首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dopamine and nitric oxide systems can interact in different processes in the central nervous system. Dopamine and oxidation products have been related to mitochondrial dysfunction. In the present study, intact mitochondria and submitochondrial membranes were incubated with different DA concentrations for 5 min. Dopamine (1 mM) increased nitric oxide production in submitochondrial membranes and this effect was partially prevented in the presence of both DA and NOS inhibitor N(omega)-nitro-L-arginine (L-NNA). A 46% decrease in state 3 oxygen uptake (active respiration state) was found after 15 mM dopamine incubation. When mitochondria were incubated with 15 mM dopamine in the presence of L-NNA, state 3 respiratory rate was decreased by only 17% showing the involvement of NO. As shown for O(2) consumption, the inhibition of cytochrome oxidase by 1 mM DA was mediated by NO. Hydrogen peroxide production significantly increased after 15 mM DA incubation, being mainly due to its metabolism by MAO. Also, DA-induced depolarization was prevented by the addition of L-NNA showing the involvement of nitric oxide in this process too. This work provides evidence that in the studied conditions, dopamine modifies mitochondrial function by a nitric oxide-dependent pathway.  相似文献   

2.
Dopamine is a neurotransmitter that has been related to mitochondrial dysfunction. In this study, striatal intact mitochondria and submitochondrial membranes were incubated with different dopamine concentrations, and changes on mitochondrial function, hydrogen peroxide, and nitric oxide production were evaluated. A 35% decrease in state 3 oxygen uptake (active respiration state) was found after 1 mM dopamine incubation. In addition, mitochondrial respiratory control significantly decreased, indicating mitochondrial dysfunction. High dopamine concentrations induced mitochondrial depolarization. Also, evaluation of hydrogen peroxide production by intact striatal mitochondria showed a significant increase after 0.5 and 1 mM dopamine incubation. Incubation with 0.5 and 1 mM dopamine increased nitric oxide production in submitochondrial membranes by 28 and 49%, respectively, as compared with control values. This study provides evidence that high dopamine concentrations induce striatal mitochondrial dysfunction through a decrease in mitochondrial respiratory control and loss of membrane potential, probably mediated by free radical production.  相似文献   

3.
The present study shows that deprenyl, a known inhibitor of monoamine oxidase B (MAO B), may generate changes in mitochondrial function. Brain submitochondrial membranes (SMP), synaptosomes and cytosolic fractions were incubated with different deprenyl concentrations and nitric oxide synthase (NOS) activity was measured. The effect of deprenyl on oxygen consumption, calcium-induced permeability transition and hydrogen peroxide (H(2)O(2)) production rates was studied in intact mitochondria. Respiratory complexes and monoamine oxidase activities were also measured in submitochondrial membranes. Incubation of brain submitochondrial membranes with deprenyl 10, 25 and 50 microM inhibited nitric oxide synthase activity in a concentration-dependent manner. The same effect was observed in cytosolic fractions and synaptosomes. Monoamine oxidase activity was inhibited at lower deprenyl concentrations (from 0.5 microM). Cytochrome oxidase (complex IV) activity was found 42% increased in the presence of 25 microM deprenyl in a condition of maximal nitric oxide synthase activity. Incubation of brain mitochondria with deprenyl 25 microM produced a 60% increase in oxygen uptake in state 3, but no significant changes were observed in state 4. Pre-incubation of brain mitochondria with deprenyl 0.5 and 1 microM inhibited calcium-induced mitochondrial permeability transition and decreased hydrogen peroxide production rates. Our results suggest that in vitro effects of deprenyl on mitochondrial function can occur through two different mechanisms, involving nitric oxide synthase inhibition and decreased hydrogen peroxide production.  相似文献   

