首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present work, the hydrophobic properties of proSP-B, the precursor of pulmonary surfactant protein SP-B, have been analyzed under different pH conditions, and the sequence segment at position 111-135 of the N-terminal domain of the precursor has been detected as potentially possessing pH-dependent hydrophobic properties. We have studied the structure and lipid-protein interactions of the synthetic peptides BpH, with sequence corresponding to the segment 111-135 of proSP-B, and BpH-W, bearing the conservative substitution F127W to use the tryptophan as an intrinsic fluorescent probe. Peptide BpH-W interacts with both zwitterionic and anionic phospholipid vesicles at neutral pH, as monitored by the blue-shifted maximum emission of its tryptophan reporter. Insertion of tryptophan into the membranes is further improved at pH 5.0, especially in negatively-charged membranes. Peptides BpH and BpH-W also showed pH-dependent properties to insert into phospholipid monolayers. We have also found that the single sequence variation F120K decreases substantially the interaction of this segment with phospholipid surfaces as well as its pH-dependent insertion into deeper regions of the membranes. We hypothesize that this region could be involved in pH-triggered conformational changes occurring in proSP-B along the exocytic pathway of surfactant in type II cells, leading to the exposure of the appropriate segments for processing and assembly of SP-B within surfactant lipids.  相似文献   

2.
SP-B, a protein absolutely required to maintain the lungs open after birth, is synthesized in the pneumocytes as a precursor containing C-terminal and N-terminal domains flanking the mature sequence. These flanking-domains are cleaved to produce mature SP-B, coupled with its assembly into pulmonary surfactant lipid-protein complexes. In the present work we have optimized over-expression in Escherichia coli and purification of rproSP-B(DeltaC), a recombinant form of human proSP-B lacking the C-terminal flanking peptide, which is still competent to restore SP-B function in vivo. rProSP-B(DeltaC) has been solubilized, purified and refolded from bacterial inclusion bodies in amounts of about 4 mg per L of culture. Electrophoretic mobility, immunoreactivity, N-terminal sequencing and peptide fingerprinting all confirmed that the purified protein had the expected mass and sequence. Once refolded, the protein was soluble in aqueous buffers. Circular dichroism and fluorescence emission spectra of bacterial rproSP-B(DeltaC) indicated that the protein is properly folded, showing around 32% alpha-helix and a mainly hydrophobic environment of its tryptophan residues. Presence of zwitterionic or anionic phospholipids vesicles caused changes in the fluorescence emission properties of rproSP-B(DeltaC) that were indicative of lipid-protein interaction. The association of this SP-B precursor with membranes suggests an intrinsic amphipathic character of the protein, which spontaneously adsorbs at air-liquid interfaces either in the absence or in the presence of phospholipids. The analysis of the structure and properties of recombinant proSP-B(DeltaC) in surfactant-relevant environments will open new perspectives on the investigation of the mechanisms of lipid and protein assembly in surfactant complexes.  相似文献   

3.
Contradictory results have been reported with respect to the depth of penetration and the orientation of pulmonary surfactant protein SP-B in phospholipid membranes and its relative selectivity to interact with anionic over zwitterionic phospholipid species. In the present study we have re-evaluated lipid-protein interactions of SP-B by analysing F?rster resonance energy transfer (FRET) efficiencies, obtained from time-resolved measurements, from the single tryptophan in SP-B to different fluorescently labelled phospholipids in matrix bilayers made of either pure phosphatidylcholine (POPC) or the full lipid extract obtained from purified surfactant. In the background of POPC membranes SP-B exhibits a certain level of selectivity for anionic fluorescent phospholipids over the corresponding zwitterionic analogues, but apparently no preference for phosphatidylglycerol over other anionic species such as phosphatidylserine. No selectivity was detected in membranes made of full surfactant lipids, indicating that specific lipid-protein binding sites could already be occupied by endogenous anionic phospholipids. Furthermore, we have analysed the fit of two different models of how SP-B could be orientated with respect to phospholipid membrane surfaces to the FRET data. The FRET results are consistent with topology models in which the protein has a superficial orientation, with no regions of exclusion by the protein to the access of phospholipids, both in POPC membranes and in membranes made of the whole surfactant lipid fraction. This discards a deep penetration of the protein into the core of bilayers and suggests that most hydrophobic segments of SP-B could participate in protein-protein instead of lipid-protein interactions.  相似文献   

