共查询到20条相似文献,搜索用时 0 毫秒
1.
Michael R. Yeaman Nannette Y. Yount Alan J. Waring Kimberly D. Gank Deborah Kupferwasser Robert Wiese William H. Welch 《生物化学与生物物理学报:生物膜》2007,1768(3):609-619
Mammalian platelets contain an array of antimicrobial peptides, termed platelet microbicidal proteins (PMPs). Human and rabbit PMPs include known chemokines, such as platelet factor-4 (hPF-4); PMP-1 is the rabbit orthologue of hPF-4. Chemokines that also exert direct antimicrobial activity have been termed kinocidins. A consensus peptide domain library representing mammalian PF-4 family members was analyzed to define structural domains contributing to antimicrobial activity against a panel of human pathogens. Secondary conformations were assessed by circular dichroism spectrometry, and molecular modeling was employed to investigate structural correlates of antimicrobial efficacy. Antimicrobial activity against isogenic peptide-susceptible or -resistant Staphylococcus aureus, Salmonella typhimurium, and Candida albicans strain pairs mapped to the C-terminal hemimer (38-74) and modular domains thereof (49-63 and 60-74). Increasing electrostatic charge and steric bulk were general correlates of efficacy. Structural data corroborated spatial distribution of charge, steric bulk and putative secondary structure with organism-specific efficacy. Microbicidal efficacies of the cPMP antimicrobial hemimer and C-terminal peptide (60-74) were retained in a complex human-blood biomatrix assay. Collectively, these results suggest that modular determinants arising from structural components acting independently and cooperatively govern the antimicrobial functions of PF-4 family kinocidins against specific target pathogens. 相似文献
2.
Yount NY Waring AJ Gank KD Welch WH Kupferwasser D Yeaman MR 《Biochimica et biophysica acta》2007,1768(3):598-608
Chemokines are small (8-12 kDa) effector proteins that potentiate leukocyte chemonavigation. Beyond this role, certain chemokines have direct antimicrobial activity against human pathogenic organisms; such molecules are termed kinocidins. The current investigation was designed to explore the structure-activity basis for direct microbicidal activity of kinocidins. Amino acid sequence and 3-dimensional analyses demonstrated these molecules to contain iterations of the conserved gamma-core motif found in broad classes of classical antimicrobial peptides. Representative CXC, CC and C cysteine-motif-group kinocidins were tested for antimicrobial activity versus human pathogenic bacteria and fungi. Results demonstrate that these molecules exert direct antimicrobial activity in vitro, including antibacterial activity of native IL-8 and MCP-1, and microbicidal activity of native IL-8. To define molecular determinants governing its antimicrobial activities, the IL-8 gamma-core (IL-8gamma) and alpha-helical (IL-8alpha) motifs were compared to native IL-8 for antimicrobial efficacy in vitro. Microbicidal activity recapitulating that of native IL-8 localized to the autonomous IL-8alpha motif in vitro, and demonstrated durable microbicidal activity in human blood and blood matrices ex vivo. These results offer new insights into the modular architecture, context-related deployment and function, and evolution of host defense molecules containing gamma-core motifs and microbicidal helices associated with antimicrobial activity. 相似文献
3.
Recent studies in species that fertilize externally have demonstrated that fertilization triggers localized activation of Src-family protein kinases in the egg cortex. However, the requirement for Src-family kinases in activation of the mammalian egg is different from lower species and the objective of this study was to characterize changes in the distribution and activity of Src-family protein tyrosine kinases (PTKs) during zygotic development in the mouse. Immunofluorescence analysis of mouse oocytes and zygotes with an anti-phosphotyrosine antibody revealed that fertilization stimulated accumulation of P-Tyr-containing proteins in the egg cortex and that their abundance was elevated in the region overlying the MII spindle. In addition, the poles of the MII spindle exhibited elevated P-Tyr levels. As polar body extrusion progressed, P-Tyr-containing proteins were especially concentrated in the region of cortex adjacent to the maternal chromatin and the forming polar body. In contrast, P-Tyr labeling of the spindle poles eventually disappeared as meiosis II progressed to anaphase II. In approximately 24% of cases, the fertilizing sperm nucleus was associated with increased P-Tyr labeling in the overlying cortex and oolemma. To determine whether Src-family protein tyrosine kinases could be responsible for the observed changes in the distribution of P-Tyr containing proteins, an antibody to the activated form of Src-family PTKs was used to localize activated Src, Fyn or Yes. Activated Src-family kinases were found to be strongly associated with the meiotic spindle at all stages of meiosis II; however, no concentration of labeling was evident at the egg cortex. The absence of cortical Src-family PTK activity continued until the blastocyst stage when strong cortical activity became evident. At the pronuclear stage, activated Src-family PTKs became concentrated around the pronuclei in close association with the nuclear envelope. This pattern was unique to the earliest stages of development and disappeared by the eight cell stage. Functional studies using chemical inhibitors and a dominant-negative Fyn construct demonstrated that Src-family PTKs play an essential role in completion of meiosis II following fertilization and progression from the pronuclear stage into mitosis. These data suggest that while Src-family PTKs are not required for fertilization-induced calcium oscillations, they do play a critical role in development of the zygote. Furthermore, activation of these kinases in the mouse egg is limited to distinct regions and occurs at specific times after fertilization. 相似文献
4.