4.
Hanit Brenner-Lavie 《BBA》2008,1777(2):173-185
Deleterious effects of dopamine (DA) involving mitochondrial dysfunction have an important role in DA-associated neuronal disorders, including schizophrenia and Parkinson's disease. DA detrimental effects have been attributed to its ability to be auto-oxidized to toxic reactive oxygen species. Since, unlike Parkinson's disease, schizophrenia does not involve neurodegenerative processes, we suggest a novel mechanism by which DA impairs mitochondrial function without affecting cell viability. DA significantly dissipated mitochondrial membrane potential (Δψm) in SH-SY5Y cells. Bypassing complex I prevented the DA-induced depolarization. Moreover, DA inhibited complex I but not complex II activity in disrupted mitochondria, suggesting complex I participation in DA-induced mitochondrial dysfunction. We further demonstrated that intact mitochondria can accumulate DA in a saturated manner, with an apparent Km = 122.1 ± 28.6 nM and Vmax = 1.41 ± 0.15 pmol/mg protein/min, thereby enabling the interaction between DA and complex I. DA accumulation was an energy and Na+-dependent process. The pharmacological profile of mitochondrial DA uptake differed from that of other characterized DA transporters. Finally, relevance to schizophrenia is demonstrated by an abnormal interaction between DA and complex I in schizophrenic patients. These results suggest a non-lethal interaction between DA and mitochondria possibly via complex I, which can better explain DA-related pathological processes observed in non-degenerative disorders, such as schizophrenia.  相似文献   

5.
The mitochondrial metabolic state regulates the rate of NO release from coupled mitochondria: NO release by heart, liver and kidney mitochondria was about 40-45% lower in state 3 (1.2, 0.7 and 0.4 nmol/min mg protein) than in state 4 (2.2, 1.3 and 0.7 nmol/min mg protein). The activity of mtNOS, responsible for NO release, appears driven by the membrane potential component and not by intramitochondrial pH of the proton motive force. The intramitochondrial concentrations of the NOS substrates, l-arginine (about 310 μM) and NADPH (1.04-1.78 mM) are 60-1000 times higher than their KM values. Moreover, the changes in their concentrations in the state 4-state 3 transition are not enough to explain the changes in NO release. Nitric oxide release was exponentially dependent on membrane potential as reported for mitochondrial H2O2 production [S.S. Korshunov, V.P. Skulachev, A.A. Satarkov, High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 416 (1997) 15-18.]. Agents that decrease or abolish membrane potential minimize NO release while the addition of oligomycin that produces mitochondrial hyperpolarization generates the maximal NO release. The regulation of mtNOS activity, an apparently voltage-dependent enzyme, by membrane potential is marked at the physiological range of membrane potentials.  相似文献   

6.
Mitochondrial damage in PC12 cells, a model for dopaminergic cells, was examined in terms of the contribution of oxidative stress, nitric oxide (*NO), and dopamine to impairment of mitochondrial respiratory control (RC). A kinetic analysis suggested that the oxidative deamination of dopamine catalyzed by monoamine oxidase (MAO) was not a significant source of hydrogen peroxide, because of constrains imposed by the low cytosolic level of dopamine. *NO induced irreversible damage of mitochondrial complex I in PC12 cells: this damage followed a sigmoid response on *NO concentration with a well-defined threshold level. Dopamine did not elicit damage of mitochondria in PC12 cells; however, the amine potentiated the effects of *NO at or near the threshold level, thus leading to irreversible impairment of mitochondrial respiration. This synergism between *NO and dopamine was not observed at *NO concentrations below the threshold level. Depletion of dopamine from the storage vesicles by reserpine protected mitochondria from *NO damage. Dopamine oxidation by *NO increased with pH, and occurred at modest levels at pH 5.5. In spite of this, calculations showed that the oxidation of dopamine in the storage vesicles (pH 5.5) was higher than that in the cytosol (pH 7.4), due to the higher dopamine concentration in the storage vesicles (millimolar range) compared to that in the cytosol (micromolar range). It is suggested that storage vesicles may be the cellular sites where the potential for dopamine oxidation by *NO is higher.These data provide further support to the hypothesis that dopamine renders dopaminergic cells more susceptible to the mitochondrial damaging effects of *NO. In the early stages of Parkinson's disease, *NO production increases until reaching a point near the threshold level that induces neuronal damage. Dopamine stored in dopaminergic cells may cause these cells to be more susceptible to the deleterious effects of *NO, which involve irreversible impairment of mitochondrial respiration.  相似文献   

