首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
1. A comprehensive approach was taken to delineate the site of refractivity of trout to phenobarbital-type (PB-type) hepatic monoxygenase (MO) inducers. 2. Model inducers beta-naphthoflavone (BNF; 3-MC-type), and PB as well as the polychlorinated biphenyl isomers, 3,4,5,3',4',5'-hexachlorobiphenyl (3,4,5-HCB; 3-MC-type) and 2,4,5,2',4',5'-hexachlorobiphenyl (2,4,5-HCB; PB-type) were used to assess MO activities, total cytochromes P450, and [35S]-methionine incorporation into de novo synthesized microsomal protein in both trout and rats. 3. In rainbow trout immunodetection of P450 isozymes and nucleic acid hybridization of rainbow trout P(1)450 mRNA using pfP(1)450-3' (trout 3-MC-inducible, P450IA1 gene) and genomic DNA using pfP(1)450-3' or pSP450-oligo (rat PB-inducible, P450IIB1 gene) cDNAs were carried out. 4. In rainbow trout, PB and 2,4,5-HCB do not increase hepatic MO activities, total cytochromes P450, de novo synthesis of microsomal protein, levels of P450 isozymes, or levels of P(1)450 mRNA. 5. Rainbow trout have, within their genome, DNA with sequence(s) similar to rat P450IIB1, but inducibility of this P450 in trout by PB-type inducers is lacking.  相似文献   

4.
5.
6.
7.
Intestinal absorption offolates has been characterized as a facilitative process with a low pHoptimum. Studies with intestinal epithelial cells have suggested thatthis activity is mediated by the reduced folate carrier (RFC1). In thispaper, we report on folate transport characteristics in an immortalizedrat IEC-6 cell line that was found to exhibit the predominant influxactivity for methotrexate (MTX) at pH 5.5 with a low level of activity at pH 7.4. Transfection of this cell line with an RFC1 construct resulted in clones exhibiting increased MTX uptake at both the pHs andhigh folic acid uptake only at the low pH. For the two clones with thehighest level of transport activity, relative MTX influx at the two pHswas reversed. Moreover, the low pH MTX influx activity([MTX]e = 0.5 µM) was markedly inhibited by 20 µM folic acid while influx at neutral pH was not. Furthermore, in thepresence and absence of glucose at low pH, MTX and folic acid influxactivity was inhibited by azide, while MTX influx at pH 7.4 wasstimulated by azide in the absence of glucose but was unchanged in thepresence of glucose and azide. This was contrasted with the results oftransfection of the same RFC1 construct into an L1210 murine leukemiacell line bearing a nonfunctional endogenous carrier. In this case, theactivity expressed was only at pH 7.4. These data indicate that RFC1can exhibit two distinct types of folate transport activities inintestinal cells that must depend on tissue-specific modulators.

  相似文献   

8.
9.
10.
Kim KA  Park PW  Park JY 《Chirality》2009,21(5):485-491
Amlodipine is a racemic mixture composed of S- and R-form and metabolized stereoselectively. Cytochrome P450 3A (CYP3A) including CYP3A5 are involved in the metabolism of amlodipine and it was reported that polymorphic CYP3A5 genotype modulates the plasma levels of amlodipine and thus affect its pharmacokinetics. This study was conducted to find whether stereoselective pharmacokinetics of amlodipine was affected by the polymorphic CYP3A5 genotype. Seventeen healthy subjects were genotyped for CYP3A5*3 variant. After a single dose of 10-mg amlodipine, enantiomers of amlodipine were analyzed using HPLC-MS/MS equipped with an AGP column. Amlodipine showed stereoselective pharmacokinetics. S-amlodipine exhibited higher plasma levels than R-amlodipine in both genotype groups. S-amlodipine showed 15% higher mean peak plasma concentrations (Cmax) in CYP3A5*1/*3 carriers (3.28 ng/ml) than CYP3A5*3/*3 carriers (2.85 ng/ml) (P = 0.194) and R-amlodipine also showed 21% higher Cmax in CYP3A5*1/*3 carriers (3.33 ng/ml) than CYP3A5*3/*3 carriers (2.75 ng/ml) (P = 0.114). CYP3A5*1/*3 carriers also have 23 and 12% higher mean area under the time versus concentration curve of R-amlodipine and S-amlodipine than CYP3A5*3/*3 carriers, respectively (for R-amlodipine, 147.1 ng*h/ml for CYP3A5*1/*3 carriers versus 121.8 ng*h/ml for CYP3A5*3/*3 carriers, P = 0.234; for S-amlodipine, 161.6 ng*h/ml for CYP3A5*1/*3 carriers vs. 144.2 ng*h/ml for CYP3A5*3/*3 carriers, P = 0.353). Other pharmacokinetic parameters also showed no significant difference between them. In conclusion, the present study showed that despite the evidence that amlodipine is stereoselectively metabolized, CYP3A5*3 genotype did not affect stereoselective disposition of amlodipine. It provides the evidence that CYP3A5*3genotype plays a minor role in the interindividual variability of stereoselective disposition of amlodipine in humans.  相似文献   