Cluster determinant 4 (CD4) is a type I transmembrane glycoprotein of 58 kDa. It consists of an extracellular domain of 370 amino acids, a short transmembrane region, and a cytoplasmic domain of 40 amino acids at the C-terminal end. We investigated the structure of the 62 C-terminal residues of CD4, comprising its transmembrane and cytoplasmic domains. The five cysteine residues of this region have been replaced with serine and histidine residues in the polypeptide CD4mut. Uniformly 15N and 13C labeled protein was recombinantly expressed in E. coli and purified. Functional binding activity of CD4mut to protein VpU of the human immunodeficiency virus type 1 (HIV-1) was verified. Close to complete NMR resonance assignment of the 1H, 13C, and 15N spins of CD4mut was accomplished. The secondary structure of CD4mut in membrane simulating dodecylphosphocholine (DPC) micelles was characterized based on secondary chemical shift analysis, NOE-based proton-proton distances, and circular dichroism spectroscopy. A stable transmembrane helix and a short amphipathic helix in the cytoplasmic region were identified. The fractional helicity of the cytoplasmic helix appears to be stabilized in the presence of DPC micelles, although the extension of this helix is reduced in comparison to previous studies on synthetic peptides in aqueous solution. The role of the amphipathic helix and its potentially variable length is discussed with respect to the biological functions of CD4. 相似文献
5.
Barinka C Hlouchova K Rovenska M Majer P Dauter M Hin N Ko YS Tsukamoto T Slusher BS Konvalinka J Lubkowski J 《Journal of molecular biology》2008,376(5):1438-1450
Human glutamate carboxypeptidase II (GCPII) is involved in neuronal signal transduction and intestinal folate absorption by means of the hydrolysis of its two natural substrates, N-acetyl-aspartyl-glutamate and folyl-poly-γ-glutamates, respectively. During the past years, tremendous efforts have been made toward the structural analysis of GCPII. Crystal structures of GCPII in complex with various ligands have provided insight into the binding of these ligands, particularly to the S1′ site of the enzyme. In this article, we have extended structural characterization of GCPII to its S1 site by using dipeptide-based inhibitors that interact with both S1 and S1′ sites of the enzyme. To this end, we have determined crystal structures of human GCPII in complex with phosphapeptide analogs of folyl-γ-glutamate, aspartyl-glutamate, and γ-glutamyl-glutamate, refined at 1.50, 1.60, and 1.67 Å resolution, respectively. The S1 pocket of GCPII could be accurately defined and analyzed for the first time, and the data indicate the importance of Asn519, Arg463, Arg534, and Arg536 for recognition of the penultimate (i.e., P1) substrate residues. Direct interactions between the positively charged guanidinium groups of Arg534 and Arg536 and a P1 moiety of a substrate/inhibitor provide mechanistic explanation of GCPII preference for acidic dipeptides. Additionally, observed conformational flexibility of the Arg463 and Arg536 side chains likely regulates GCPII affinity toward different inhibitors and modulates GCPII substrate specificity. The biochemical experiments assessing the hydrolysis of several GCPII substrate derivatives modified at the P1 position, also included in this report, further complement and extend conclusions derived from the structural analysis. The data described here form an a solid foundation for the structurally aided design of novel low-molecular-weight GCPII inhibitors and imaging agents. 相似文献
6.
