首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work was carried out to determine the relative importance of the endomycorrhizal and (or) ectomycorrhizal association in species of Casuarina and Allocasuarina. Under axenic conditions, Pisolithus and Scleroderma isolates formed ectomycorrhizas with a mantle and a Hartig net on Allocasuarina verticillata but failed to form a Hartig net on Casuarina glauca. In a controlled soil system, C. glauca was inoculated with the endomycorrhizal fungus Glomus intraradices Schenck & Smith, and A. verticillata was inoculated with Pisolithus albus IR100 Bougher & Smith and (or) G. intraradices. Both symbionts significantly stimulated growth in both plant species. For A. verticillata, its growth response to ectomycorrhizal inoculation was higher than to endomycorrhizal inoculation. When both symbionts were inoculated, antagonism among the fungal isolates was observed with a higher ectomycorrhizal colonization. These results showed that A. verticillata was ectomycorrhizal dependent, whereas C. glauca was endomycorrhizal dependent. From a practical point of view, this study shows the importance of selecting compatible mycorrhizal fungi for developing successful inoculation programmes. In addition, it would help to further research and determine the effect of ecto- and endo-mycorrhizal symbiosis on the formation and function of N2-fixing actinorhizal nodules.  相似文献   

2.
The hypothesis of the present study was that the termite mounds of Macrotermes subhyalinus (MS) (a litter-forager termite) were inhabited by a specific microflora that could enhance with the ectomycorrhizal fungal development. We tested the effect of this feeding group mound material on (i) the ectomycorrhization symbiosis between Acacia holosericea (an Australian Acacia introduced in the sahelian areas) and two ectomycorrhizal fungal isolates of Scleroderma dictyosporum (IR408 and IR412) in greenhouse conditions, (ii) the functional diversity of soil microflora and (iii) the diversity of fluorescent pseudomonads. The results showed that the termite mound amendment significantly increased the ectomycorrhizal expansion. MS mound amendment and ectomycorrhizal inoculation induced strong modifications of the soil functional microbial diversity by promoting the multiplication of carboxylic acid catabolizing microorganisms. The phylogenetic analysis showed that fluorescent pseudomonads mostly belong to the Pseudomonads monteillii species. One of these, P. monteillii isolate KR9, increased the ectomycorrhizal development between S. dictyosporum IR412 and A. holosericea. The occurrence of MS termite mounds could be involved in the expansion of ectomycorrhizal symbiosis and could be implicated in nutrient flow and local diversity.  相似文献   

3.
Moyersoen B  Beever RE 《Mycologia》2004,96(6):1225-1232
Pisolithus is restricted in New Zealand to geothermal areas where it associates with Kunzea ericoides var. microflora (prostrate kanuka) and occasionally Leptospermum scoparium. Here we describe for the first time the ectomycorrhizal morphotypes of three New Zealand Pisolithus species and report the frequency and abundance of these morphotypes against other mycorrhizal fungi associated with these hosts in New Zealand geothermal areas. The three Pisolithus species form typical ectomycorrhizal associations with Kunzea ericoides var. microflora, and one also was observed forming typical ectomycorrhizal associations with Leptospermum scoparium. Although the morphotypes from the three Pisolithus species share many morphological and anatomical characteristics, they vary with regard to the abundance of rhizomorphs. The common occurrence of Pisolithus fruiting bodies at the geothermal sites was matched by frequent and abundant Pisolithus ectomycorrhizas. Pisolithus ectomycorrhizas were frequent (100% of soil cores) and abundant (between 55 and 88% of ectomycorrhizal tips) associates of prostrate kanuka in hot (50 C at 8 cm depth), highly acidic and N depleted soils. The levels of arbuscular mycorrhizal colonization of prostrate kanuka were lower than on K. ericoides and L. scoparium on cooler soils. The stressful conditions where prostrate kanuka dominates probably favor Pisolithus over the mycorrhizal fungi occurring in cooler geothermal areas. Questions about how several genetically similar Pisolithus species co-occur on prostrate kanuka in geothermal areas without mutual competitive exclusion are discussed.  相似文献   