7.
Several studies on mitochondrial functions following brief exposure (5-15 min) to dopamine (DA) in vitro have produced extremely variable results. In contrast, this study demonstrates that a prolonged exposure (up to 2 h) of disrupted or lysed mitochondria to DA (0.1-0.4 mM) causes a remarkable and dose-dependent inhibition of complex I and complex IV activities. The inhibition of complex I and complex IV activities is not prevented by the antioxidant enzyme catalase (0.05 mg/ml) or the metal-chelator diethylenetriaminepentaacetic acid (0.1 mM) or the hydroxyl radical scavengers like mannitol (20 mM) and dimethyl sulphoxide (20 mM) indicating the non-involvement of *OH radicals and Fenton's chemistry in this process. However, reduced glutathione (5 mM), a quinone scavenger, almost completely abolishes the DA effect on mitochondrial complex I and complex IV activities, while tyrosinase (250 units/ml) which catalyses the conversion of DA to quinone products dramatically enhances the former effect. The results suggest the predominant involvement of quinone products instead of reactive oxygen radicals in long-term DA-mediated inactivation of complex I and complex IV. This is further indicated from the fact that significant amount of quinones and quinoprotein adducts (covalent adducts of reactive quinones with protein thiols) are formed during incubation of mitochondria with DA. Monoamine oxidase A (MAO-A) inhibitor clorgyline also provides variable but significant protection against DA induced inactivation of complex I and complex IV activities, presumably again through inhibition of quinoprotein formation. Mitochondrial ability to reduce tetrazolium dye 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) in presence of a respiratory substrate like succinate (10 mM) is also reduced by nearly 85% following 2 h incubation with 0.4 mM DA. This effect of DA on mitochondrial function is also dose-dependent and presumably mediated by quinone products of DA oxidation. The mitochondrial dysfunction induced by dopamine during extended periods of incubation as reported here have important implications in the context of dopaminergic neuronal death in Parkinson's disease (PD).  相似文献   

8.
Production of nitric oxide (NO) by mitochondrial membranes as methemoglobin formation sensitive to N(G)-methyl-l-arginine inhibition and mitochondrial O(2) consumption in metabolic states 3 and 4 and the respiratory control (state 3/state 4) were measured at early stages of rat thymocyte apoptosis. Programmed cell death was induced by addition of methylprednisolone and etoposide to thymocyte suspensions. Increased NO production by mitochondrial membranes was observed after 30 min of methylprednisolone and etoposide addition and was accompanied by mitochondrial respiratory impairment as an early phenomenon in apoptotic thymocytes. The respiratory control in isolated mitochondria from untreated thymocytes was 4.2 +/- 0.2 and decreased to 3.1 +/- 0.2 and 1.9 +/- 0.3 after 1 h of methylprednisolone and etoposide treatment, respectively. The low mitochondrial respiratory control was accompanied by a marked decrease in GSH and cytochrome c content. Moreover, an inhibitory effect in the amount of apoptosis due to thymocyte pretreatment with N(G)-methyl-l-arginine and N(omega)-nitro-(l)-arginine (l-NNA), indicate that nitric oxide production is closely involved in the signaling of rat thymocyte apoptosis.  相似文献   

9.
10.
The features of neuronal damage induced by the mitochondrial toxin NaN3 were investigated in rat primary cortical neuron cultures. Cell viability (MTT colorimetric determination) and transmembrane mitochondrial potential (J-C1 fluorescence) were concentration-dependently reduced 24 h after NaN3; neither nuclear fragmentation by DAPI, nor Annexin V positivity by flow cytometry were detected, ruling out the occurrence of apoptosis. The loss in cell viability (to 54 ± 2%) observed 24 h after a 10-min treatment with 3 mM NaN3 was prevented by the NMDA glutamate receptor antagonist MK801 (1 μM), by the antioxidants trolox (100 μM) and acetyl-l-carnitine (1 mM) and by the nitric oxide synthase inhibitor, L-NAME (100 μM), but not by the guanylylcyclase inhibitor ODQ, 10 μM. The mitochondrial dysfunction induced by NaN3 provides a common platform for investigating the mechanisms of both ischemic and degenerative neuronal injury, useful for screening potential protective agents against neuronal death. Rita Selvatici and Maurizio Previati equally contributed to the work.  相似文献   

11.
Mouse brain mitochondria have a nitric oxide synthase (mtNOS) of 147 kDa that reacts with anti-nNOS antibodies and that shows an enzymatic activity of 0.31-0.48 nmol NO/min mg protein. Addition of chlorpromazine to brain submitochondrial membranes inhibited mtNOS activity (IC50 = 2.0 +/- 0.1 microM). Brain mitochondria isolated from chlorpromazine-treated mice (10 mg/kg, i.p.) show a marked (48%) inhibition of mtNOS activity and a markedly increased state 3 respiration (40 and 29% with malate-glutamate and succinate as substrates, respectively). Respiration of mitochondria isolated from control mice was 16% decreased by arginine and 56% increased by NNA (Nomega-nitro-L-arginine) indicating a regulatory activity of mtNOS and NO on mitochondrial respiration. Similarly, mitochondrial H2O2 production was 55% decreased by NNA. The effect of NNA on mitochondrial respiration and H2O2 production was significantly lower in chlorpromazine-added mitochondria and absent in mitochondria isolated from chlorpromazine-treated mice. Results indicate that chlorpromazine inhibits brain mtNOS activity in vitro and can exert the same action in vivo.  相似文献   