4.
Surfactant proteolipid SP-B is a hydrophobic protein of Mr = 8000 identified in organic solvent extracts of pulmonary surfactant. Analysis of the human SP-B RNA predicts that the active surfactant peptide is derived by proteolysis of an Mr = 40,000 precursor. In the present work, characteristics of synthesis, secretion and processing of SP-B were demonstrated in a pulmonary adenocarcinoma cell line by immunoprecipitation of radiolabelled precursors. Treatment of cells with tunicamycin resulted in synthesis and secretion of unglycosylated proSP-B of Mr = 39,000. Immunoprecipitation of protein produced by in vitro translation of human lung poly(A)+ RNA detected an Mr = 40,000 protein; the size discrepancy is likely related to cleavage of a leader signal sequence. Endoglycosidase-H-sensitive precursors of Mr = 41,000-43,000, pI = 5.1-5.4 were the first isoforms detected within the cells and were processed to endoglycosidase-H-resistant isoforms and secreted. Neuraminidase and endoglycosidase-F-sensitive forms of proSP-B were first detected in the media at 60 min as Mr = 42-46,000 isoforms with pI = 4.6-5.1. Proteolytically processed isoforms of proSP-B were detected primarily in the media and were generated by cleavage of an amino-terminal Mr = 16,000 peptide resulting in Mr = 27,000-33,000 isoforms (pH = 5.6-6.8). The Mr = 27,000-33,000 isoforms were sensitive to neuraminidase, resulting in isoforms with pH = 6.0-6.8. Digestion of the Mr = 27,000-33,000 peptide with endoglycosidase-F resulted in isoforms of Mr = 23,000, pH = 6.0-6.8. The endoglycosidase-F-resistant peptide of Mr = 16,000, pI = 4.2-4.4 was identified with an antiserum generated against synthetic peptides derived from the amino-terminal domain, as deduced from the SP-B DNA sequence. Further proteolytic processing of the Mr = 27,000-33,000 isoforms to the Mr = 8000 peptide detected in surfactant was not observed in this cell line. Thus, in the H441-4 cells (a cell line with morphologic features of Clara cells), SP-B is synthesized as a preproprotein which undergoes cleavage of a signal sequence and addition of asparagine-linked carbohydrate; proSP-B is secreted by processes which are independent of glycosylation. SP-B peptides of Mr = 27,000-33,000 and Mr = 16,000, representing carboxy and amino-terminal domains, accumulate in the media.  相似文献   

5.
SP-B, a protein absolutely required to maintain the lungs open after birth, is synthesized in the pneumocytes as a precursor containing C-terminal and N-terminal domains flanking the mature sequence. These flanking-domains are cleaved to produce mature SP-B, coupled with its assembly into pulmonary surfactant lipid-protein complexes. In the present work we have optimized over-expression in Escherichia coli and purification of rproSP-BΔC, a recombinant form of human proSP-B lacking the C-terminal flanking peptide, which is still competent to restore SP-B function in vivo. rProSP-BΔC has been solubilized, purified and refolded from bacterial inclusion bodies in amounts of about 4 mg per L of culture. Electrophoretic mobility, immunoreactivity, N-terminal sequencing and peptide fingerprinting all confirmed that the purified protein had the expected mass and sequence. Once refolded, the protein was soluble in aqueous buffers. Circular dichroism and fluorescence emission spectra of bacterial rproSP-BΔC indicated that the protein is properly folded, showing around 32% α-helix and a mainly hydrophobic environment of its tryptophan residues. Presence of zwitterionic or anionic phospholipids vesicles caused changes in the fluorescence emission properties of rproSP-BΔC that were indicative of lipid-protein interaction. The association of this SP-B precursor with membranes suggests an intrinsic amphipathic character of the protein, which spontaneously adsorbs at air-liquid interfaces either in the absence or in the presence of phospholipids. The analysis of the structure and properties of recombinant proSP-BΔC in surfactant-relevant environments will open new perspectives on the investigation of the mechanisms of lipid and protein assembly in surfactant complexes.  相似文献   

