首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxygen-evolving Photosystem II particles (crude PSII) retaining a high oxygen-evolving activity have been prepared from a marine centric diatom, Chaetoceros gracilis (Nagao et al., 2007). The crude PSII, however, contained a large amount of fucoxanthin chlorophyll a/c-binding proteins (FCP). In this study, a purified PSII complex which was deprived of major components of FCP was isolated by one step of anion exchange chromatography from the crude PSII treated with Triton X-100. The purified PSII was still associated with the five extrinsic proteins of PsbO, PsbQ', PsbV, Psb31 and PsbU, and showed a high oxygen-evolving activity of 2135 μmol O2 (mg Chl a)− 1 h− 1 in the presence of phenyl-p-benzoquinone which was virtually independent of the addition of CaCl2. This activity is more than 2.5-fold higher than the activity of the crude PSII. The activity was completely inhibited by 3-(3,4)-dichlorophenyl-(1,1)-dimethylurea (DCMU). The purified PSII contained 42 molecules of Chl a, 2 molecules of diadinoxanthin and 2 molecules of Chl c on the basis of two molecules of pheophytin a, and showed typical absorption and fluorescence spectra similar to those of purified PSIIs from the other organisms. In this study, we also found that the crude PSII was significantly labile, as a significant inactivation of oxygen evolution, chlorophyll bleaching and degradation of PSII subunits were observed during incubation at 25 °C in the dark. In contrast, these inactivation, bleaching and degradation were scarcely detected in the purified PSII. Thus, we succeeded for the first time in preparation of a stable PSII from diatom cells.  相似文献   

2.
Kinetic studies of protein dephosphorylation in barley thylakoid membranes revealed accelerated dephosphorylation of photosystem II (PSII) proteins, and meanwhile rapidly induced phosphorylation of a light-harvesting complex (LHCII) b4, CP29 under water stress. Inhibition of dephosphorylation aggravates stress damages and hampers photosystem recovery after rewatering. This increased dephosphorylation is catalyzed by both intrinsic and extrinsic membrane protein phosphatase. Water stress did not cause any thylakoid destacking, and the lateral migration from granum membranes to stroma-exposed lamellae was only found to CP29, but not other PSII proteins. Activation of plastid proteases and release of TLP40, an inhibitor of the membrane phosphatases, were also enhanced during water stress. Phosphorylation of CP29 may facilitate disassociation of LHCII from PSII complex, disassembly of the LHCII trimer and its subsequent degradation, while general dephosphorylation of PSII proteins may be involved in repair cycle of PSII proteins and stress-response-signaling.  相似文献   

3.
Thylakoid membranes retaining high oxygen-evolving activity (about 250 micromol O(2)/mg Chl/h) were prepared from a marine centric diatom, Chaetoceros gracilis, after disruption of the cells by freeze-thawing. We also succeeded in purification of Photosystem II (PSII) particles by differential centrifugation of the thylakoid membranes after treatment with 1% Triton X-100. The diatom PSII particles showed an oxygen-evolving activity of 850 and 1045 micromol O(2)/mg Chl/h in the absence and presence of CaCl(2), respectively. The PSII particles contained fucoxanthin chlorophyll a/c-binding proteins in addition to main intrinsic proteins of CP47, CP43, D2, D1, cytochrome b559, and the antenna size was estimated to be 229 Chl a per 2 molecules of pheophytin. Five extrinsic proteins were stoichiometrically released from the diatom PSII particles by alkaline Tris-treatment. Among these five extrinsic proteins, four proteins were red algal-type extrinsic proteins, namely, PsbO, PsbQ', PsbV and PsbU, whereas the other one was a novel, hypothetical protein. This is the first report on isolation and characterization of diatom PSII particles that are highly active in oxygen evolution and retain the full set of extrinsic proteins including an unknown protein.  相似文献   