12.
The reversible inhibitory effects of nitric oxide (.NO) on mitochondrial cytochrome oxidase and O(2) uptake are dependent on intramitochondrial.NO utilization. This study was aimed at establishing the mitochondrial pathways for.NO utilization that regulate O-(2) generation via reductive and oxidative reactions involving ubiquinol oxidation and peroxynitrite (ONOO(-)) formation. For this purpose, experimental models consisting of intact mitochondria, ubiquinone-depleted/reconstituted submitochondrial particles, and ONOO(-)-supplemented mitochondrial membranes were used. The results obtained from these experimental approaches strongly suggest the occurrence of independent pathways for.NO utilization in mitochondria, which effectively compete with the binding of.NO to cytochrome oxidase, thereby releasing this inhibition and restoring O(2) uptake. The pathways for.NO utilization are discussed in terms of the steady-state levels of.NO and O-(2) and estimated as a function of O(2) tension. These calculations indicate that mitochondrial.NO decays primarily by pathways involving ONOO(-) formation and ubiquinol oxidation and, secondarily, by reversible binding to cytochrome oxidase.  相似文献   

13.
Both reactive dopamine metabolites and mitochondrial dysfunction have been implicated in the neurodegeneration of Parkinson's disease. Dopamine metabolites, dopamine quinone and reactive oxygen species, can directly alter protein function by oxidative modifications, and several mitochondrial proteins may be targets of this oxidative damage. In this study, we examined, using isolated brain mitochondria, whether dopamine oxidation products alter mitochondrial function. We found that exposure to dopamine quinone caused a large increase in mitochondrial resting state 4 respiration. This effect was prevented by GSH but not superoxide dismutase and catalase. In contrast, exposure to dopamine and monoamine oxidase-generated hydrogen peroxide resulted in a decrease in active state 3 respiration. This inhibition was prevented by both pargyline and catalase. We also examined the effects of dopamine oxidation products on the opening of the mitochondrial permeability transition pore, which has been implicated in neuronal cell death. Dopamine oxidation to dopamine quinone caused a significant increase in swelling of brain and liver mitochondria. This was inhibited by both the pore inhibitor cyclosporin A and GSH, suggesting that swelling was due to pore opening and related to dopamine quinone formation. In contrast, dopamine and endogenous monoamine oxidase had no effect on mitochondrial swelling. These findings suggest that mitochondrial dysfunction induced by products of dopamine oxidation may be involved in neurodegenerative conditions such as Parkinson's disease and methamphetamine-induced neurotoxicity.  相似文献   

14.
It is known that permeability of the inner mitochondrial membrane is low to most univalent cations (K+, Na+, H+) but high to Tl+. Swelling, state 4, state 3, and 2,4-dinitrophenol (DNP)-stimulated respiration as well as the membrane potential (ΔΨmito) of rat liver mitochondria were studied in media containing 0–75 mM TlNO3 either with 250 mM sucrose or with 125 mM nitrate salts of other monovalent cations (KNO3, or NaNO3, or NH4NO3). Tl+ increased permeability of the inner mitochondrial membrane to K+, Na+, and H+, that was manifested as stimulation of the swelling of nonenergized and energized mitochondria as well as via an increase of state 4 and dissipation of ΔΨmito. These effects of Tl+ increased in the order of sucrose <K+ <Na+ ≤ NH4+. They were stimulated by inorganic phosphate and decreased by ADP, Mg2+, and cyclosporine A. Contraction of energized mitochondria, swollen in the nitrate media, was markedly inhibited by quinine. It suggests participation of the mitochondrial K+/H+ exchanger in extruding of Tl+-induced excess of univalent cations from the mitochondrial matrix. It is discussed that Tl+ (like Cd2+ and other heavy metals) increases the ion permeability of the inner membrane of mitochondria regardless of their energization and stimulates the mitochondrial permeability transition pore in low conductance state. The observed decrease of state 3 and DNP-stimulated respiration in the nitrate media resulted from the mitochondrial swelling rather than from an inhibition of respiratory enzymes as is the case with the bivalent heavy metals.  相似文献   