Analyzing the dynamics of membrane proteins in the context of cellular signaling represents a challenging problem in contemporary cell biology. Lateral diffusion of lipids and proteins in the cell membrane is known to be influenced by the cytoskeleton. In this work, we explored the role of the actin cytoskeleton on the mobility of the serotonin1A (5-HT1A) receptor, stably expressed in CHO cells, and its implications in signaling. FRAP analysis of 5-HT1AR-EYFP shows that destabilization of the actin cytoskeleton induced by either CD or elevation of cAMP levels mediated by forskolin results in an increase in the mobile fraction of the receptor. The increase in the mobile fraction is accompanied by a corresponding increase in the signaling efficiency of the receptor. Interestingly, with increasing concentrations of CD used, the increase in the mobile fraction exhibited a correlation of ∼0.95 with the efficiency in ligand-mediated signaling of the receptor. Radioligand binding and G-protein coupling of the receptor were found to be unaffected upon treatment with CD. Our results suggest that signaling by the serotonin1A receptor is correlated with receptor mobility, implying thereby that the actin cytoskeleton could play a regulatory role in receptor signaling. These results may have potential significance in the context of signaling by GPCRs in general and in the understanding of GPCR-cytoskeleton interactions with respect to receptor signaling in particular. 相似文献
7.
The CXC and CC chemokine gene clusters provide an abundant number of chemotactic factors selectively binding to shared G protein-coupled receptors (GPCR). Hence, chemokines function in a complex network to mediate migration of the various leukocyte subsets, expressing specific GPCRs during the immune response. Further fine-tuning of the chemokine system is reached through specific posttranslational modifications of the mature proteins. Indeed, enzymatic processing of chemokines during an early phase of inflammation leads to activation of precursor molecules or cleavage into even more active or receptor specific chemokine isoforms. At a further stage, proteolytic processing leads to loss of GPCR signaling, thereby providing natural chemokine receptor antagonists. Finally, further NH2-terminal cleavage results in complete inactivation to dampen the inflammatory response. During inflammatory responses, the two chemokines which exist in a membrane-bound form may be released by proteases from the cellular surface. In addition to proteolytic processing, citrullination and glycosylation of chemokines is also important for their biological activity. In particular, citrullination of arginine residues seems to reduce the inflammatory activity of chemokines in vivo. This goes along with other positive and negative regulatory mechanisms for leukocyte migration, such as chemokine synergy and scavenging by decoy receptors. 相似文献
8.
Tau is a microtubule-associated protein, which plays an important role in physiology and pathology of neurons. Tau has been recently reported to bind double-stranded DNA (dsDNA) but not to bind single-stranded DNA (ssDNA) [Cell. Mol. Life Sci. 2003, 60, 413-421]. Here, we prove that tau binds not only dsDNA but also ssDNA. This finding was facilitated by using two kinetic capillary electrophoresis methods: (i) non-equilibrium capillary electrophoresis of equilibrium mixtures (NECEEM); (ii) affinity-mediated NECEEM. Using the new approach, we observed, for the first time, that tau could induce dissociation of strands in dsDNA by binding one of them in a sequence-specific fashion. Moreover, we determined the equilibrium dissociation constants for all tau-DNA complexes studied. 相似文献
9.
We investigated the expression of formyl peptide receptor (FPR) and its functional role in human bone marrow-derived mesenchymal stem cells (MSCs). We analyzed the expression of FPR by using ligand-binding assay with radio-labeled N-formyl-met-leu-phe (fMLF), and found that MSCs express FPR. FMLF stimulated intracellular calcium increase, mitogen-activated protein kinases activation, and Akt activation, which were mediated by G(i) proteins. MSCs were chemotactically migrated to fMLF. FMLF-induced MSC chemotaxis was also completely inhibited by pertussis toxin, LY294002, and PD98059, indicating the role of G(i) proteins, phosphoinositide 3-kinase, and extracellular signal regulated protein kinase. N-terminal fragment of annexin-1, Anx-1(2-26), an endogenous agonist for FPR, also induced chemotactic migration of MSCs. Thus MSCs express functional FPR, suggesting a new (patho)physiological role of FPR and its ligands in regulating MSC trafficking during induction of injured tissue repair. 相似文献
10.
Regulation of divalent metal transporter expression in human intestinal epithelial cells following exposure to non-haem iron 总被引:1,自引:0,他引:1
A number of regulatory factors including dietary iron levels can dramatically alter the expression of the intestinal iron transporter DMT1. Here we show that Caco-2 cells exposed to iron for 4h exhibited a significant decrease in plasma membrane DMT1 protein, though total cellular DMT1 levels were unaltered. Following biotinylation of cell surface proteins, there was a significant increase in intracellular biotin-labelled DMT1 in iron-exposed cells. Furthermore, iron-treatment increased levels of DMT1 co-localised with LAMP1, suggesting that the initial response of intestinal epithelial cells to iron involves internalisation and targeting of DMT1 transporter protein towards a late endosomal/lysosomal compartment. 相似文献
11.