4.
The role of fatty acid synthesis in the acclimation of the photosynthetic machinery to high temperature was investigated in a mutant of the cyanobacterium Synechocystis sp. PCC 6803 that had a lower than wild-type level of enoyl-(acyl-carrier-protein) reductase FabI, a key component of the type-II fatty acid synthase system. The mutant exhibited marked impairment in the tolerance and acclimation of cells to high temperature: photoautotrophic growth of the mutant was severely inhibited at 40 °C. Moreover, mutant cells were unable to achieve wild-type enhancement of the thermal stability of photosystem II (PSII) when the growth temperature was raised from 25 °C to 38 °C. Enhancement of the thermal stability of PSII was abolished when wild-type cells were treated with triclosan, a specific inhibitor of FabI, and the enhancement of thermal stability was also blocked in darkness and in the presence of chloramphenicol. Analysis of fatty acids in thylakoid membranes revealed that levels of unsaturated fatty acids did not differ between mutant and wild-type cells, indicating that the saturation of fatty acids in membrane lipids might not be responsible for the enhancement of thermal stability at elevated temperatures. Our observations suggest that the synthesis de novo of fatty acids, as well as proteins, is required for the enhancement of the thermal stability of PSII during the acclimation of Synechocystis cells to high temperature.  相似文献   

5.
A novel cytochrome ba complex was isolated from aerobically grown cells of the thermoacidophilic archaeon Acidianus ambivalens. The complex was purified with two subunits, which are encoded by the cbsA and soxN genes. These genes are part of the pentacistronic cbsAB-soxLN-odsN locus. The spectroscopic characterization revealed the presence of three low-spin hemes, two of the b and one of the as-type with reduction potentials of + 200, + 400 and + 160 mV, respectively. The SoxN protein is proposed to harbor the heme b of lower reduction potential and the heme as, and CbsA the other heme b. The soxL gene encodes a Rieske protein, which was expressed in E. coli; its reduction potential was determined to be + 320 mV. Topology predictions showed that SoxN, CbsB and CbsA should contain 12, 9 and one transmembrane α-helices, respectively, with SoxN having a predicted fold very similar to those of the cytochromes b in bc1 complexes. The presence of two quinol binding motifs was also predicted in SoxN. Based on these findings, we propose that the A. ambivalens cytochrome ba complex is analogous to the bc1 complexes of bacteria and mitochondria, however with distinct subunits and heme types.  相似文献   

6.
The three-dimensional structure of a Salmonella enterica hypothetical protein YihS is significantly similar to that of N-acyl-d-glucosamine 2-epimerase (AGE) with respect to a common scaffold, an α66-barrel, although the function of YihS remains to be clarified. To identify the function of YihS, Escherichia coli and S. enterica YihS proteins were overexpressed in E. coli, purified, and characterized. Both proteins were found to show no AGE activity but showed cofactor-independent aldose-ketose isomerase activity involved in the interconversion of monosaccharides, mannose, fructose, and glucose, or lyxose and xylulose. In order to clarify the structure/function relationship of YihS, we determined the crystal structure of S. enterica YihS mutant (H248A) in complex with a substrate (d-mannose) at 1.6 Å resolution. This enzyme-substrate complex structure is the first demonstration in the AGE structural family, and it enables us to identify active-site residues and postulate a reaction mechanism for YihS. The substrate, β-d-mannose, fits well in the active site and is specifically recognized by the enzyme. The substrate-binding site of YihS for the mannose C1 and O5 atoms is architecturally similar to those of mutarotases, suggesting that YihS adopts the pyranose ring-opening process by His383 and acidifies the C2 position, forming an aldehyde at the C1 position. In the isomerization step, His248 functions as a base catalyst responsible for transferring the proton from the C2 to C1 positions through a cis-enediol intermediate. On the other hand, in AGE, His248 is thought to abstract and re-adduct the proton at the C2 position of the substrate. These findings provide not only molecular insights into the YihS reaction mechanism but also useful information for the molecular design of novel carbohydrate-active enzymes with the common scaffold, α66-barrel.  相似文献   