6.
Synthesis of pulmonary surfactant-associated glycoproteins of Mr 28,000-36,000 (SP-A) and Mr 42,000-46,000 (proSP-B) has been identified in a continuous cell line derived from a human lung adenocarcinoma. SP-A was detected by immunoblot analysis, ELISA assay and by [35S]methionine labelling of the cells. SP-A was secreted into the media as an endoglycosidase F sensitive glycoprotein which co-migrated with the isoforms of SP-A identified in human lavage fluid by 2D-IEF-SDS-PAGE. Hybridization of cellular RNA with SP-A-specific cDNA identified an abundant 2.2 kb mRNA species, identical to that observed in human lung. SP-A RNA and protein content were markedly inhibited by dexamethasone in a dose-dependent fashion. Under identical culture conditions, synthesis of a distinct surfactant protein, SP-B, was markedly stimulated by the glucocorticoid. The SP-B precursor was secreted into the media as heterogeneous Mr 42,000-46,000 protein, pI 4.6-5.1, and was sensitive to endoglycosidase F. Synthesis of proSP-B was enhanced by the glucocorticoid in a dose-dependent fashion and was associated with increased SP-B mRNA of 2.0 kb detected by Northern blot analysis. The cell line secreted proSP-B as Mr 42,000-46,000 glycosylated protein and did not process the precursor to the Mr 7000-8000 surfactant peptide. In summary, a human adenocarcinoma cell line has been identified which synthesizes and secretes two surfactant-associated proteins, SP-A and proSP-B. Glucocorticoid enhanced SP-B but inhibited SP-A expression in this cell line. The identification of a continuous cell line secreting surfactant proteins may be useful in the study of synthesis and secretion of these important proteins and for production of the proteins for clinical uses.  相似文献   

7.
Surfactant protein B (SP-B) is a critical component of pulmonary surfactant, and a deficiency of active SP-B results in fatal respiratory failure. SP-B is synthesized by type-II pneumocytes as a 42-kDa propeptide (proSP-B), which is posttranslationally processed to an 8-kDa surface-active protein. Napsin A is an aspartic protease expressed in type-II pneumocytes. To characterize the role of napsin A in the processing of proSP-B, we colocalized napsin A and precursors of SP-B as well as SP-B in the Golgi complex, multivesicular, composite, and lamellar bodies of type-II pneumocytes in human lungs using immunogold labeling. Furthermore, we measured aspartic protease activity in isolated lamellar bodies as well as isolated human type-II pneumocytes and studied the cleavage of proSP-B by napsin A and isolated lamellar bodies in vitro. Both, napsin A and isolated lamellar bodies cleaved proSP-B and generated three identical processing products. Processing of proSP-B by isolated lamellar bodies was completely inhibited by an aspartic protease inhibitor. Sequence analysis of proSP-B processing products revealed several cleavage sites in the N- and C-terminal propeptides as well as one in the mature peptide. Two of the four processing products generated in vitro were also detected in type-II pneumocytes. In conclusion, our results show that napsin A is involved in the N- and C-terminal processing of proSP-B in type-II pneumocytes.  相似文献   

