首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A general method to analyze the structure of a supramolecular complex of amyloid fibrils at amino acid residue resolution has been developed. This method combines the NMR-detected hydrogen/deuterium (H/D) exchange technique to detect hydrogen-bonded amide groups and the ability of the aprotic organic solvent dimethylsulfoxide (DMSO) to dissolve amyloid fibrils into NMR-observable, monomeric components while suppressing the undesired H/D exchange reaction. Moreover, this method can be generally applied to amyloid fibrils to elucidate the distribution of hydrogen-bonded amino acid residues in the three-dimensional molecular organization in the amyloid fibrils. In this study, we describe theoretical considerations in the H/D exchange method to obtain the structural information of proteins, and the DMSO-quenched H/D exchange method to study a supramolecular complex of amyloid fibrils. A possible application of this method to study the interaction of a protein/peptide with phospholipid membrane is also discussed.  相似文献   

2.
Despite numerous efforts, the lack of detailed structural information on amyloid fibrils has hindered clarification of the mechanism of their formation. Here, we describe a novel procedure for characterizing the conformational flexibility of beta(2)-microglobulin amyloid fibrils at single-residue resolution that uses H/D exchange of amide protons combined with NMR analysis. The results indicate that most residues in the middle region of the molecule, including the loop regions in the native structure, form a rigid beta-sheet core, whereas the the N- and C-termini are excluded from this core. The extensively hydrogen-bonded beta-sheet core explains the remarkable rigidity and stability of amyloid fibrils. The present method could be used to obtain residue-specific conformational information of various amyloid fibrils, even though it does not provide a high resolution three-dimensional structure.  相似文献   

3.
Among various amyloidogenic proteins, beta(2)-microglobulin (beta2-m) responsible for dialysis-related amyloidosis is a target of extensive study because of its clinical importance and suitable size for examining the formation of amyloid fibrils in comparison with protein folding to the native state. The structure and stability of amyloid fibrils have been studied with various physicochemical methods, including H/D exchange of amyloid fibrils combined with dissolution of fibrils by dimethylsulfoxide and NMR analysis, thermodynamic analysis of amyloid fibril formation by isothermal calorimetry, and analysis of the effects of pressure on the structure of amyloid fibrils. The results are consistent with the view that amyloid fibrils are a main-chain-dominated structure with larger numbers of hydrogen bonds and pressure-accessible cavities in the interior, in contrast to the side-chain-dominated native structure with the optimal packing of amino acid residues. We consider that a main-chain dominated structure provides the structural basis for various conformational states even with one protein. When this feature is combined with another unique feature, template-dependent growth, propagation and maturation of the amyloid conformation, which cannot be predicted with Anfinsen's dogma, take place.  相似文献   

4.
We describe here details of the hydrogen-deuterium (H/D) exchange behavior of the Alzheimer's peptide Abeta(1)(-)(40), while it is a resident in the amyloid fibril, as determined by high-resolution solution NMR. Kinetics of H/D exchange in Abeta(1)(-)(40) fibrils show that about half the backbone amide protons exchange during the first 25 h, while the other half remain unexchanged because of solvent inaccessibility and/or hydrogen-bonded structure. After such a treatment for 25 h with D(2)O, fibrils of (15)N-enriched Abeta were dissolved in a mixture of 95% dimethyl sulfoxide (DMSO) and 5% dichloroacetic acid (DCA) and successive heteronuclear (1)H-(15)N HSQC spectra were collected to identify the backbone amides that did not exchange in the fibril. These studies showed that the N and C termini of the peptide are accessible to the solvent in the fibril state and the backbone amides of these residues are readily exchanged with bulk deuterium. In contrast, the residues in the middle of the peptide (residues 16-36) are mostly protected, suggesting that that many of the residues in this segment of the peptide are involved in a beta structure in the fibril. Two residues, G25 and S26, exhibit readily exchangeable backbone amide protons and therefore may be located on a turn or a flexible part of the peptide. Overall, the data substantially supports current models for how the Abeta peptide folds when it engages in the amyloid fibril structure, while also addressing some discrepancies between models.  相似文献   