11.
The roles of CYP lipid-metabolizing pathways in endothelial cells are poorly understood. Human endothelial cells expressed CYP2J2 and soluble epoxide hydrolase (sEH) mRNA and protein. The TLR-4 agonist LPS (1 μg/ml; 24 h) induced CYP2J2 but not sEH mRNA and protein. LC–MS/MS analysis of the stable commonly used human endothelial cell line EA.Hy926 showed active epoxygenase and epoxide hydrolase activity: with arachidonic acid (stable epoxide products 5,6-DHET, and 14,15-DHET), linoleic acid (9,10-EPOME and 12,13-EPOME and their stable epoxide hydrolase products 9,10-DHOME and 12,13-DHOME), docosahexaenoic acid (stable epoxide hydrolase product 19,20-DiHDPA) and eicosapentaenoic acid (stable epoxide hydrolase product 17,18-DHET) being formed. Inhibition of epoxygenases using either SKF525A or MS-PPOH induced TNFα release, but did not affect LPS, IL-1β, or phorbol-12-myristate-13-acetate (PMA)-induced TNFα release. In contrast, inhibition of soluble epoxide hydrolase by AUDA or TPPU inhibited basal, LPS, IL-1β and PMA induced TNFα release, and LPS-induced NFκB p65 nuclear translocation. In conclusion, human endothelial cells contain a TLR-4 regulated epoxygenase CYP2J2 and metabolize linoleic acid > eicosapentaenoic acid > arachidonic acid > docosahexaenoic acid to products with anti-inflammatory activity.  相似文献   

12.
A number of highly purified polychlorinated biphenyl (PCB) isomers and congeners were synthesized and administered to male Wistar rats at dosage levels of 30 and 150 μmol · kg−1. The effects of this in vivo treatment on the drug-metabolizing enzymes were determined by measuring the microsomal benzo[a]pyrene (B[a]P) hydroxylase, dimethylaminoantipyrine (DMAP) N-demethylase and NADPH-cytochrome c reductase enzyme activities, the cytochrome b5 content and the relative peak intensities and spectral shifts of the reduced microsomal cytochrome P-450: CO and ethylisocyanide (EIC) binding difference spectra. The results were compared to the effects of administering phenobarbitone (PB), 3-methylcholanthrene (MC) and PB plus MC (coadministered) to the test animals. The synthetic PCB congeners used in this study included 3,4,4′,5-tetrachlorobiphenyl (TCBP-1), 2,3′,4,4′-tetrachlorobiphenyl (TCBP-2), 2,3′,4,4′,5′-pentachlorobiphenyl (PCBP-1), 2,3,4,4′,5-pentachlorobiphenyl (PCBP-2), 2,3,3′,4,4′,5-hexachlorobiphenyl (HCBP-1), 2,3,3′,4′,5,6-hexachlorobiphenyl (HCBP-2), 2,3,3′,5,5′,6-hexachlorobiphenyl (HCBP-3), 2,2′,3,5,5′,6-hexachlorobiphenyl (HCBP-4) and 2,3,3′,4,5,5′-hexachlorobiphenyl (HCBP-5) and were used to reappraise the structure-activity rules for PCBs as hepatic microsomal enzyme inducers. The results suggested that (a) PCBs which induce MC or mixed-type activity must be substituted at both para positions, at least two meta positions but not necessarily on the same phenyl ring and can also contain one ortho chloro substituent; (b) due to the considerable structural diversity of the PB-type inducers the rules for induction of this activity by PCB congeners are not readily defined.  相似文献   

