首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Imprecise excision of the Caenorhabditis elegans transposon Tc1 from a specific site of insertion within the unc-54 myosin heavy chain gene generates either wild-type or partial phenotypic revertants. Wild-type revertants and one class of partial revertants contain insertions of four nucleotides in the unc-54 third exon (Tc1 "footprints"). Such revertants express large amounts of functional unc-54 myosin despite having what would appear to be frameshifting insertions in the unc-54 third exon. We demonstrate that these Tc1 footprints act as efficient 5' splice sites for removal of the unc-54 third intron. Splicing of these new 5' splice sites to the normal third intron splice acceptor removes the Tc1 footprint from the mature mRNA and restores the normal translational reading frame. Partial revertant unc-54(r661), which contains a single nucleotide substitution relative to the wild-type gene, is spliced similarly, except that the use of its new 5' splice site creates a frameshift in the mature mRNA rather than removing one. In all of these revertants, two alternative 5' splice sites are available to remove intron 3. We determined the relative efficiency with which each alternative 5' splice site is used by stabilizing frameshifted mRNAs with smg(-) genetic backgrounds. In all cases, the upstream member of the two alternative sites is used preferentially (> 75% utilization). This may reflect an inherent preference of the splicing machinery for the upstream member of two closely spaced 5' splice sites. Creation of new 5' splice sites may be a general characteristic of Tc1 insertion and excision events.  相似文献   

2.
Ornithine transcarbamylase (OTC) is an X-linked, liver-specific enzyme that catalyzes the second step of the urea cycle. In humans, inherited deficiency of OTC in hemizygous affected males usually results in severe ammonia intoxication and early death. To characterize mutations responsible for OTC deficiency, we used the PCR to amplify cDNAs prepared from patient livers which demonstrated no OTC enzyme activity and no OTC cross-reacting material on western blots. In three of seven cases, smaller than normal products were observed. Sequencing of these cDNAs revealed that two were missing exon 7 of the OTC gene and that the other was missing the first 12 bp of exon 5. Sequencing of genomic DNA from these three patients revealed that one mutant missing exon 7 had a T-to-C substitution in the 5' splice donor site of intron 7. The other mutant missing exon 7 had an A-to-G change in the third position of intron 7. It is interesting that both of these mutations resulted in skipping the preceding exon rather than in inclusion of some or all of the affected intron. In the third mutant, an A-to-T substitution was found in the 3' splice acceptor site at the end of intron 4. Here, a cryptic splice acceptor site within exon 5 was used. Northern blotting of liver RNA from these patients demonstrated (a) reduced, but significant, amounts of OTC mRNA in one of the patients who had a deleted exon 7 but (b) very little OTC mRNA in the other two patients. We propose that these point mutations, which result in aberrant splicing of the OTC pre-mRNAs, lead to OTC deficiency through either decreased efficiency of mRNA export from the nucleus to the cytosol or synthesis of enzyme subunits that are unstable and rapidly degraded. We speculate that abnormal mRNA splicing may represent a relatively common mechanism in the pathogenesis of this disease.  相似文献   

3.
The most common, X-linked, form of chronic granulomatous disease (CGD) is caused by mutations in the CYBB gene located at Xp21.1. The product of this gene is the large subunit of flavocytochrome b558, gp91phox, which forms the catalytic core of the antimicrobial superoxide-generating enzyme, NADPH oxidase. In the overwhelming majority of cases, mutations are family-specific and occur in the exonic regions of the gene, or more rarely at the intron/exon borders. Alternatively, they are large (often multi-gene) deletions. In addition, four mutations have been found in the promoter region. In contrast, very few intronic mutations have been reported. Here we describe an intronic mutation that causes X-linked CGD. A single nucleotide substitution in the middle of intron V creates a novel 5' splice site and results in multiple abnormal mRNA products.  相似文献   