5.
Among various amyloidogenic proteins, β2-microglobulin (β2-m) responsible for dialysis-related amyloidosis is a target of extensive study because of its clinical importance and suitable size for examining the formation of amyloid fibrils in comparison with protein folding to the native state. The structure and stability of amyloid fibrils have been studied with various physicochemical methods, including H/D exchange of amyloid fibrils combined with dissolution of fibrils by dimethylsulfoxide and NMR analysis, thermodynamic analysis of amyloid fibril formation by isothermal calorimetry, and analysis of the effects of pressure on the structure of amyloid fibrils. The results are consistent with the view that amyloid fibrils are a main-chain-dominated structure with larger numbers of hydrogen bonds and pressure-accessible cavities in the interior, in contrast to the side-chain-dominated native structure with the optimal packing of amino acid residues. We consider that a main-chain dominated structure provides the structural basis for various conformational states even with one protein. When this feature is combined with another unique feature, template-dependent growth, propagation and maturation of the amyloid conformation, which cannot be predicted with Anfinsen's dogma, take place.  相似文献   

6.
The seven-residue peptide N-acetyl-Lys-Leu-Val-Phe-Phe-Ala-Glu-NH(2), called A beta(16-22) and representing residues 16-22 of the full-length beta-amyloid peptide associated with Alzheimer's disease, is shown by electron microscopy to form highly ordered fibrils upon incubation of aqueous solutions. X-ray powder diffraction and optical birefringence measurements confirm that these are amyloid fibrils. The peptide conformation and supramolecular organization in A beta(16-22) fibrils are investigated by solid state (13)C NMR measurements. Two-dimensional magic-angle spinning (2D MAS) exchange and constant-time double-quantum-filtered dipolar recoupling (CTDQFD) measurements indicate a beta-strand conformation of the peptide backbone at the central phenylalanine. One-dimensional and two-dimensional spectra of selectively and uniformly labeled samples exhibit (13)C NMR line widths of <2 ppm, demonstrating that the peptide, including amino acid side chains, has a well-ordered conformation in the fibrils. Two-dimensional (13)C-(13)C chemical shift correlation spectroscopy permits a nearly complete assignment of backbone and side chain (13)C NMR signals and indicates that the beta-strand conformation extends across the entire hydrophobic segment from Leu17 through Ala21. (13)C multiple-quantum (MQ) NMR and (13)C/(15)N rotational echo double-resonance (REDOR) measurements indicate an antiparallel organization of beta-sheets in the A beta(16-22) fibrils. These results suggest that the degree of structural order at the molecular level in amyloid fibrils can approach that in peptide or protein crystals, suggest how the supramolecular organization of beta-sheets in amyloid fibrils can be dependent on the peptide sequence, and illustrate the utility of solid state NMR measurements as probes of the molecular structure of amyloid fibrils. A beta(16-22) is among the shortest fibril-forming fragments of full-length beta-amyloid reported to date, and hence serves as a useful model system for physical studies of amyloid fibril formation.  相似文献   

7.
Dialysis-related amyloidosis, which occurs in the patients receiving a long-term hemodialysis with high frequency, accompanies the deposition of amyloid fibrils composed of beta(2)-microglobulin (beta2-m). In vitro, beta2-m forms two kinds of fibrous structures at acidic pH. One is a rigid "mature fibril", and the other is a flexible thin filament often called an "immature fibril". In addition, a 22-residue peptide (K3 peptide) corresponding to Ser20 to Lys41 of intact beta2-m forms rigid amyloid-like fibrils similar to mature fibrils. We compared the core of these three fibrils at single-residue resolution using a recently developed hydrogen/deuterium (H/D) exchange method with the dissolution of fibrils by dimethylsulfoxide (DMSO). The exchange time-course of these fibrils showed large deviations from a single exponential curve showing that, because of the supramolecular structures, the same residue exists in different environments from molecule to molecule, even in a single fibril. The exchange profiles revealed that the core of the immature fibril is restricted to a narrow region compared to that of the mature fibril. In contrast, all residues were protected from exchange in the K3 fibril, indicating that a whole region of the peptide is engaged in the beta-sheet network. These results suggest the mechanism of amyloid fibril formation, in which the core beta-sheet formed by a minimal sequence propagates to form a rigid and extensive beta-sheet network.  相似文献   