8.
9.
Wang Y  Rao KM  Demchuk E 《Biochemistry》2003,42(14):4015-4027
The location and depth of each residue of lung pulmonary surfactant protein B (SP-B(1-25)) in a phospholipid bilayer (PB) was determined by fluorescence quenching using synthesized single-residue-substituted peptides that were reconstituted into 1,2-dipalmitoyl phosphatidylcholine (DPPC)-enriched liposomes. The single-residue substitutions in peptides were either aspartate or tryptophan. The aspartate was subsequently labeled with the N-cyclohexyl-N'-(4-(dimethylamino)naphthyl)carbodiimide (NCD-4) fluorophore, whereas tryptophan is autofluorescent. Spin-labeled compounds, 5-doxylstearic acid (5-DSA), 7-doxylstearic acid (7-DSA), 12-doxylstearic acid (12-DSA), 4-(N,N-dimethyl-N-hexadecyl)ammonium-2,2,6,6-tetramethylpiperidine-1-oxyl iodide (CAT-16), and 4-trimethylammonium-2,2,6,6-tetramethylpiperidine-1-oxy iodide (CAT-1), were used in the quenching experiments. The effective quenching order is determined by the accessibility of the quencher to a fluorescent group on the peptide. The order of quenching efficiency provides information about the relative locations of individual residues in the PB. Our data indicate that residues Phe1-Pro6 are located at the surface of PB, residues Tyr7-Trp9 are embedded in PB, and residues Leu10-Ile22 are involved in an amphipathic alpha-helix with its axis parallel to the surface of PB; residues Pro23-Gly25 reside at the surface. The effects of intermolecular disulfide bond formation in the SP-B(1-25) dimer were also investigated. The experiments suggest that the SP-B helix A has to rotate at an angle to form a disulfide bond with the neighboring cysteine, which makes the hydrophobic sides of the amphipathic helices face each other, thus forming a hydrophobic domain. The detailed topographical mapping of SP-B(1-25) and its dimer in PB provides new insights into the conformational organization of the lung pulmonary surfactant proteins in the environment that mimics the native state. The environment-specific conformational flexibility of the hydrophobic domain created by SP-B folding may explain the key functional properties of SP-B including their impact on phospholipid transport between the lipid phases and in modulating the cell inflammatory response during respiratory distress syndrome.  相似文献   

10.
Surfactant protein B (SP-B) is essential to the function of pulmonary surfactant and to lamellar body genesis in alveolar epithelial type 2 cells. The bioactive, mature SP-B is derived from multistep post-translational proteolysis of a larger proprotein. The identity of the proteases involved in carboxyl-terminal cleavage of proSP-B remains uncertain. This cleavage event distinguishes SP-B production in type 2 cells from less complete processing in bronchiolar Clara cells. We previously identified pepsinogen C as an alveolar type 2 cell-specific protease that was developmentally regulated in the human fetal lung. We report that pepsinogen C cleaved recombinant proSP-B at Met(302) in addition to an amino-terminal cleavage at Ser(197). Using a well described model of type 2 cell differentiation, small interfering RNA knockdown of pepsinogen C inhibited production of mature SP-B, whereas overexpression of pepsinogen C increased SP-B production. Inhibition of SP-B production recapitulated the SP-B-deficient phenotype evident by aberrant lamellar body genesis. Together, these data support a primary role for pepsinogen C in SP-B proteolytic processing in alveolar type 2 cells.  相似文献   

11.
Surfactant protein SP-B is absolutely required for the surface activity of pulmonary surfactant and postnatal lung function. The results of a previous study indicated that the N-terminal segment of SP-B, comprising residues 1–9, is specifically required for surface activity, and suggested that prolines 2, 4, and 6 as well as tryptophan 9, may constitute essential structural motifs for protein function. In this work, we assessed the role of these two motifs in promoting the formation and maintenance of surface-active films. Three synthetic peptides were synthesized including a peptide corresponding to the N-terminal 37 amino acids of native SP-B and two variants in which prolines 2, 4, 6, or tryptophan 9 were substituted by alanines. All three synthetic peptides were surface-active, as expected from their amphipathic structure. The peptides were also able to insert into dipalmitoylphosphatidylcholine/palmitoyloleoylphosphatidylglycerol (7:3 w/w ratio) monolayers preformed at pressures >30 mN/m, indicating that they perturb and insert into membranes. Substitution of alanine for tryptophan at position 9 significantly decreased both the rate of adsorption/insertion of the peptide into the interface and reinsertion of surface-active material excluded from the film during successive compression-expansion cycles. Substitution of alanines for prolines at positions 2, 4, and 6 did not produce substantial changes in the rate of adsorption/insertion; however, reinsertion of surface-active material into the expanding interface film was not as effective as in the presence of the nativelike peptide. These results suggest that W9 is critical for optimal interface affinity, whereas prolines may promote a conformation that facilitates rapid insertion of the peptide into phospholipid monolayers compressed to the highest pressures during compression-expansion cycling.  相似文献   