7.
Lactose permease in Escherichia coli (LacY) transports both anomeric states of disaccharides but has greater affinity for α-sugars. Molecular dynamics (MD) simulations are used to probe the protein-sugar interactions, binding structures, and global protein motions in response to sugar binding by investigating LacY (the experimental mutant and wild-type) embedded in a fully hydrated lipid bilayer. A total of 12 MD simulations of 20-25 ns each with β(α)-d-galactopyranosyl-(1,1)-β-d-galactopyranoside (ββ-(Galp)2) and αβ-(Galp)2 result in binding conformational families that depend on the anomeric state of the sugar. Both sugars strongly interact with Glu126 and αβ-(Galp)2 has a greater affinity to this residue. Binding conformations are also seen that involve protein residues not observed in the crystal structure, as well as those involved in the proton translocation (Phe118, Asn119, Asn240, His322, Glu325, and Tyr350). Common to nearly all protein-sugar structures, water acts as a hydrogen bond bridge between the disaccharide and protein. The average binding energy is more attractive for αβ-(Galp)2 than ββ-(Galp)2, i.e. −10.7(±0.7) and −3.1(±1.0) kcal/mol, respectively. Of the 12 helices in LacY, helix-IV is the least stable with ββ-(Galp)2 binding resulting in larger distortion than αβ-(Galp)2.  相似文献   

8.
The trypanosome alternative oxidase (TAO) functions in the African trypanosomes as a cytochrome-independent terminal oxidase, which is essential for their survival in the mammalian host and as it does not exist in the mammalian host is considered to be a promising drug target for the treatment of trypanosomiasis. In the present study, recombinant TAO (rTAO) overexpressed in a haem-deficient Escherichia coli strain has been solubilized from E. coli membranes and purified to homogeneity in a stable and highly active form. Analysis of bound iron detected by inductively coupled plasma-mass spectrometer (ICP-MS) reveals a stoichiometry of two bound iron atoms per monomer of rTAO. Confirmation that the rTAO was indeed a diiron protein was obtained by EPR analysis which revealed a signal, in the reduced forms of rTAO, with a g-value of 15. The kinetics of ubiquiol-1 oxidation by purified rTAO showed typical Michaelis-Menten kinetics (Km of 338 μM and Vmax of 601 μmol/min/mg), whereas ubiquinol-2 oxidation showed unusual substrate inhibition. The specific inhibitor, ascofuranone, inhibited the enzyme in a mixed-type inhibition manner with respect to ubiquinol-1.  相似文献   

9.
A new stereoselective preparation of N-aceyl-d-galactosamine (1b) starting from the known p-methoxyphenyl 3,4-O-isopropylidene-6-O-(1-methoxy-1-methylethyl)-β-d-galactopyranoside (10) is described using a simple strategy based on (a) epimerization at C-2 of 10 via oxidation-reduction to give the talo derivative 11, (b) amination with configurational inversion at C-2 of 11 via a SN2-type reaction on its 2-imidazylate, (c) anomeric deprotection of the p-methoxyphenyl β-d-galactosamine glycoside 14, (d) complete deprotection. Applying the same protocol to 2,3:5,6:3′,4′-tri-O-isopropylidene-6′-O-(1-methoxy-1-methylethyl)-lactose dimethyl acetal (4), directly obtained through acetonation of lactose, the disaccharide β-d-GalNAcp-(1→4)-d-Glcp (1a) was obtained with complete stereoselectivity in good (40%) overall yield from lactose.  相似文献   