4.
5.
6.
7.
Intron sequences involved in lariat formation during pre-mRNA splicing   总被引:114,自引:0,他引:114  
R Reed  T Maniatis 《Cell》1985,41(1):95-105
We have shown that lariat formation during in vitro splicing of several RNA precursors, from Drosophila to man, occurs at a unique and identifiable but weakly conserved site, 18 to 37 nucleotides proximal to the 3' splice site. Lariat formation within an artificial intron lacking a normal branch-point sequence occurs at a cryptic site a conserved distance (approximately 23 nucleotides) from the 3' splice site. Analysis of beta-thalassemia splicing mutations revealed that lariat formation in the first intron of the human beta-globin gene occurs at the same site in normal and mutant precursors, even though alternate 5' and 3' splice sites are utilized in the mutants. Remarkably, cleavage at the 5' splice site and lariat formation do not occur when the precursor contains a beta-thalassemia deletion removing the polypyrimidine stretch and AG dinucleotide at the 3' splice site. In contrast, a single base substitution in the AG dinucleotide blocks cleavage at the 3' splice site but not at the 5' site.  相似文献   

8.
SLC6A8 deficiency is caused by mutations in the X-linked creatine transporter gene (SLC6A8), which leads to cerebral creatine deficiency, mental retardation, speech and language delay, autistic-like behaviour and epilepsy. Insight in the mechanism of how the transporter is regulated is largely unknown and it is of importance for the development of successful treatment strategies of cerebral creatine deficient syndromes. Our goal was to characterize CRT2 (SLC6A8B), a published splice variant of the creatine transporter. Surprisingly, using RT-PCR we found a novel splice variant, SLC6A8C, which is predominantly found in human tissues with a high energy requirement such as brain, kidney, heart, small intestines and skeletal muscle, where SLC6A8 transporter is most required. The 5' untranslated region (UTR) of the SLC6A8C mRNA was identified using the Smart Race cDNA amplification kit. The SLC6A8C mRNA contains intron 4 and exons 5 through 13 of SLC6A8, including part of the 3' UTR. An open reading frame was found, which predicts a truncated protein identical to the SLC6A8 transporter, comprising the five last C-terminal transmembrane domains of the SLC6A8 transporter. SLC6A8C open reading frame was cloned as a fusion protein with EGFP and the SLC6A8C protein expression was detected by Western Blot. RT-PCR and sequence analysis showed that this splice variant is conserved in evolution, since we also detected it in mouse. This study reveals the presence of a novel SLC6A8 splice variant, SLC6A8C in human and mouse.  相似文献   

9.
10.
We created three lines of transgenic mice with an integrated rat genomic apolipoprotein E gene fused with the mouse metallothionein I promoter. These lines transcribed rat apoE mRNA in the liver and/or in the kidney and expressed significant amounts of rat apoE in plasma. Enhancement of the plasma level by treatment with Zn ion or Bi ion was observed.  相似文献   

11.
12.
We have previously shown that, in the myelin-deficient jimpy mutant mouse, 74 nucleotides are absent from the mRNA for proteolipid protein (PLP) as a result of aberrant RNA processing. To define the exact site of the jimpy mutation, we have analyzed the PLP gene obtained from a jimpy mouse genomic library. We find that the nucleotide sequence that is absent from jimpy PLP mRNA is fully preserved in the jimpy PLP gene. The missing segment corresponds to a separate exon, equivalent to exon 5 of the human PLP gene. The nucleotide sequence at the 3' end of intron 4 in the jimpy PLP gene contains a single point mutation. A base change A----G in the 3' acceptor splice site has altered a position that is 100% conserved in all published splice acceptor sequences. We conclude that the primary genetic defect of the jimpy mouse is a single base change in the PLP gene disabling an invariant recognition sequence of RNA splicing.  相似文献   