4.
Urban environments are highly disturbed and fragmented ecosystems that commonly have lower mycorrhizal fungal species richness and diversity compared to rural or natural ecosystems. In this study, we assessed whether the mycorrhizal status and colonization of trees are influenced by the overall environment (rural vs. urban) they are growing in. Soil cores were collected from the rhizosphere of trees growing in urban and rural environments around southern Ontario. Roots were extracted from the soil cores to determine whether the trees were colonized by arbuscular mycorrhizal fungi, ectomycorrhizal fungi, or both, and to quantify the percent colonization of each type of mycorrhizal fungi. All 26 tree species were colonized by arbuscular mycorrhizal fungi, and seven tree species were dually colonized by arbuscular mycorrhizal and ectomycorrhizal fungi. Overall, arbuscular mycorrhizal and ectomycorrhizal fungal colonization was significantly (p < 0.001) lower in trees growing in urban compared to rural environments. It is not clear what ‘urban’ factors are responsible for the reduction in mycorrhizal fungal colonization; more research is needed to determine whether inoculating urban trees with mycorrhizal fungi would increase colonization levels and growth of the trees.  相似文献   

5.
  1. Recent studies found that the majority of shrub and tree species are associated with both arbuscular mycorrhizal (AM) and ectomycorrhizal (EM) fungi. However, our knowledge on how different mycorrhizal types interact with each other is still limited. We asked whether the combination of hosts with a preferred association with either AM or EM fungi increases the host tree roots’ mycorrhization rate and affects AM and EM fungal richness and community composition.
  2. We established a tree diversity experiment, where five tree species of each of the two mycorrhiza types were planted in monocultures, two‐species and four‐species mixtures. We applied morphological assessment to estimate mycorrhization rates and next‐generation molecular sequencing to quantify mycobiont richness.
  3. Both the morphological and molecular assessment revealed dual‐mycorrhizal colonization in 79% and 100% of the samples, respectively. OTU community composition strongly differed between AM and EM trees. While host tree species richness did not affect mycorrhization rates, we observed significant effects of mixing AM‐ and EM‐associated hosts in AM mycorrhization rate. Glomeromycota richness was larger in monotypic AM tree combinations than in AM‐EM mixtures, pointing to a dilution or suppression effect of AM by EM trees. We found a strong match between morphological quantification of AM mycorrhization rate and Glomeromycota richness.
  4. Synthesis. We provide evidence that the combination of hosts differing in their preferred mycorrhiza association affects the host''s fungal community composition, thus revealing important biotic interactions among trees and their associated fungi.
  相似文献   

6.
 Thirty-six isolates from 27 species of native ectomycorrhizal fungi collected in northern Spain were tested for ectomycorrhiza formation with Pseudotsuga menziesii seedlings in pure culture syntheses. Thirteen of those species were also tested for ectomycorrhiza formation with six other species of conifers (two native and four introduced) to compare their colonization potential. Twenty-three fungal isolates from 18 species formed ectomycorrhizas with Pseudotsuga menziesii. The colonization level of the root system varied markedly among the different fungal species. Eight fungi colonized over 50% of the short roots. Nine fungi did not form ectomycorrhizas even though some of them were collected in pure stands of Pseudotsuga menziesii. Laccaria laccata, Lyophyllum decastes, Pisolithus tinctorius, and Scleroderma citrinum formed abundant ectomycorrhizas on all the conifers tested. Lactarius deliciosus, Rhizopogon spp., and Suillus luteus showed the greatest host specificity. The success in the introduction of some exotic conifers for reforestation in northern Spain is discussed in relation to their compatibility with native ectomycorrhizal fungi. Accepted: 28 August 1995  相似文献   