Yong-Cheng Jin Hong-Gu Lee Cheng-Xiong Xu Jeng-A Han Seong-Ho Choi Man-Kang Song Young-Jun Kim Ki-Beom Lee Seon-Ku Kim Han-Seok Kang Byung-Wook Cho Teak-Soon Shin Yun-Jaie Choi 《Biochimica et Biophysica Acta - Proteins and Proteomics》2010,1804(4):745-751
This study was conducted to investigate the amount of CLA synthesized endogenously by rat mammary tissues in response to TVA (a precursor for cis-9, trans-11 CLA endogenous synthesis) treatment as well as the differences in the protein expression of genes encoding the biosynthesis of CLA in rat mammary tissue and mouse mammary gland epithelia cells (HC11). Treatment with TVA resulted in improved CLA productivity. Furthermore, 2-DE revealed two spots in samples of mammary tissues and one spot in samples of mammary gland epithelia cells (HC11) that were consistently altered in the TVA treatment groups when compared with the control group (non-fatty acid). The mRNA expression patterns of three of the proteins (PDI, PRDX2, LAMR1), as measured by real-time PCR, were similar to the pattern of protein abundance. In addition, the expression of SCD mRNA in the mammary tissue of rats and HC11 cell treated with TVA was higher than in the control group. Our results suggest that the identified proteins may be related to CLA biosynthesis in mammary tissue. 相似文献
12.
Residue Ser151 of cardiac troponin I (cTnI) is known to be phosphorylated by p21-activated kinase 3 (PAK3). It has been found that PAK3-mediated phosphorylation of cTnI induces an increase in the sensitivity of myofilament to Ca2+, but the detailed mechanism is unknown. We investigated how the structural and kinetic effects mediated by pseudo-phosphorylation of cTnI (S151E) modulates Ca2+-induced activation of cardiac thin filaments. Using steady-state, time-resolved Förster resonance energy transfer (FRET) and stopped-flow kinetic measurements, we monitored Ca2+-induced changes in cTnI-cTnC interactions. Measurements were done using reconstituted thin filaments, which contained the pseudo-phosphorylated cTnI(S151E). We hypothesized that the thin filament regulation is modulated by altered cTnC-cTnI interactions due to charge modification caused by the phosphorylation of Ser151 in cTnI. Our results showed that the pseudo-phosphorylation of cTnI (S151E) sensitizes structural changes to Ca2+ by shortening the intersite distances between cTnC and cTnI. Furthermore, kinetic rates of Ca2+ dissociation-induced structural change in the regulatory region of cTnI were reduced significantly by cTnI (S151E). The aforementioned effects of pseudo-phosphorylation of cTnI were similar to those of strong crossbridges on structural changes in cTnI. Our results provide novel information on how cardiac thin filament regulation is modulated by PAK3 phosphorylation of cTnI. 相似文献
13.
Functional implications of the conformational switch in AICD peptide upon binding to Grb2-SH2 domain
It has been hypothesized previously that synergistic effect of both amyloid precursor protein intracellular C-terminal domain (AICD) and Aβ aggregation could contribute to Alzheimer's disease pathogenesis. Structural studies of AICD have found no stable globular fold over a broad range of pH. Present work is based on the premises that a conformational switch involving the flipping of C-terminal helix of AICD would be essential for effective binding with the Src homology 2 (SH2) domain of growth factor receptor binding protein-2 (Grb2) and subsequent initiation of Grb2-mediated endo-lysosomal pathway. High-resolution crystal structures of Grb2-SH2 domain bound to AICD peptides reveal a unique mode of binding where the peptides assume a noncanonical conformation that is unlike other structures of AICD peptides bound to protein-tyrosine-binding domains or that of its free state; rather, a flipping of the C-terminal helix of AICD is evident. The involvement of different AICD residues in Grb2-SH2 interaction is further elucidated through fluorescence-based assays. Our results reveal the significance of a specific interaction of the two molecules to optimize the rapid transport of AICD inside endosomal vesicles presumably to reduce the cytotoxic load. 相似文献
14.