10.
Photosynthetic supercomplexes from the cryptophyte Rhodomonas CS24 were isolated by a short detergent treatment of membranes from the cryptophyte Rhodomonas CS24 and studied by electron microscopy and low-temperature absorption and fluorescence spectroscopy. At least three different types of supercomplexes of photosystem I (PSI) monomers and peripheral Chl a/c2 proteins were found. The most common complexes have Chl a/c2 complexes at both sides of the PSI core monomer and have dimensions of about 17 × 24 nm. The peripheral antenna in these supercomplexes shows no obvious similarities in size and/or shape with that of the PSI-LHCI supercomplexes from the green plant Arabidopsis thaliana and the green alga Chlamydomonas reinhardtii, and may be comprised of about 6-8 monomers of Chl a/c2 light-harvesting complexes. In addition, two different types of supercomplexes of photosystem II (PSII) dimers and peripheral Chl a/c2 proteins were found. The detected complexes consist of a PSII core dimer and three or four monomeric Chl a/c2 proteins on one side of the PSII core at positions that in the largest complex are similar to those of Lhcb5, a monomer of the S-trimer of LHCII, Lhcb4 and Lhcb6 in green plants.  相似文献   

11.
A new β-glucosidase gene (bglSp) was cloned from the ginsenoside converting Sphingomonas sp. strain 2F2 isolated from the ginseng cultivating filed. The bglSp consisted of 1344 bp (447 amino acid residues) with a predicted molecular mass of 49,399 Da. A BLAST search using the bglSp sequence revealed significant homology to that of glycoside hydrolase superfamily 1. This enzyme was overexpressed in Escherichia coli BL21 (DE3) using a pET21-MBP (TEV) vector system. Overexpressed recombinant enzymes which could convert the ginsenosides Rb1, Rb2, Rc and Rd to the more pharmacological active rare ginsenosides gypenoside XVII, ginsenoside C-O, ginsenoside C-Mc1 and ginsenoside F2, respectively, were purified by two steps with Amylose-affinity and DEAE-Cellulose chromatography and characterized. The kinetic parameters for β-glucosidase showed the apparent Km and Vmax values of 2.9 ± 0.3 mM and 515.4 ± 38.3 μmol min−1 mg of protein−1 against p-nitrophenyl-β-d-glucopyranoside. The enzyme could hydrolyze the outer C3 glucose moieties of ginsenosides Rb1, Rb2, Rc and Rd into the rare ginsenosides Gyp XVII, C-O, C-Mc1 and F2 quickly at optimal conditions of pH 5.0 and 37 °C. A little ginsenoside F2 production from ginsenosides Gyp XVII, C-O, and C-Mc1 was observed for the lengthy enzyme reaction caused by the side ability of the enzyme.  相似文献   

12.
Previous N-ethylmaleimide-labeling studies show that ligand binding increases the reactivity of single-Cys mutants located predominantly on the periplasmic side of LacY and decreases reactivity of mutants located for the most part of the cytoplasmic side. Thus, sugar binding appears to induce opening of a periplasmic pathway with closing of the cytoplasmic cavity resulting in alternative access of the sugar-binding site to either side of the membrane. Here we describe the use of a fluorescent alkylating reagent that reproduces the previous observations with respect to sugar binding. We then show that generation of an H+ electrochemical gradient (Δμ¯H+, interior negative) increases the reactivity of single-Cys mutants on the periplasmic side of the sugar-binding site and in the putative hydrophilic pathway. The results suggest that Δμ¯H+, like sugar, acts to increase the probability of opening on the periplasmic side of LacY.  相似文献   

13.
d-Ribono-1,4-lactone was treated with ethylamine in DMF to afford N-ethyl-d-ribonamide 8a in quantitative yield. Using this reaction procedure, N-butyl, N-hexyl, N-dodecyl, N-benzyl, N-(3-methyl-pyridinyl)-, N-(2-hydroxy-ethyl)-, and N-(2-cyano-ethyl)-d-ribonamides 8b-h were obtained in quantitative yield. Bromination of the amides 8a-e with acetyl bromide in dioxane followed by acetylation gave 2,3,4-tri-O-acetyl-5-bromo-5-deoxy-N-ethyl, N-butyl, N-hexyl, N-dodecyl, and N-benzyl-d-ribonamides 9a-e in 40-54% yields. To obtain 2,3,4-tri-O-acetyl-5-bromo-5-deoxy-N-(3-methyl-pyridinyl)-, N-(2-hydroxy-ethyl)-, and N-(2-cyano-ethyl)-9f-h, the bromination is necessary before the amidation reaction. Treatment of the bromoamides 9a-h with NaH in DMF followed by methanolysis affords N-alkyl-d-ribono-1,5-lactams 12a-h in quantitative yield.  相似文献   