8.
Characterization of the polymorphic structural range of Aβ oligomers is important to the understanding of the mechanisms of toxicity. Yet for highly polymorphic ensembles, experimental structural elucidation is difficult. Here, we use a combination of NMR solvent protection experiments and computational structural screening to identify major species in the amyloid conformational ensemble. We examined the polymorphic pentamer and fibril seeds of Aβ42 and its mutants and compared the theoretical backbone amide protection obtained from simulations with experimental hydrogen/deuterium (H/D) exchange protection ratio. We observed that highly flexible pentamers do not share structural similarities with fibril seed oligomers, except the turn regions. We found that a novel amyloid structural motif of a triple β-sheet, with the N-terminal residues interacting with the core (Lys(17)-Glu(22)) β-sheet region, correlates with H/D exchange protection. The triple β-sheet Aβ42 oligomer has a minimal exposure of hydrophobic residues and is further stabilized by the E22Q (Dutch) mutation in Alzheimer disease. The experimental H/D exchange solvent protection ratio implies that triple β-sheet fibrils and globulomers could coexist in the Aβ42 ensemble, pointing to a broad heterogeneous aggregate population. Our results suggest that an approach that combines computational modeling with NMR protection data can be a useful strategy for obtaining clues to the preferred conformational species of the assemblies in solution and help in alleviating experimental difficulties and consequently possible errors in the exchange data for Aβ42 fibrils.  相似文献   

9.
We describe in molecular detail how disruption of an intermonomer salt bridge (Arg337-Asp352) leads to partial destabilization of the p53 tetramerization domain and a dramatically increased propensity to form amyloid fibrils. At pH 4.0 and 37 degrees C, a p53 tetramerization domain mutant (p53tet-R337H), associated with adrenocortical carcinoma in children, readily formed amyloid fibrils, while the wild-type (p53tet-wt) did not. We characterized these proteins by equilibrium denaturation, 13C(alpha) secondary chemical shifts, (1H)-15N heteronuclear NOEs, and H/D exchange. Although p53tet-R337H was thermodynamically less stable, NMR data indicated that the two proteins had similar secondary structure and molecular dynamics. NMR derived pK(a) values indicated that at low pH the R337H mutation partially disrupted an intermonomer salt bridge. Backbone H/D exchange results showed that for at least a small population of p53tet-R337H molecules disruption of this salt bridge resulted in partial destabilization of the protein. It is proposed that this decrease in p53tet-R337H stability resulted in an increased propensity to form amyloid fibrils.  相似文献   

10.
We describe methods for minimization of and correction for artifactual forward and backward exchange occurring during hydrogen exchange-mass spectrometric (HX-MS) studies of amyloid fibrils of the Abeta(1-40) peptide. The quality of the corrected data obtained using published and new correction algorithms is evaluated quantitatively. Using the new correction methods, we have determined that 20.1 +/- 1.4 of the 39 backbone amide hydrogens in Abeta(1-40) exchange with deuteriums in 100 h when amyloid fibrils of this peptide are suspended in D(2)O. These data reinforce our previous conclusions based on uncorrected data that amyloid fibrils contain a rigid protective core structure that involves only about half of the Abeta backbone amides. The methods developed here should be of general value for HX-MS studies of amyloid fibrils and other protein aggregates.  相似文献   