12.
A recombinant form of the peptide N-terminally positioned from proSP-B (SP-BN) has been produced in Escherichia coli as fusion with the Maltose Binding Protein, separated from it by Factor Xa cleavage and purified thereafter. This protein module is thought to control assembly of mature SP-B, a protein essential for respiration, in pulmonary surfactant as it progress through the progressively acidified secretory pathway of pneumocytes. Self-aggregation studies of the recombinant propeptide have been carried out as the pH of the medium evolved from neutral to moderately acid, again to neutral and finally basic. The profile of aggregation versus subsequent changes in pH showed differences depending on the ionic strength of the medium, low or moderate, and the presence of additives such as L-arginine (a known aggregation suppressor) and Ficoll 70 (a macromolecular crowder). Circular dichroism studies of SP-BN samples along the aggregation process showed a decrease in α-helical content and a concomitant increase in β-sheet. Intrinsic fluorescence emission of SP-BN was dominated by the emission of Trp residues in neutral medium, being its emission maximum shifted to red at low pH, suggesting that the protein undergoes a pH-dependent conformational change that increases the exposure of their Trp to the environment. A marked increase in the fluorescence emission of the extrinsic probe bis-ANS indicated the exposure of hydrophobic regions of SP-BN at pH 5. The fluorescence of bis-ANS decreased slightly at low ionic strength, but to a great extent at moderate ionic strength when the pH was reversed to neutrality, suggesting that self-aggregation properties of the SP-BN module could be tightly modulated by the conditions of pH and the ionic environment encountered by pulmonary surfactant during assembly and secretion.  相似文献   

13.
Pulmonary surfactant is a lipid-protein complex that coats the alveolar air-liquid interface, enabling the proper functioning of lung mechanics. The hydrophobic surfactant protein SP-B, in particular, plays an indispensable role in promoting the rapid adsorption of phospholipids into the interface. For this, formation of SP-B ring-shaped assemblies seems to be important, as oligomerization could be required for the ability of the protein to generate membrane contacts and to mediate lipid transfer among surfactant structures. SP-B, together with the other hydrophobic surfactant protein SP-C, also promotes permeability of surfactant membranes to polar molecules although the molecular mechanisms underlying this property, as well as its relevance for the surface activity of the protein, remain undefined. In this work, the contribution of SP-B and SP-C to surfactant membrane permeability has been further investigated, by evaluation of the ability of differently-sized fluorescent polar probes to permeate through giant vesicles with different lipid/protein composition. Our results are consistent with the generation by SP-B of pores with defined size in surfactant membranes. Furthermore, incubation of surfactant with an anti-SP-B antibody not only blocked membrane permeability but also affected lipid transfer into the air-water interface, as observed in a captive bubble surfactometer device. Our findings include the identification of SP-C and anionic phospholipids as modulators required for maintaining native-like permeability features in pulmonary surfactant membranes. Proper permeability through membrane assemblies could be crucial to complement the overall role of surfactant in maintaining alveolar equilibrium, beyond its biophysical function in stabilizing the respiratory air-liquid interface.  相似文献   

14.
In both humans and mice, a deficiency of surfactant protein B (SP-B) is associated with a decreased concentration of mature SP-C and accumulation of a larger SP-C peptide, denoted SP-C(i), which is not observed under normal conditions. Isolation of hydrophobic polypeptides from the lungs of children who died with two different SP-B mutations yielded pure SP-C(i) and showed only trace amounts of mature SP-C. Determination of the SP-C(i) covalent structure revealed a 12-residue N-terminal peptide segment, followed by a 35-residue segment that is identical to mature SP-C. The SP-C(i) structure determined herein is similar to that of a proposed late intermediate in the processing of proSP-C, suggesting that SP-C(i) is the immediate precursor of SP-C. In bronchoalveolar lavage fluid from transgenic mice with a focal deficiency of SP-B, SP-C(i) was detected in the biophysically active, large aggregate fraction and was associated with membrane structures that are typical for a large aggregate surfactant. However, unlike SP-C, SP-C(i) exhibited a very poor ability to promote phospholipid adsorption, gave high surface tension during cyclic film compression, and did not bind lipopolysaccharide in vitro. SP-C(i) is thus capable of associating with surfactant lipids, but its N-terminal dodecapeptide segment must be proteolytically removed to generate a biologically functional peptide. The results of this study indicate that the early postnatal fatal respiratory distress seen in SP-B-deficient children is combined with the near absence of active variants of SP-C.  相似文献   