14.
Pseudomonas cichoriiid-tagatose 3-epimerase (P. cichoriid-TE) can efficiently catalyze the epimerization of not only d-tagatose to d-sorbose, but also d-fructose to d-psicose, and is used for the production of d-psicose from d-fructose. The crystal structures of P. cichoriid-TE alone and in complexes with d-tagatose and d-fructose were determined at resolutions of 1.79, 2.28, and 2.06 Å, respectively. A subunit of P. cichoriid-TE adopts a (β/α)8 barrel structure, and a metal ion (Mn2+) found in the active site is coordinated by Glu152, Asp185, His211, and Glu246 at the end of the β-barrel. P. cichoriid-TE forms a stable dimer to give a favorable accessible surface for substrate binding on the front side of the dimer. The simulated omit map indicates that O2 and O3 of d-tagatose and/or d-fructose coordinate Mn2+, and that C3-O3 is located between carboxyl groups of Glu152 and Glu246, supporting the previously proposed mechanism of deprotonation/protonation at C3 by two Glu residues. Although the electron density is poor at the 4-, 5-, and 6-positions of the substrates, substrate-enzyme interactions can be deduced from the significant electron density at O6. The O6 possibly interacts with Cys66 via hydrogen bonding, whereas O4 and O5 in d-tagatose and O4 in d-fructose do not undergo hydrogen bonding to the enzyme and are in a hydrophobic environment created by Phe7, Trp15, Trp113, and Phe248. Due to the lack of specific interactions between the enzyme and its substrates at the 4- and 5-positions, P. cichoriid-TE loosely recognizes substrates in this region, allowing it to efficiently catalyze the epimerization of d-tagatose and d-fructose (C4 epimer of d-tagatose) as well. Furthermore, a C3-O3 proton-exchange mechanism for P. cichoriid-TE is suggested by X-ray structural analysis, providing a clear explanation for the regulation of the ionization state of Glu152 and Glu246.  相似文献   

15.
The aim of this study was to produce rare β-carotene-modified carotenoids possessing 2-O (-H or -glu) and/or 3-O (-H or -glu) functionalities in their β-ionone ring(s) using a recombinant Escherichia coli approach. This involved expressing seven carotenoid biosynthesis genes (crtE, crtB, crtI, crtY, crtZ, crtX and crtG). From the cells of the recombinant E. coli, caloxanthin (β,β-carotene-2,3,2′,3′-tetrol)-3′-β-d-glucose, zeaxanthin (β,β-carotene-3,3′-diol) 3,3′-β-d-diglucoside, and nostoxanthin (β,β-carotene-2,3,3′-triol) (rare carotenoids) were isolated and identified. Caloxanthin 3′-β-d-glucose displayed potent 1O2 quenching activity (IC50 19 μM).  相似文献   

16.
From the methanol extract of Cardamine diphylla rhizome, 5′-O-β-d-glucopyranosyl-dihydroascorbigen (1) and 6-hydroxyindole-3-carboxylic acid 6-O-β-d-glucopyranoside (2) were isolated. The structures of the compounds were elucidated using spectroscopic methods. This is the second report on the presence of a glucosylated indole ascorbigen in plants.  相似文献   