11.
Amyloid fibrils are associated with many neurodegenerative diseases. All known amyloids including pathogenic and nonpathogenic forms display functional and structural heterogeneity (polymorphism) which determines the level of their toxicity. Despite a significant biological and biomedical importance, the nature of the amyloid fibril polymorphism remains elusive. We utilized for the first time three most advanced vibrational techniques to probe the core, the surface, and supramolecular chirality of fibril polymorphs. A new type of folding, aggregation phenomenon, spontaneous refolding from one polymorph to another, was discovered (Kurouski, Lauro et al., 2010). Hydrogen–deuterium exchange deep UV resonance Raman spectroscopy (Oladepo, Xiong et al., 2012) combined with advanced statistical analysis (Shashilov & Lednev, 2010) allowed for structural characterization of the highly ordered cross-β core of amyloid fibrils. We reported several examples showing significant variations in the core structure for fibril polymorphs. Amyloid fibrils are generally composed of several protofibrils and may adopt variable morphologies, such as twisted ribbons or flat-like sheets. We discovered the existence of another level of amyloid polymorphism, namely, that associated with fibril supramolecular chirality. Two chiral polymorphs of insulin, which can be controllably grown by means of small pH variations, exhibit opposite signs of vibrational circular dichroism (VCD) spectra (Kurouski, Dukor et al. 2012). VCD supramolecular chirality is correlated not only by the apparent fibril handedness but also by the sense of supramolecular chirality from a deeper level of chiral organization at the protofilament level of fibril structure. A small pH change initiates spontaneous transformation of insulin fibrils from one polymorph to another. As a result, fibril supramolecular chirality overturns both accompanying morphological and structural changes (Kurouski, Dukor et al. 2012). No conventional methods could probe the fibril surface despite its significant role in the biological activity. We utilized tip-enhanced Raman spectroscopy (TERS) to characterize the surface structure of an individual fibril due to a high depth and lateral spatial resolution of the method in the nanometer range (Kurouski, Deckert-Gaudig et al. 2012). It was found that the surface is strongly heterogeneous and consists of clusters with various protein conformations and amino acid composition.  相似文献   

12.
《Chirality》2017,29(9):469-475
Supramolecular chirality of amyloid fibrils, protein aggregates related to many neurodegenerative diseases, is a remarkable property associated with fibril structure and polymorphism. Since its discovery almost 10 years ago there is still little understanding of this phenomenon, including the cause of the highly enhanced vibrational circular dichroism (VCD) intensity arising from fibril supramolecular chirality. In this study, VCD spectra, enhanced by filament supramolecular chirality, are presented for lysozyme and insulin fibrils above and below pH 2 and after deuterium exchange, above and below pD 2. Supramolecular chirality (observed by VCD) and fibril morphology (documented by atomic force microscopy) are not affected by protein deuteriation. In D2O the fibril VCD sign pattern changes to fewer bands, with implications for the amide I/II origin of enhanced VCD intensity. Separation of amide I and II signals will facilitate calculations of enhanced VCD spectra of amyloid fibrils and enable a better understanding of the origin of the VCD sign pattern.  相似文献   

13.
The [Het-s] infectious element of the filamentous fungus Podospora anserina corresponds to the prion form of the HET-s protein. HET-s (289 amino acids in length) aggregates into amyloid fibers in vitro. Such fibers obtained in vitro are infectious, indicating that the [Het-s] prion can propagate as a self-perpetuating amyloid aggregate of the HET-s protein. Previous analyses have suggested that only a limited region of the HET-s protein is involved in amyloid formation and prion propagation. To document the conformational transition occurring upon amyloid aggregation of HET-s, we have developed a method involving hydrogen/deuterium exchange monitored by MALDI-MS. In a first step, a peptide mass fingerprint of the protein was obtained, leading to 87% coverage of the HET-s primary structure. Amyloid aggregates of HET-s were obtained, and H/D exchange was monitored on the soluble and on the amyloid form of HET-s. This study revealed that in the soluble form of HET-s, the C-terminal region (spanning from residues 240-289) displays a high solvent accessibility. In sharp contrast, solvent accessibility is drastically reduced in that region in the amyloid form. H/D exchange rates and levels in the N-terminal part of the protein (residues 1-220) are comparable in the soluble and the aggregated state. These results indicate that amyloid aggregation of HET-s involves a conformational transition of the C-terminal part of the protein from a mainly disordered to an aggregated state in which this region is highly protected from hydrogen exchange.  相似文献   