15.
To determine whether small hydrophobic surfactant peptides (SP-B and SP-C) participate in recycling of pulmonary surfactant phospholipid, we determined the effect of these peptides on transfer of 3H- or 14C-labelled phosphatidylcholine from liposomes to isolated rat alveolar Type II cells and Chinese hamster lung fibroblasts. Both natural and synthetic SP-B and SP-C markedly stimulated phosphatidylcholine transfer to alveolar Type II cells and Chinese hamster lung fibroblasts in a dose- and time-dependent fashion. Effects of the peptides on phospholipid uptake were dose-dependent, but not saturable and occurred at both 4 and 37 degrees C. Uptake of labelled phospholipid into a lamellar body fraction prepared from Type II cells was augmented in the presence of SP-B. Neither SP-B nor SP-C augmented exchange of labelled plasma membrane phosphatidylcholine from isolated Type II cells or enhanced the release of surfactant phospholipid when compared to liposomes without SP-B or SP-C. Addition of native bovine SP-B and SP-C to the phospholipid vesicles perturbed the size and structure of the vesicles as determined by electron microscopy. To determine the structural elements responsible for the effect of the peptides on phospholipid uptake, fragments of SP-B were synthesized by solid-phase protein synthesis and their effects on phospholipid uptake assessed in Type II epithelial cells. SP-B (1-60) stimulated phospholipid uptake 7-fold. A smaller fragment of SP-B (15-60) was less active and the SP-B peptide (40-60) failed to augment phospholipid uptake significantly. Like SP-B and SP-C, surfactant-associated protein (SP-A) enhanced phospholipid uptake by Type II cells. However, SP-A failed to significantly stimulate phosphatidylcholine uptake by Chinese hamster lung fibroblasts. These studies demonstrate the independent activity of surfactant proteins SP-B and SP-C on the uptake of phospholipid by Type II epithelial cells and Chinese hamster lung fibroblasts in vitro.  相似文献   

16.
Secretion of lung surfactant phospholipids is a highly regulated process. A variety of physiological and pharmacological agents stimulate surfactant phospholipid secretion in isolated type II cells. Although the lipid and hydrophobic protein components of surfactant are believed to be secreted together by exocytosis of lamellar body contents, regulation of surfactant protein (SP) B and SP-C secretion has not previously been examined. To address the question of whether secretion of SP-B and SP-C is stimulated by the same agonists that stimulate phospholipid secretion, we measured secretion of all four SPs under the same conditions used to measure phosphatidylcholine secretion. Freshly isolated rat type II cells were cultured overnight and exposed to known surfactant phospholipid secretagogues for 2.5 h, after which the amounts of SP-A, SP-B, SP-C, and SP-D in the medium were measured with immunoblotting. Secretion of SP-B and SP-C was stimulated three- to fivefold by terbutaline, 5'-(N-ethylcarboxyamido)adenosine, ATP, 12-O-tetradecanoylphorbol 13-acetate, and ionomycin. Similar to their effects on phospholipid secretion, the stimulatory effects of the agonists were abolished by Ro 31-8220. Secretion of SP-A and SP-D was not stimulated by the secretagogues tested. We conclude that secretion of the phospholipid and hydrophobic protein components of surfactant is similarly regulated, whereas secretion of the hydrophilic proteins is regulated differently.  相似文献   

17.
Pulmonary surfactant protein SP-B is absolutely required for proper function of surfactant in the alveoli, and is an important component of therapeutical surfactant preparations used to treat respiratory pathologies. To explore inherent structural and functional determinants within the amino acid sequence of mature SP-B, porcine SP-B has been subjected to extensive disulfide reduction under highly denaturing conditions and to cysteine carboxyamidomethylation, and the structure, lipid-protein interactions, and surface activity of this modified form have been characterized. Refolding of the reduced protein yielded a form (SP-Br) with secondary structure practically identical to that of the native disulfide-linked SP-B dimer. Reduced SP-Br exhibited higher structural flexibility than native SP-B, as indicated by a higher susceptibility of fluorescence emission to quenching by acrylamide and biphasic behavior during interaction of the protein with lipid bilayers and monolayers. SP-Br had, however, effects similar to those of native SP-B on the thermotropic properties of dipalmitoylphosphatidylcholine (DPPC) bilayers. SP-Br was more effective than native SP-B in promoting interfacial adsorption of phospholipid bilayers into interfacial films, presumably because of its higher structural flexibility, and retained the ability of native SP-B to stabilize DPPC interfacial films compressed to pressures near collapse against spontaneous relaxation. SP-Br also mimicked the behavior of native SP-B in lipid-protein films subjected to dynamic compression-expansion cycling in a captive bubble surfactometer, but only in the presence of phosphatidylglycerol (PG), the main anionic phospholipid in surfactant. The presence of PG appears to be required for SP-Br to acquire the appropriate tertiary folding to produce progressively more efficient lipid-protein films capable of reaching very high pressures upon limited compression with almost no hysteresis.  相似文献   