7.
In the present work, the following hypotheses were tested: (1) the negative effects of mycorrhization over host plant productivity in N-limited conditions are due to N retention by the fungal partner and not due to excessive C drainage; (2) If mycorrhization results in decreased N uptake, the host plant decreases its C investment in fungal growth. The effects of mycorrhization over a wide range of combinations between N availability, N concentration in plant tissues, and degree of mycorrhizal colonization were studied in Pinus pinaster L. mycorrhizal with Pisolithus tinctorius. Several plant productivity parameters, the seedlings’ N status, chl a fluorescence (JIP test), and mycorrhizal colonization were measured. N was always limiting. A gradient of mycorrhizal effects over the host plant’s growth and vitality was successfully obtained. The mycorrhizal effects on plant growth and N uptake were very strongly and positively correlated, and no evidence was found of a C limitation to growth, confirming hypothesis 1. Indications were found that the plants continued to provide C to the fungus although the N supplied by it was increasingly lower, denying hypothesis 2. A new index, the mycorrhizal N demand–supply balance, was found to efficiently explain, and to have a curvilinear relation with, the variation in response to mycorrhization. The mycorrhizal effect on host plant growth was not related to a negative effect on its photosynthetic performance and, therefore, reflected changes in resource allocation between host plant and mycorrhizal fungus, not in plant vitality.  相似文献   

8.
AM真菌在煤矿废弃物中生态适应性的初步研究   总被引:4,自引:0,他引:4  
以粉煤灰、草炭、蛭石、河沙为培养基质,分别对4种不同AM真菌:Glomus mosseae,G.diaphanum,G.intraradices和G.versiforme的生态适应性进行研究。结果表明,菌根的侵染率、孢子密度和菌丝长度分别与菌根真菌种类、培养基质状况及寄主植物种类有关。4种基质的扩繁效果顺序为:河沙>粉煤灰>草炭>蛭石。G.mosseae和G.diaphanum在基质中的产孢量和菌丝长度优于G.intraradices和G.versiforme,可作为优势菌株。4种菌根真菌在粉煤灰中对寄主的侵染率均达到60%以上,粉煤灰作为菌根真菌培养基质具有更大潜力和实际应用价值。  相似文献   

9.
七株外生菌根真菌与三种松苗菌根的形成能力   总被引:11,自引:0,他引:11  
吴小芹  孙民琴 《生态学报》2006,26(12):4186-4191
松树外生菌根菌资源丰富,但实际应用的种类不多。为筛选出与松苗形成菌根能力较强的菌种,采用播种接菌和芽苗截根移栽接菌两种方法,对7株外生菌根真菌与马尾松、湿地松和黑松3种松苗的菌根合成进行了研究。结果表明:形成的菌根以二叉分枝状为主,棒状菌根相对较少,多叉状菌根以马尾松较多。PC2形成的菌根表面菌丝厚且紧密,504、EG、Pt,形成的菌根表面菌丝紧密程度中等,而505、ZJ和HX形成的菌根其表面菌丝则比较稀疏;Pt1、Pt2、EG形成的菌根外延菌丝较长,而505、HX形成的菌根外延菌丝极短。截根接菌时的感染率和感染指数要高于播种接菌。504形成菌根的能力最强,在3种松苗上的菌根感染率都达100%,感染指数最高可达90,最低也达70;Pt2和EG与马尾松和黑松形成菌根的能力较强;而505和HX仅与马尾松形成菌根的能力较强;Pt1形成菌根的能力较差,在3种松苗上菌根感染率和感染指数都较低。在3种松苗中,马尾松的菌根化状况最好,其次为黑松,湿地松的菌根化状况较差。  相似文献   

