielding from the action of the quencher in the presence of phospholipid vesicles. We used the increase in fluorescence intensity, measured upon titration of probe molecules with lipid vesicles, to estimate the partition constant and the Gibbs free energy (ΔG) of transfer of BBP from aqueous buffer into a membrane. Partitioning BBP revealed strongly favorable ΔG, which depends only slightly on the lipid composition of a bilayer, varying in a range from − 6.5 to − 7.0 kcal/mol. To elucidate the binding interactions of the probe with a membrane on the molecular level, a distribution and favorable location of BBP in a POPC bilayer were modeled via atomistic molecular dynamics (MD) simulations using two different approaches: (i) free, diffusion-driven partitioning of the probe molecules into a bilayer and (ii) constrained umbrella sampling of a penetration profile of the dye molecule across a bilayer. Both of these MD approaches agreed with regard to the preferred location of a BBP fluorophore within the interfacial region of a bilayer, located between the hydrocarbon acyl tails and the initial portion of the lipid headgroups. MD simulations also revealed restricted permeability of water molecules into this region of a POPC bilayer, determining the strong fluorescence enhancement observed experimentally for the membrane-partitioned form of BBP.  相似文献   

18.
The morphology of q = 0.5 fast-tumbling bicelles prepared with three different acyl chain lengths has been investigated by NMR. It is shown that bicelles prepared with DLPC (12 C) and DHPC are on average larger than those containing DMPC or DPPC (14 and 16 C) and DHPC, which may be due to a higher degree of mixing between DLPC and DHPC. The fast internal mobility of the lipids was determined from natural abundance carbon-13 relaxation. A similar dynamical behaviour of the phospholipids in the three different bicelles was observed, although the DPPC lipid acyl chain displayed a somewhat lower degree of mobility, as evidenced by higher generalized order parameters throughout the acyl chain. Carbon-13 relaxation was also used to determine the effect of different model transmembrane peptides, with flanking Lys residues, on the lipid dynamics in the three different bicelles. All peptides had the effect of increasing the order parameters for the DLPC lipid, while no effect was observed on the longer lipid chains. This effect may be explained by a mismatch between the hydrophobic length of the peptides and the DLPC lipid acyl chain.  相似文献   

19.
The feasibility of applying multiphoton excitation fluorescence microscopy-related techniques in planar membrane systems, such as lipid monolayers at the air-water interface (named Langmuir films), is presented and discussed in this paper. The non-linear fluorescence microscopy approach, allows obtaining spatially and temporally resolved information by exploiting the fluorescent properties of particular fluorescence probes. For instance, the use of environmental sensitive probes, such as LAURDAN, allows performing measurements using the LAURDAN generalized polarization function that in turn is sensitive to the local lipid packing in the membrane. The fact that LAURDAN exhibit homogeneous distribution in monolayers, particularly in systems displaying domain coexistence, overcomes a general problem observed when “classical” fluorescence probes are used to label Langmuir films, i.e. the inability to obtain simultaneous information from the two coexisting membrane regions. Also, the well described photoselection effect caused by excitation light on LAURDAN allows: (i) to qualitative infer tilting information of the monolayer when liquid condensed phases are present and (ii) to provide high contrast to visualize 3D membranous structures at the film's collapse pressure. In the last case, computation of the LAURDAN GP function provides information about lipid packing in these 3D structures. Additionally, LAURDAN GP values upon compression in monolayers were compared with those obtained in compositionally similar planar bilayer systems. At similar GP values we found, for both DOPC and DPPC, a correspondence between the molecular areas reported in monolayers and bilayers. This correspondence occurs when the lateral pressure of the monolayer is 26 ± 2 mN/m and 28 ± 3 mN/m for DOPC and DPPC, respectively.  相似文献   

20.
Mixed monolayers of the ganglioside GM1 and the lipid dipalmitoylphosphatidlycholine (DPPC) at air-water and solid-air interfaces were investigated using various biophysical techniques to ascertain the location and phase behavior of the ganglioside molecules in a mixed membrane. The effects induced by GM1 on the mean molecular area of the binary mixtures and the phase behavior of DPPC were followed for GM1 concentrations ranging from 5 to 70 mol %. Surface pressure isotherms and fluorescence microscopy imaging of domain formation indicate that at low concentrations of GM1 (<25 mol %), the monolayer becomes continually more condensed than DPPC upon further addition of ganglioside. At higher GM1 concentrations (>25 mol %), the mixed monolayer becomes more expanded or fluid-like. After deposition onto a solid substrate, atomic force microscopy imaging of these lipid monolayers showed that GM1 and DPPC pack cooperatively in the condensed phase domain to form geometrically packed complexes that are more ordered than either individual component as evidenced by a more extended total height of the complex arising from a well-packed hydrocarbon tail region. Grazing incidence x-ray diffraction on the DPPC/GM1 binary mixture provides evidence that ordering can emerge when two otherwise fluid components are mixed together. The addition of GM1 to DPPC gives rise to a unit cell that differs from that of a pure DPPC monolayer. To determine the region of the GM1 molecule that interacts with the DPPC molecule and causes condensation and subsequent expansion of the monolayer, surface pressure isotherms were obtained with molecules modeling the backbone or headgroup portions of the GM1 molecule. The observed concentration-dependent condensing and fluidizing effects are specific to the rigid, sugar headgroup portion of the GM1 molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号