13.
The constitutively active receptor (CAR) transactivates a distal enhancer called the phenobarbital (PB)-responsive enhancer module (PBREM) found in PB-inducible CYP2B genes. CAR dramatically increases its binding to PBREM in livers of PB-treated mice. We have investigated the cellular mechanism of PB-induced increase of CAR binding. Western blot analyses of mouse livers revealed an extensive nuclear accumulation of CAR following PB treatment. Nuclear contents of CAR perfectly correlate with an increase of CAR binding to PBREM. PB-elicited nuclear accumulation of CAR appears to be a general step regulating the induction of CYP2B genes, since treatments with other PB-type inducers result in the same nuclear accumulation of CAR. Both immunoprecipitation and immunohistochemistry studies show cytoplasmic localization of CAR in the livers of nontreated mice, indicating that CAR translocates into nuclei following PB treatment. Nuclear translocation of CAR also occurs in mouse primary hepatocytes but not in hepatocytes treated with the protein phosphatase inhibitor okadaic acid. Thus, the CAR-mediated transactivation of PBREM in vivo becomes PB responsive through an okadaic acid-sensitive nuclear translocation process.  相似文献   

14.
The aim of this case–control study is to explore the role of aberrations in xenobiotic metabolism in inducing oxidative DNA damage and altering the susceptibility to breast cancer. Cytochrome P4501A1 (CYP1A1) m1 (OR: 1.41, 95% CI 1.08–1.84), CYP1A1 m4 (OR: 5.13, 95% CI 2.68–9.81), Catecholamine-O-methyl transferase (COMT) H108L (OR: 1.49, 95% CI 1.16–1.92), and glutathione S-transferase (GST) T1 null (OR: 1.68, 95% CI 1.09–2.59) variants showed association with breast cancer risk. Reduced folate carrier 1 (RFC1) 80A/CYP1A1 m1/CYP1A1 m4 and RFC1 80A/thymidylate synthase (TYMS) 5′-UTR 2R/methionine synthase (MTR) 2756G/COMT 108L genetic combinations were found to inflate breast cancer risk under the conditions of low dietary folate (345 ± 110 vs. 379 ± 139 μg/day) and low plasma folate (6.81 ± 1.25 vs. 7.09 ± 1.26 ng/ml) by increasing plasma 8-oxo-2′-deoxyguanosine (8-oxodG). This increase in 8-oxodG is attributed to low methionine (49.38 ± 23.74 vs. 53.90 ± 23.85 μmol/l); low glutathione (378 ± 242 vs. 501 ± 126 μmol/l) and GSTT1 null variant; and hypermethylation of CpG island of extracellular-superoxide dismutase (EC-SOD) (92.78 ± 11.49 vs. 80.45 ± 9.86%), which impair O-methylation of catechol estrogens to methoxy estrogens, conjugation of glutathione to semiquinones/quinones and free radical scavenging respectively. Our results suggest cross-talk between one-carbon metabolism and xenobiotic metabolism influencing oxidative DNA damage and susceptibility to breast cancer.  相似文献   

15.
16.
Cytochrome P450tpr is a xenobiotic metabolizing P450 that is found in house flies (Musca domestica). To better understand the regulation of cytochrome P450tpr, the effects of 21 potential monooxygenase inducers were examined for their ability to induce total cytochromes P450 and cytochrome P450tpr levels in adult flies. Six compounds caused induction of total cytochromes P450 per mg protein in adult susceptible (CS) house flies: ethanol (1.6-fold), phenobarbital in food (1.5-fold) or water (1.5-fold), naphthalene (1.3-fold), DDT (1.3-fold), xanthotoxin (1.4-fold), and α-pinene (1.2-fold). Six compounds were found to be inducers of cytochrome P450tpr: piperonyl butoxide in food (1.9-fold), phenobarbital in food (1.4-fold) and water (3.4-fold), clofibrate (1.3-fold), xanthotoxin (1.3-fold), methohexital (1.3-fold), and isosafrole (1.3-fold). Comparison of our results with house fly P450 6A1 indicates that there are specific inducers for each of these individual P450s as well as compounds that induce both P450s. Total P450s were inducible by PB in CS house fly larvae, but not in LPR larvae. Immunoblotting revealed no detectable P450tpr in control or PB-treated larvae in either strain. Thus, although total P450s are inducible in the susceptible strain larvae, P450tpr does not appear to be normally present or inducible with PB in larvae of either strain. Northern blots of phenobarbital (in water) treated CS flies indicated that there was a 4.2-fold increase in the P450tpr (i.e., CYP6D1) mRNA levels over the untreated flies. In the multiresistant LPR strain there was no apparent induction of CYP6D1 mRNA by phenobarbital. Following phenobarbital induction, the level of CYP6D1 mRNA in the CS strain was about half of the level in the LPR strain. © 1996 Wiley-Liss, Inc.  相似文献   