10.
Six isolates of ectomycorrhizal fungi namely, Laccaria fraterna (EM-1083), Pisolithus tinctorius (EM-1081), Pisolithus tinctorius (EM-1290), Pisolithus tinctorius (EM-1293), Scleroderma verucosum (EM-1283), and Scleroderma cepa (EM-1233), were grown on three variants of coal ash, namely electrostatically precipitated (ESP) ash, pond ash, and bottom ash moistened with Modified Melin-Norkans (MMN) medium in vitro The colony diameter reflected the growth of the isolates on the coal ash. Metal accumulation in the mycelia was assayed by atomic absorption spectrophotometry. Six metals, namely aluminum, cadmium, chromium, iron, lead, and nickel, were selected on the basis of their abundance in coal ash and toxicity potential for the present work. Growth of vegetative mycelium on fly ash variants and metal accumulation data indicated that Pisolithus tinctorius (EM-1290) was the most tolerant among the isolates tested for most of the metals. Since this isolate is known to be mycorrhizal with Eucalyptus, it could be used for the reclamation of coal ash over burdened sites.  相似文献   

11.
【背景】西南桦是兼具内生、外生菌根的典型菌根营养型树种,菌根化育苗是其壮苗培育的有效措施。【目的】揭示外生菌根真菌对西南桦无性系幼苗生长和养分含量的影响,为其菌根化育苗筛选优良外生菌根真菌提供科学依据。【方法】以BY1、FB4、FB4+和A5等4个西南桦优良无性系为研究对象,选用土生空团菌(Cenococcumgeophilum)、松乳菇(Lactariusdeliciosus)、黄硬皮马勃(Scleroderma flavidum)、多根硬皮马勃(S. polyrhizum)、褐环乳牛肝菌(Suillus luteus)和红绒盖牛肝菌(Xerocomuschrysenteron)6个外生菌根真菌进行盆栽接种试验,分析接种处理间及无性系间苗高、地径、生物量以及养分含量差异。【结果】6个菌种均能与西南桦无性系幼苗形成外生菌根共生体,接种多根硬皮马勃与黄硬皮马勃显著促进了幼苗生长和养分吸收(P0.05),说明其与幼苗的亲和力明显优于其它菌种。尽管菌根侵染率在4个无性系之间无显著差异(P≥0.05),但各菌种对FB4、BY1幼苗生长的促进作用显著强于其它2个无性系。【结论】多根硬皮马勃和黄硬皮马勃可作为西南桦菌根化育苗的优选菌种。  相似文献   

12.
13.
In Northeast of Portugal, the macrofungal community associated to chestnut tree (Castanea sativa Mill.) is rich and diversified. Among fungal species, the ectomycorrhizal Pisolithus tinctorius and the saprotroph Hypholoma fasciculare are common in this habitat. The aim of the present work was to assess the effect of the interaction between both fungi on growth, nutritional status, and physiology of C. sativa seedlings. In pot experiments, C. sativa seedlings were inoculated with P. tinctorius and H. fasciculare individually or in combination. Inoculation with P. tinctorius stimulated the plant growth and resulted in increased foliar-N, foliar-P, and photosynthetic pigment contents. These effects were suppressed when H. fasciculare was simultaneously applied with P. tinctorius. This result could be related to the inhibition of ectomycorrhizal fungus root colonization as a result of antagonism or to the competition for nutrient sources. If chestnut seedlings have been previously inoculated with P. tinctorius, the subsequent inoculation of H. fasciculare 30 days later did not affect root colonization, and mycorrhization benefits were observed. This work confirms an antagonistic interaction between ectomycorrhizal and saprotrophic fungi with consequences on the ectomycorrhizal host physiology. Although P. tinctorius is effective in promoting growth of host trees by establishing mycorrhizae, in the presence of other fungi, it may not always be able to interact with host roots due to an inability to compete with certain fungi.  相似文献   