13.
14.
Structure and regulation of the sheep metallothionein-Ia gene   总被引:6,自引:0,他引:6  
Screening of a sheep genomic lambda library with a sheep metallothionein-I cDNA clone resulted in the isolation of a 13,200-base-pair fragment containing a metallothionein gene which DNA sequence analysis identified as the gene encoding the cloned cDNA. The two introns occur at identical positions to those in other mammalian metallothioneins but are considerably larger. The first intron contains a DNA element that is present in a related but not identical form in many places in the sheep genome. Comparison of the promoter sequences of this gene (sMT-Ia) with the promoters of metallothionein genes from other species identified a number of conserved regions which may be important in the regulation of this gene by heavy metals, glucocorticoids and alpha-interferon. In sheep fibroblasts, the levels of sMT-Ia mRNA was found to be maximally elevated (95-fold) in the presence of zinc or cadmium and elevated 30-fold in the presence of copper. Dexamethasone had no effect upon mRNA levels. Thus this gene shows a pattern of regulation similar to the human MT-If gene, but distinct from the other human and mouse metallothionein genes so far reported.  相似文献   

15.
C. F. Lesser  C. Guthrie 《Genetics》1993,133(4):851-863
We have developed a new reporter gene fusion to monitor mRNA splicing in yeast. An intron-containing fragment from the Saccharomyces cerevisiae ACT1 gene has been fused to CUP1, the yeast metallothionein homolog. CUP1 is a nonessential gene that allows cells to grow in the presence of copper in a dosage-dependent manner. By inserting previously characterized intron mutations into the fusion construct, we have established that the efficiency of splicing correlates with the level of copper resistance of these strains. A highly sensitive assay for 5' splice site usage was designed by engineering an ACT1-CUP1 construct with duplicated 5' splice sites; mutations were introduced into the upstream splice site in order to evaluate the roles of these highly conserved nucleotides in intron recognition. Almost all mutations in the intron portion of the 5' consensus sequence abolish recognition of the mutated site, while mutations in the exon portion of the consensus sequence have variable affects on cleavage at the mutated site. Interestingly, mutations at intron position 4 demonstrate that this nucleotide plays a role in 5' splice site recognition other than by base pairing with U1 snRNA. The use of CUP1 as a reporter gene may be generally applicable for monitoring cellular processes in yeast.  相似文献   

16.
The rat beta-tropomyosin (beta-TM) gene encodes both skeletal muscle beta-TM mRNA and nonmuscle TM-1 mRNA via alternative RNA splicing. This gene contains eleven exons: exons 1-5, 8, and 9 are common to both mRNAs; exons 6 and 11 are used in fibroblasts as well as in smooth muscle, whereas exons 7 and 10 are used in skeletal muscle. Previously we demonstrated that utilization of the 3' splice site of exon 7 is blocked in nonmuscle cells. In this study, we use both in vitro and in vivo methods to investigate the regulation of the 5' splice site of exon 7 in nonmuscle cells. The 5' splice site of exon 7 is used efficiently in the absence of flanking sequences, but its utilization is suppressed almost completely when the upstream exon 6 and intron 6 are present. The suppression of the 5' splice site of exon 7 does not result from the sequences at the 3' end of intron 6 that block the use of the 3' splice site of exon 7. However, mutating two conserved nucleotides GU at the 5' splice site of exon 6 results in the efficient use of the 5' splice site of exon 7. In addition, a mutation that changes the 5' splice site of exon 7 to the consensus U1 snRNA binding site strongly stimulates the splicing of exon 7 to the downstream common exon 8. Collectively, these studies demonstrate that 5' splice site competition is responsible, in part, for the suppression of exon 7 usage in nonmuscle cells.  相似文献   

17.
18.
The molecular basis of a dramatically decreased steady state level of beta-hexosaminidase beta subunit mRNA in a patient with juvenile Sandhoff disease was investigated. Nucleotide sequence analysis of the HEXB gene coding for the beta subunit revealed two single base substitutions, one in exon 2 (A to G, a known polymorphism) and the other in exon 11 (C to T). Analysis of the beta subunit mRNA species demonstrated activation of a cryptic splice site in exon 11 as well as skipping of the exon. A transfection assay using a chimeric gene containing intron 10 flanked by cDNA sequences carrying the mutation confirmed that the single base substitution located at position 8 of exon 11 inhibits the selection of the normal 3' splice site. The results demonstrate a new type of exon mutation affecting 3' splice site selection.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号