Binding of herbicides to photosystem II inhibits the electron transfer from QA to QB due to competition of herbicides with plastoquinone bound at the QB site. We investigated herbicide binding to monomeric and dimeric photosystem II core complexes (PSIIcc) isolated from Thermosynechococcus elongatus by a combination of different methods (isothermal titration and differential scanning calorimetry, CD spectroscopy and measurements of the oxygen evolution) yielding binding constants, enthalpies and stoichiometries for various herbicides as well as information regarding stabilization/destabilization of the complex. Herbicide binding to detergent-solubilized PSIIcc can be described by a model of single independent binding sites present on this important membrane protein. Interestingly, binding stoichiometries herbicide:PSIIcc are lower than 1:1 and vary depending on the herbicide under study. Strong binding herbicides such as terbutryn stabilize PSIIcc in thermal unfolding experiments and endothermically binding herbicides like ioxynil probably cause large structural changes accompanied with the binding process as shown by differential scanning calorimetry experiments of the unfolding reaction of PSIIcc monomer in the presence of ioxynil. In addition we studied the occupancy of the QB sites with plastoquinone (PQ9) by measuring flash induced fluorescence relaxation yielding a possible explanation for the deviations of herbicide binding from a 1:1 herbicide/binding site model. 相似文献
15.
Mikel García-Marcos Stéphanie Pochet Unai Fontanils José Andrés Fernández-González Aida Marino 《生物化学与生物物理学报:生物膜》2006,1758(6):796-806
Lipid rafts are defined as cholesterol and sphingolipid enriched domains in biological membranes. Their role in signalling and other cellular processes is widely accepted but the methodology used for their biochemical isolation and characterization remains controversial. Raft-like membranes from rat submandibular glands were isolated by two different protocols commonly described in the literature; one protocol was based on selective solubilization by Triton X-100 at low temperature and the other protocol consisted in extensive sonication. In both cases a low density vesicular fraction was obtained after ultracentrifugation in a sucrose density gradient. These fractions contained about 20% of total cholesterol but less than 8% of total proteins, and were more rigid than bulk membranes. Fatty acid analyses revealed a similar composition of raft-like membranes isolated by the two different methods, which was characterized by an enrichment in saturated fatty acids in detriment of polyunsaturated acids when compared with the whole cell membranes. Protein profile of detergent resistant membranes or raft-like membranes prepared by sonication was assessed by silver staining after SDS-PAGE and by MALDI-TOF. Both analyses provided evidence of a different protein composition of the Triton X-100 and sonication preparations. Immunoblot experiments revealed that raft-like membranes prepared by detergent extraction or sonication were free of Golgi apparatus or endoplasmic reticulum protein markers (β-COP and calnexin, respectively) and that they were not substantially contaminated by transferrin receptor (a non-raft protein). While caveolin-1 was highly enriched in raft-like membranes prepared by the two methods, the P2X7 receptor was enriched in raft-like membrane fractions prepared by sonication, but almost undetectable in the detergent resistant membranes. It can be concluded that both methods can be used to obtain raft-like membranes, but that detergent may affect protein interactions responsible for their association with different membrane domains. 相似文献
16.
The addition of the cyclic cofactor 2,3,5,6-tetramethyl-p-phenylenediamine (diaminodurene) to a suspension of chromatophores of Rhodopseudomonas spheroides causes a light-dependent quenching of bacteriochlorophyll fluorescence. This effect is similar to one observed in chloroplasts and related to proton uptake. It is distinct from the quenching operative through the redox state of the primary electron donor and acceptor, as shown by its sensitivity to uncouplers and ionophorous antibiotics. The quenching is dependent on light intensity and diaminodurene concentration, and has a pH optimum at 7.1 where up to 70% of the fluorescence could be quenched in the presence of 0.33 mM diaminodurene. 相似文献
17.
Brian O. Ingram Christian Sohlenkamp Otto Geiger Christian R.H. Raetz 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2010,1801(5):593-604
The lipid A of Rhizobium etli, a nitrogen-fixing plant endosymbiont, displays significant structural differences when compared to that of Escherichia coli. An especially striking feature of R. etli lipid A is that it lacks both the 1- and 4′-phosphate groups. The 4′-phosphate moiety of the distal glucosamine unit is replaced with a galacturonic acid residue. The dephosphorylated proximal unit is present as a mixture of the glucosamine hemiacetal and an oxidized 2-aminogluconate derivative. Distinct lipid A phosphatases directed to the 1 or the 4′-positions have been identified previously in extracts of R. etli and Rhizobium leguminosarum. The corresponding structural genes, lpxE and lpxF, respectively, have also been identified. Here, we describe the isolation and characterization of R. etli deletion mutants in each of these phosphatase genes and the construction of a double phosphatase mutant. Mass spectrometry confirmed that the mutant strains completely lacked the wild-type lipid A species and accumulated the expected phosphate-containing derivatives. Moreover, radiochemical analysis revealed that phosphatase activity was absent in membranes prepared from the mutants. Our results indicate that LpxE and LpxF are solely responsible for selectively dephosphorylating the lipid A molecules of R. etli. All the mutant strains showed an increased sensitivity to polymyxin relative to the wild-type. However, despite the presence of altered lipid A species containing one or both phosphate groups, all the phosphatase mutants formed nitrogen-fixing nodules on Phaseolus vulgaris. Therefore, the dephosphorylation of lipid A molecules in R. etli is not required for nodulation but may instead play a role in protecting the bacteria from cationic antimicrobial peptides or other immune responses of plants. 相似文献
18.