17.
The reactivity of N-(2-aminophenyl)-d-glycero-d-gulo-heptonamide (adgha), with the group 12 cations, Zn(II), Cd(II), and Hg(II), was studied in DMSO-d6 solution. The studied system showed a selective coordination to Hg(II), and the products formed were characterized by 1H and 13C NMR in DMSO-d6 solution and fast atom bombardment (FAB+) mass spectra. The expected coordination compounds, [Hg(adgha)](NO3)2 and [Hg(adgha)2](NO3)2, were observed as unstable intermediates that decompose to bis-[2-(d-glycero-d-gulo-hexahydroxyhexyl)-benzimidazole-κN]mercury(II) dinitrate, [Hg(ghbz)2](NO3)2. The chemical transformation of the complexes was followed by NMR experiments, and the nature of the species formed is sustained by a theoretical study done using DFT methodology. From this study, we propose the structure of the complexes formed in solution, the relative stability of the species formed, and the possible role of the solvent in the observed transformations.  相似文献   

18.
Saber Hamdani 《BBA》2009,1787(10):1223-1229
The interaction of methylamine with chloroplasts' photosystem II (PSII) was studied in isolated thylakoid membranes. Low concentration of methylamine (mM range) was shown to affect water oxidation and the advancement of the S-states. Modified kinetics of chlorophyll fluorescence rise and thermoluminescence in the presence of methylamine indicated that the electron transfer was affected at both sides of PSII, and in particular the electron transfer between YZ and P680+. As the concentration of methylamine was raised above 10 mM, the extrinsic polypeptides associated with the oxygen-evolving complex were lost and energy transfer between PSII antenna complexes and reaction centers was impaired. It was concluded that methylamine is able to affect both extrinsic and intrinsic subunits of PSII even at the lowest concentrations used where the extrinsic polypeptides of the OEC are still associated with the luminal side of the photosystem. As methylamine concentration increases, the extrinsic polypeptides are lost and the interaction with intrinsic domains is amplified resulting in an increased F0.  相似文献   

19.
The kinetics of single-electron injection into the oxidized nonrelaxed state (OH → EH transition) of the aberrant ba3 cytochrome oxidase from Thermus thermophilus, noted for its lowered efficiency of proton pumping, was investigated by time-resolved optical spectroscopy. Two main phases of intraprotein electron transfer were resolved. The first component (τ ∼ 17 μs) reflects oxidation of CuA and reduction of the heme groups (low-spin heme b and high-spin heme a3 in a ratio close to 50:50). The subsequent component (τ ∼ 420 μs) includes reoxidation of both hemes by CuB. This is in significant contrast to the OH → EH transition of the aa3-type cytochrome oxidase from Paracoccus denitrificans, where the fastest phase is exclusively due to transient reduction of the low-spin heme a, without electron equilibration with the binuclear center. On the other hand, the one-electron reduction of the relaxed O state in ba3 oxidase was similar to that in aa3 oxidase and only included rapid electron transfer from CuA to the low-spin heme b. This indicates a functional difference between the relaxed O and the pulsed OH forms also in the ba3 oxidase from T. thermophilus.  相似文献   

20.
Diatoms occupy a key position as a primary producer in the global aquatic ecosystem. We developed methods to isolate highly intact thylakoid membranes and the photosystem I (PS I) complex from a marine centric diatom, Chaetoceros gracilis. The PS I reaction center (RC) was purified as a super complex with light-harvesting fucoxanthin-chlorophyll (Chl)-binding proteins (FCP). The super complex contained 224 Chl a, 22 Chl c, and 55 fucoxanthin molecules per RC. The apparent molecular mass of the purified FCP-PS I super complex (∼ 1000 kDa) indicated that the super complex was composed of a monomer of the PS I RC complex and about 25 copies of FCP. The complex contained menaquinone-4 as the secondary electron acceptor A1 instead of phylloquinone. Time-resolved fluorescence emission spectra at 77 K indicated that fast (16 ps) energy transfer from a Chl a band at 685 nm on FCP to Chls on the PS I RC complex occurs. The ratio of fucoxanthin to Chl a on the PS I-bound FCP was lower than that of weakly bound FCP, suggesting that PS I-bound FCP specifically functions as the mediator of energy transfer between weakly bound FCPs and the PS I RC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号