17.
18.
Global DNA hypomethylation in tumor tissue is a common characteristic in a variety of malignancies such as breast, colon, oral, lung, and blood cancers. A rapid and sensitive method has been developed for the determination of global DNA methylation in cells. Five substances—2′-deoxycytidine (dC), 5-methyl 2′-deoxycytidine (mdC), 2′-deoxyadenosine (dA), 2′-deoxythymidine (dT), and 2′-deoxyguanosine (dG)—were completely separated by high-performance capillary electrophoresis in 10 min. Intraday coefficient of variation was less than 1%, and interday coefficient of variation was less than 2%. The minimal detection limit was 1 μM. Acquired drug resistance to methotrexate (MTX) is one of the most serious problems in cancer chemotherapy. Under optimal conditions, we analyzed global DNA methylation levels in A549 and A549/MTX cells, and only 105 cells are needed to obtain reliable results. The percentage of 5-methyl-2′-deoxycytidine (5-mC) was 4.80 ± 0.52% in A549 cells, and this decreased to 4.20 ± 0.44% in A549/MTX cells. It was considered as statistically significant. This demonstrated that the mechanisms of acquired drug resistance to MTX might be concerned with DNA methylation.  相似文献   

19.
In the pharmaceutical industry, improving the early detection of drug-induced hepatotoxicity is essential as it is one of the most important reasons for attrition of candidate drugs during the later stages of drug development. The first objective of this study was to better characterize different cellular models (i.e., HepG2, HepaRG cells, and fresh primary human hepatocytes) at the gene expression level and analyze their metabolic cytochrome P450 capabilities. The cellular models were exposed to three different CYP450 inducers; beta-naphthoflavone (BNF), phenobarbital (PB), and rifampicin (RIF). HepG2 cells responded very weakly to the different inducers at the gene expression level, and this translated generally into low CYP450 activities in the induced cells compared with the control cells. On the contrary, HepaRG cells and the three human donors were inducible after exposure to BNF, PB, and RIF according to gene expression responses and CYP450 activities. Consequently, HepaRG cells could be used in screening as a substitute and/or in complement to primary hepatocytes for CYP induction studies. The second objective was to investigate the predictivity of the different cellular models to detect hepatotoxins (16 hepatotoxic and 5 nonhepatotoxic compounds). Specificity was 100% with the different cellular models tested. Cryopreserved human hepatocytes gave the highest sensitivity, ranging from 31% to 44% (depending on the donor), followed by lower sensitivity (13%) for HepaRG and HepG2 cells (6.3%). Overall, none of the models under study gave desirable sensitivities (80–100%). Consequently, a high metabolic capacity and CYP inducibility in cell lines does not necessarily correlate with a high sensitivity for the detection of hepatotoxic drugs. Further investigations are necessary to compare different cellular models and determine those that are best suited for the detection of hepatotoxic compounds.  相似文献   

20.
Quantitative changes in cytochrome P450 (CYP) proteins involved in drug metabolism as a consequence of drug treatment are important parameters in predicting the fates and pharmacological consequences of xenobiotics and drugs. In this study we undertook comparative P450 proteomics using liver from control and 1,4-bis-2-(3,5-dichloropyridyloxybenzene) (TCPOBOP)-dosed mice. The method involved separation of microsomal proteins by SDS-PAGE, trypsin digestion, and postdigest 18O/16O labeling followed by nano-LC-MS/MS for peptide identification and LC-MS for relative quantification. Seventeen P450 proteins were identified from mouse liver of which 16 yielded data sufficient for relative quantification. All the P450s detected were unambiguously identified except the highly homologous CYP2A4/2A5. With the exception of CYP2A12, -2D10, and -2F2, the levels of all the P450s quantified were affected by treatment with TCPOBOP (3 mg/kg). CYP1A2, -2A4/5, -2B10, -2B20, -2C29, -2C37, -2C38, -3A11, and -39A1 were up-regulated, and CYP2C40, -2E1, -3A41, and -27A1 down-regulated. The response of CYP2B20 to stimulation has not been distinguished previously from that of CYP2B10 because of the poor discrimination between these two proteins (they share 87% sequence identity). Differential response to chemical stimulation by closely related members of the CYP2C subfamily was also observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号