18.
Pulmonary surfactant isolated by lavage can be separated into large aggregates (LA) and small aggregates (SA). Pulse labeling experiments have shown that the LA subtype is the precursor of the SA subtype. Conversion of LA to SA can be demonstrated in vitro using the technique of surface area cycling. The precise mechanisms of surfactant subtype conversion remain unknown. We have previously reported a decline in surfactant-associated protein B (SP-B) during in vitro subtype conversion of canine surfactant. This led to the hypothesis that SP-B may be degraded by a serine protease 'convertase' during cycling. The current studies used a quantitative slot-blot assay to investigate the fates of SP-A and SP-B during in vitro cycling. These studies confirmed some SP-A is present in SA, but SP-B is confirmed to LA. Conversion leads to an apparent loss of SP-B during cycling. However, SP-B can be recovered from the walls of polypropylene and Teflon tubes by washing with chloroform:methanol. Recovered SP-B migrated on non-reducing tricine gels as a single band with an apparent molecular weight of 17 kDa, corresponding to intact SP-B dimer. Reconstitution studies demonstrated that the recovered SP-B retained its surface active properties as determined on a pulsating bubble surfactometer. We conclude in vitro surface area cycling of canine LA results in the dissociation of SP-B from surfactant lipids resulting in an apparent decline in SP-B levels.  相似文献   

19.
Pulmonary surfactant contains two families of hydrophobic proteins, SP-B and SP-C. Both proteins are thought to promote the formation of the phospholipid monolayer at the air/fluid interface of the lung. The excimer/monomer ratio of pyrene-labeled PC fluorescence intensities was used to investigate the capacity of the hydrophobic surfactant proteins, SP-B and SP-C, to induce lipid mixing between protein-containing small unilamellar vesicles and pyrene-PC-labeled small unilamellar vesicles. At 37 degrees C SP-B induced lipid mixing between protein-containing vesicles and pyrene-PC-labeled vesicles. In the presence of negatively charged phospholipids (PG or PI) the SP-B-induced lipid mixing was enhanced, and dependent on the presence of (divalent) cations. The extent of lipid mixing was maximal at a protein concentration of 0.2 mol%. SP-C was not capable of inducing lipid mixing at 37 degrees C not even at protein concentrations of 1 mol%. The SP-B-induced lipid mixing may occur during the Ca(2+)-dependent transformation of lamellar bodies into tubular myelin and the subsequent formation of the phospholipid monolayer.  相似文献   

20.
Low viscosity of the surface of alveolar fluid is mandatory for undisturbed surfactant function. Based on the known reduction of the viscosity of surfactant-like phospholipid (PL-) mixtures by plasmalogens, the effect of cholesterol and surfactant protein (SP-) B on surface viscosity of these lipid mixtures has been studied. Surface viscosity at the corresponding surface tension was measured with the oscillating drop surfactometer. We found that the viscosity was lowest in cholesterol-, followed by plasmalogen- and SP-B containing samples. Addition of SP-B to a plasmalogen-containing PL-mixture caused a further decrease in viscosity. However, in cholesterol containing mixtures, addition of SP-B led to a significant increase in viscosity, and the effect was reversed by further addition of plasmalogens. We conclude that SP-B, plasmalogens and cholesterol all affect the surface viscosity, thus synergistically regulate monolayer stability. This suggests that they are all needed in vivo for fine tuning of surface properties of pulmonary surfactant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号