14.
A subset of Alzheimer disease cases is caused by autosomal dominant mutations in genes encoding the amyloid beta-protein precursor or presenilins. Whereas some amyloid beta-protein precursor mutations alter its metabolism through effects on Abeta production, the pathogenic effects of those that alter amino acid residues within the Abeta sequence are not fully understood. Here we examined the biophysical effects of two recently described intra-Abeta mutations linked to early-onset familial Alzheimer disease, the D7N Tottori-Japanese and H6R English mutations. Although these mutations do not affect Abeta production, synthetic Abeta(1-42) peptides carrying D7N or H6R substitutions show enhanced fibril formation. In vitro analysis using Abeta(1-40)-based mutant peptides reveal that D7N or H6R mutations do not accelerate the nucleation phase but selectively promote the elongation phase of amyloid fibril formation. Notably, the levels of protofibrils generated from D7N or H6R Abeta were markedly inhibited despite enhanced fibril formation. These N-terminal Abeta mutations may accelerate amyloid fibril formation by a unique mechanism causing structural changes of Abeta peptides, specifically promoting the elongation process of amyloid fibrils without increasing metastable intermediates.  相似文献   

15.
Measurement of fully corrected, low angle meridional neutron diffraction intensities from native collagen fibres, in a full range of H2O/D2O contrasts, is described. The observed contrast dependence of the intensities of the first 12 orders of 670 A (D) axial periodicity is fitted to a general quadratic theory of contrast variation. The observed first order contrast dependence is compared to predictions based on the amino acid sequence, assuming different extents of chemical H/D exchange, and found to be consistent with complete non-carbon linked H/D exchange except for 1 to 1.6 hydrogen atoms per gly-X-Ytriplet involved in H-bonding. Both X-ray and neutron diffraction data in a variety of contrasts are consistent with a unique model for the axially projected structure of native collagen fibrils based on the amino acid sequence. This model if characterized by average axial residua translations in the NH2 and COOH terminal, non-triple helical telopeptides, expressed as multiples of the triple helical residue translation, of 0.85 ± 0.05 and 0.7 ± 01 respectively, with D = 235 ± 1 residues.  相似文献   

16.
Long-term memory storage is modulated by the prion nature of CPEB3 forming the molecular basis for the maintenance of synaptic facilitation. Here we report that the first prion sub-domain PRD1 of mouse CPEB3 can autonomously form amyloid fibrils in vitro and punctate-like structures in vivo. A ninety-four amino acid sequence within the PRD1 domain, PRD1-core, displays high propensity towards aggregation and associated amyloid characteristics. PRD1-core is characterized using electron microscopy, X-ray diffraction, and solution-state NMR deuterium exchange experiments. Secondary structure elements deduced from solid-state NMR reveal a β-rich core comprising of forty amino acids at the N-terminus of PRD1-core. The synthesized twenty-three amino acid long peptide containing the longest rigid segment (E124-H145) of the PRD1-core rapidly self-aggregates and forms fibrils, indicating a limited aggregation-prone region that could potentially activate the aggregation of the full-length protein. This study provides the first step in identifying the structural trigger for the CPEB3 aggregation process.  相似文献   