15.
The study has demonstrated that dopamine induces membrane depolarization and a loss of phosphorylation capacity in dose-dependent manner in isolated rat brain mitochondria during extended in vitro incubation and the phenomena are not prevented by oxyradical scavengers or metal chelators. Dopamine effects on brain mitochondria are, however, markedly prevented by reduced glutathione and N-acetyl cysteine and promoted by tyrosinase present in the incubation medium. The results imply that quinone oxidation products of dopamine are involved in mitochondrial damage under this condition. When PC12 cells are exposed to dopamine in varying concentrations (100-400 μM) for up to 24 h, a pronounced impairment of mitochondrial bio-energetic functions at several levels is observed along with a significant (nearly 40%) loss of cell viability with features of apoptotic nuclear changes and increased activities of caspase 3 and caspase 9 and all these effects of dopamine are remarkably prevented by N-acetyl cysteine. N-acetyl cysteine also blocks nearly completely the dopamine induced increase in reactive oxygen species production and the formation of quinoprotein adducts in mitochondrial fraction within PC12 cells and also the accumulation of quinone products in the culture medium. Clorgyline, an inhibitor of MAO-A, markedly decreases the formation of reactive oxygen species in PC12 cells upon dopamine exposure but has only mild protective actions against quinoprotein adduct formation, mitochondrial dysfunctions, cell death and caspase activation induced by dopamine. The results have indicated that quinone oxidation products and not reactive oxygen species are primarily involved in cytotoxic effects of dopamine and the mitochondrial impairment plays a central role in the latter process. The data have clear implications in the pathogenesis of Parkinson's disease.  相似文献   

16.
Mitochondrial dysfunction has been implicated in many diseases, including diabetes. It is well known that oxygen free radical species are produced endogenously by mitochondria, and also nitric oxide (NO) by nitric oxide synthases (NOS) associated to mitochondrial membranes, in consequence these organelles constitute main targets for oxidative damage. The aim of this study was to analyze mitochondrial physiology and NO production in brain cortex mitochondria of streptozotocin (STZ) diabetic rats in an early stage of diabetes and the potential effect of l-arginine administration. The diabetic condition was characterized by a clear hyperglycaemic state with loose of body weight after 4 days of STZ injection. This hyperglycaemic state was associated with mitochondrial dysfunction that was evident by an impairment of the respiratory activity, increased production of superoxide anion and a clear mitochondrial depolarization. In addition, the alteration in mitochondrial physiology was associated with a significant decrease in both NO production and nitric oxide synthase type I (NOS I) expression associated to the mitochondrial membranes. An increased level of thiobarbituric acid-reactive substances (TBARS) in brain cortex homogenates from STZ-diabetic rats indicated the presence of lipid peroxidation. l-arginine treatment to diabetic rats did not change blood glucose levels but significantly ameliorated the oxidative stress evidenced by lower TBARS and a lower level of superoxide anion. This effect was paralleled by improvement of mitochondrial respiratory function and a partial mitochondrial repolarization.In addition, the administration of l-arginine to diabetic rats prevented the decrease in NO production and NOSI expression. These results could indicate that exogenously administered l-arginine may have beneficial effects on mitochondrial function, oxidative stress and NO production in brain cortex mitochondria of STZ-diabetic rats.  相似文献   

17.
Oxygen dependence of mitochondrial nitric oxide synthase activity   总被引:3,自引:0,他引:3  
The effect of O(2) concentration on mitochondrial nitric oxide synthase (mtNOS) activity and on O(2)(-) production was determined in rat liver, brain, and kidney submitochondrial membranes. The K(mO(2)) for mtNOS were 40, 73, and 37 microM O(2) and the V(max) were 0.51, 0.49, and 0.42 nmol NO/minmg protein for liver, brain, and kidney mitochondria, respectively. The rates of O(2)(-) production, 0.5-12.8 nmol O(2)(-)/minmg protein, depended on O(2) concentration up to 1.1mM O(2). Intramitochondrial NO, O(2)(-), and ONOO(-) steady-state concentrations were calculated for the physiological level of 20 microM O(2); they were 20-39 nM NO, 0.17-0.33 pM O(2)(-), and 0.6-2.2 nM ONOO(-) for the three organs. These levels establish O(2)/NO ratios of 513-1000 that correspond to physiological inhibitions of cytochrome oxidase by intramitochondrial NO of 16-25%. The production of NO by mtNOS appears as a regulatory process that modulates mitochondrial oxygen uptake and cellular energy production.  相似文献   