Paralog gene trees, which reflect the increase of genomic complexity in the evolution, can be complicated and ambiguous. A simpler complementary approach is analysis of density distribution of paralog pairs. It can reveal general features of genome evolution, which may be hidden in the forest of gene trees. It is known that distribution of human paralog pairs along the axis of protein divergence between pair members forms two main peaks. Here I show that there are three main peaks in the mouse genome. Thus, the multimodality of paralog pair distribution seems to be a fundamental feature of mammalian genomes. Despite the great diversity of domains presented in small amounts or in multidomain architectures with a few predominant domains, both in human and mouse the first peak consists mostly of gene pairs with zinc finger domains or olfactory receptor domain. In the mouse the olfactory receptor predominates, which stipulates the three-peak distribution (since in the olfactory receptors the second peak is closer to the first peak than in other genes). The mammalian-wide zinc finger orthologs are biased towards the second peak. Thus, the marsupial orthologs are nearly absent in the first peak of human and mouse. The gene pairs in the first peak show a lower ratio of nonsynonymous to synonymous substitutions, which suggests that their evolution is more constrained. The plausible explanation is that they are in subfunctionalization state (partition of initial function of ancestral gene), whereas the second peak contains gene pairs that are already in neofunctionalization state (acquiring of novel functions). These data suggest that the adaptive radiation of mammals was accompanied by a burst of duplication of zinc finger genes, which are located in the first (most recent) peak of paralog pairs. 相似文献
19.
Einat Schnur Inbal Ayzenshtat Hasmik Sargsyan Fa-Xiang Ding Yael Sagi Naama Kessler Tali Scherf Jacob Anglister 《Journal of molecular biology》2011,410(5):778-797
Interaction of CC chemokine receptor 5 (CCR5) with the human immunodeficiency virus type 1 (HIV-1) gp120/CD4 complex involves its amino-terminal domain (Nt-CCR5) and requires sulfation of two to four tyrosine residues in Nt-CCR5. The conformation of a 27-residue Nt-CCR5 peptide, sulfated at Y10 and Y14, was studied both in its free form and in a ternary complex with deglycosylated gp120 and a CD4-mimic peptide. NMR experiments revealed a helical conformation at the center of Nt-CCR5(1-27), which is induced upon gp120 binding, as well as a helical propensity for the free peptide. A well-defined structure for the bound peptide was determined for residues 7-23, increasing by 2-fold the length of Nt-CCR5's known structure. Two-dimensional saturation transfer experiments and measurement of relaxation times highlighted Nt-CCR5 residues Y3, V5, P8-T16, E18, I23 and possibly D2 as the main binding determinant. A calculated docking model for Nt-CCR5(1-27) suggests that residues 2-22 of Nt-CCR5 interact with the bases of V3 and C4, while the C-terminal segment of Nt-CCR5(1-27) points toward the target cell membrane, reflecting an Nt-CCR5 orientation that differs by 180° from that of a previous model. A gp120 site that could accommodate CCR5Y3 in a sulfated form has been identified. The present model attributes a structural basis for binding interactions to all gp120 residues previously implicated in Nt-CCR5 binding. Moreover, the strong interaction of sulfated CCR5Tyr14 with gp120Arg440 revealed by the model and the previously found correlation between E322 and R440 mutations shed light on the role of these residues in HIV-1 phenotype conversion, furthering our understanding of CCR5 recognition by HIV-1. 相似文献
20.
Faten Charni Veronique Friand Oualid Haddad Hanna Hlawaty Loïc Martin Roger Vassy Olivier Oudar Liliane Gattegno Nathalie Charnaux Angela Sutton 《Biochimica et Biophysica Acta (BBA)/General Subjects》2009