17.
AlphaB-Crystallin is a ubiquitous small heat-shock protein (sHsp) renowned for its chaperone ability to prevent target protein aggregation. It is stress-inducible and its up-regulation is associated with a number of disorders, including those linked to the deposition of misfolded proteins, such as Alzheimer's and Parkinson's diseases. We have characterised the formation of amyloid fibrils by human alphaB-crystallin in detail, and also that of alphaA-crystallin and the disease-related mutant R120G alphaB-crystallin. We find that the last 12 amino acid residues of the C-terminal region of alphaB-crystallin are predicted from their physico-chemical properties to have a very low propensity to aggregate. (1)H NMR spectroscopy reveals that this hydrophilic C-terminal region is flexible both in its solution state and in amyloid fibrils, where it protrudes from the fibrillar core. We demonstrate, in addition, that the equilibrium between different protofilament assemblies can be manipulated and controlled in vitro to select for particular alphaB-crystallin amyloid morphologies. Overall, this study suggests that there could be a fine balance in vivo between the native functional sHsp state and the formation of amyloid fibrils.  相似文献   

18.
The self-assembly of proteins and peptides into polymeric amyloid fibrils is a process that has important implications ranging from the understanding of protein misfolding disorders to the discovery of novel nanobiomaterials. In this study, we probe the stability of fibrils prepared at pH 2.0 and composed of the protein insulin by manipulating electrostatic interactions within the fibril architecture. We demonstrate that strong electrostatic repulsion is sufficient to disrupt the hydrogen-bonded, cross-β network that links insulin molecules and ultimately results in fibril dissociation. The extent of this dissociation correlates well with predictions for colloidal models considering the net global charge of the polypeptide chain, although the kinetics of the process is regulated by the charge state of a single amino acid. We found the fibrils to be maximally stable under their formation conditions. Partial disruption of the cross-β network under conditions where the fibrils remain intact leads to a reduction in their stability. Together, these results support the contention that a major determinant of amyloid stability stems from the interactions in the structured core, and show how the control of electrostatic interactions can be used to characterize the factors that modulate fibril stability.  相似文献   

19.
A general method to explore the dynamic nature of amyloid fibrils is described, combining hydrogen/deuterium exchange and nuclear magnetic resonance spectroscopy to determine the exchange rates of individual amide protons within an amyloid fibril. Our method was applied to fibrils formed by the amyloid-β(1-40) peptide, the major protein component of amyloid plaques in Alzheimer’s disease. The fastest exchange rates were detected among the first 14 residues of the peptide, a stretch known to be poorly structured within the fibril. Considerably slower exchange rates were observed in the remainder of the peptide within the β-strand-turn-β-strand motif that constitutes the fibrillar core.  相似文献   

20.
The solvent protection of the amide backbone in bovine insulin fibrils was studied by FT-IR spectroscopy. In the mature fibrils, approximately 85 +/- 2% of amide protons are protected. Of those "trapped" protons, a further 25 +/- 2 or 35 +/- 2% is H-D exchanged after incubation for 1 h at 1 GPa and 25 degrees C or 0.1 MPa and 100 degrees C, respectively. In contrast to the native or unfolded protein, fibrils do not H-D exchange upon incubation at 65 degrees C. A complete deuteration of H(2)O-grown fibrils occurs when the beta-sheet structure is reassembled in a 75 wt % DMSO/D(2)O solution. Our findings suggest a densely packed environment around the amide protons involved in the intermolecular beta-sheet motive. In disagreement with the concept of "amyloid fibers as water-filled nanotubes" [Perutz, M. F., et al. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 5591-5595], elution of D(2)O-grown fibrils with H(2)O is complete, which is reflected by the vanishing of D(2)O bending vibrations at 1214 cm(-)(1). This implies the absence of "trapped water" within insulin fibrils. The rigid conformations of the native and fibrillar insulin contrast with transient intermediate states docking at the fibrils' ends. Room-temperature seeding is accompanied by an accelerated H-D exchange in insulin molecules in the act of docking and integrating with the seeds, proving that the profound structural disruption is the sine qua non of forming an aggregation-competent conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号