18.
Effects of exogenous nitric oxide (NO) on starch degradation, oxidation in mitochondria and K+/Na+ accumulation during seed germination of wheat were investigated under a high salinity level. Seeds of winter wheat (Triticum aestivum L., cv. Huaimai 17) were pre-soaked with 0 mM or 0.1 mM of sodium nitroprusside (SNP, as nitric oxide donor) for 20 h just before germination under 300 mM NaCl. At 300 mM NaCl, exogenous NO increased germination rate and weights of coleoptile and radicle, but decreased seed weight. Exogenous NO also enhanced seed respiration rate and ATP synthesis. In addition, seed starch content decreased while soluble sugar content increased by exogenous NO pre-treatment, which was in accordance with the improved amylase activities in the germinating seeds. Exogenous NO increased the activities of superoxide dismutase (SOD, EC 1.15.1.1) and catalase (CAT, EC 1.11.1.6); whereas decreased the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2), and superoxide anions (O2??) release rate in the mitochondria. Exogenous NO also decreased Na+ concentration while increased K+ concentration in the seeds thereby maintained a balance between K+ and Na+ during germination under salt stress. It is concluded that exogenous NO treatment on wheat seeds may be a good option to improve seed germination and crop establishment under saline conditions.  相似文献   

19.
12(S)-Hydroxyeicosatetraenoic acid (12-HETE) is one of the metabolites of arachidonic acid involved in pathological conditions associated with mitochondria and oxidative stress. The present study tested effects of 12-HETE on mitochondrial functions. In isolated rat heart mitochondria, 12-HETE increases intramitochondrial ionized calcium concentration that stimulates mitochondrial nitric oxide (NO) synthase (mtNOS) activity. mtNOS-derived NO causes mitochondrial dysfunctions by decreasing mitochondrial respiration and transmembrane potential. mtNOS-derived NO also produces peroxynitrite that induces release of cytochrome c and stimulates aggregation of mitochondria. Similarly, in HL-1 cardiac myocytes, 12-HETE increases intramitochondrial calcium and mitochondrial NO, and induces apoptosis. The present study suggests a novel mechanism for 12-HETE toxicity.  相似文献   

20.
Lee JW  Kim WH  Yeo J  Jung MH 《Molecules and cells》2010,30(6):545-549
Mitochondrial dysfunction induces apoptosis of pancreatic β-cells and leads to type 2 diabetes, but the mechanism involved in this process remains unclear. Chronic endoplasmic reticulum (ER) stress plays a role in the apoptosis of pancreatic β-cells; therefore, in current study, we investigated the implication of ER stress in mitochondrial dysfunction-induced β-cells apoptosis. Metabolic stress induced by antimycin or oligomycin was used to impair mitochondrial function in MIN6N8 cells, which are mouse pancreatic β-cells. Impaired mitochondria dysfunction increased ER stress proteins such as p-eIF2α, GRP78 and GRP 94, as well as ER stress-associated apoptotic factor, CHOP, and activated JNK. AMP-activated protein kinase (AMPK) was also activated under mitochondria dysfunction by metabolic stress. However, the inhibition of AMPK by treatment with compound C, inhibitor of AMPK, and overexpression of mutant dominant negative AMPK (AMPKK45R) blocked the induction of ER stress, which was consist-ent with the decreased β-cell apoptosis and increase of insulin content. Furthermore, mitochondrial dysfunction increased the expression of the inducible nitric oxide synthase (iNOS) gene and the production of nitric oxide (NO), but NO production was prevented by compound C and mutant dominant negative AMPK (AMPK-K45R). Moreover, treatment with 1400W, which is an inhibitor of iNOS, prevented ER stress and apoptosis induced by mitochondrial dysfunction. Treatment of MIN6N8 cells with lipid mixture, physiological conditions of impaired mitochondria function, activated AMPK, increased NO production and induced ER stress. Collectively, these data demonstrate that mitochondrial dysfunction activates AMPK, which induces ER stress via NO production, resulting in pancreatic β-cells apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号