14.
V Reininger  TN Sieber 《PloS one》2012,7(8):e42865
Mycorrhizal roots are frequently colonized by fungi of the Phialocephala fortinii s.l. - Acephala applanata species complex (PAC). These ascomycetes are common and widespread colonizers of tree roots. Some PAC strains reduce growth increments of their hosts but are beneficial in protecting roots against pathogens. Nothing is known about the effects of PAC on mycorrhizal fungi and the PAC-mycorrhiza association on plant growth, even though these two fungal groups occur closely together in natural habitats. We expect reduced colonization rates and reduced negative effects of PAC on host plants if roots are co-colonized by an ectomycorrhizal fungus (ECM). Depending on the temperature regime interactions among the partners in this tripartite ECM-PAC-plant system might also change. To test our hypotheses, effects of four PAC genotypes (two pathogenic and two non-pathogenic on the Norway spruce), mycorrhization by Laccaria bicolor (strain S238N) and two temperature regimes (19°C and 25°C) on the biomass of the Douglas-fir (Pseudotsuga menziesii) and Norway spruce (Picea abies) seedlings were studied. Mycorrhization compensated the adverse effects of PAC on the growth of the Norway spruce at both temperatures. The growth of the Douglas-fir was not influenced either by PAC or mycorrhization at 19°C, but at 25°C mycorrhization had a similar protective effect as in the Norway spruce. The compensatory effects probably rely on the reduction of the PAC-colonization density by mycorrhizae. Temperature and the PAC strain only had a differential effect on the biomass of the Norway spruce but not on the Douglas-fir. Higher temperature reduced mycorrhization of both hosts. We conclude that ectomycorrhizae form physical and/or physiological barriers against PAC leading to reduced PAC-colonization of the roots. Additionally, our results indicate that global warming could cause a general decrease of mycorrhization making primary roots more accessible to other symbionts and pathogens.  相似文献   

15.
Dunstan  W. A.  Malajczuk  N.  Dell  B. 《Plant and Soil》1998,201(2):241-249
The development of ectomycorrhizas on inoculated eucalypt seedlings in commercial nurseries is often slow so that only a small percentage of roots are mycorrhizal at the time of outplanting. If mycorrhizal formation could be enhanced by co-inoculation with bacteria which promote rapid root colonisation by specific ectomycorrhizal fungi, as demonstrated by certain bacteria in the Douglas fir-Laccaria bicolor association, this would be of advantage to the eucalypt forest industry. Two bacterial isolates with a demonstrated Mycorrhization Helper Bacteria (MHB) effect on ectomycorrhiza formation between Pseudotsuga menziesii and Laccaria bicolor (S238), and seven Western Australian bacterial isolates from Laccaria fraterna sporocarps or ectomycorrhizas were tested in isolation for their effect on ectomycorrhizal development by three Laccaria spp. with Eucalyptus diversicolor seedlings. Mycorrhizal formation by L. fraterna (E710) as measured by percentage infected root tips, increased significantly (p < 0.05) by up to 296% in treatments coinoculated with MHB isolates from France (Pseudomonas fluorescens Bbc6 or Bacillus subtilis MB3), or indigenous isolates (Bacillus sp. Elf28 or a pseudomonad Elf29). In treatments coinoculated with L. laccata (E766) and the MHB isolate P. fluorescens (Bbc6) mycorrhizal development was significantly inhibited (p < 0.05). A significant Plant Growth Promoting Rhizobacteria (PGPR) effect was observed where the mean shoot d.w. of seedlings inoculated only with an unidentified bacterium (Elf21), was 49% greater than the mean of uninoculated controls (-fungus, -bacterium). Mean shoot d.w. of seedlings coinoculated with L. bicolor (S-238), which did not form ectomycorrhizas with E. diversicolor, and an unidentified bacterium (Slf14) or Bacillus sp. (Elf28) were significantly higher than uninoculated seedlings or seedlings inoculated with L. bicolor (S-238) alone. This is the first time that an MHB effect has been demonstrated in a eucalypt-ectomycorrhizal fungus association. These organisms have the potential to improve ectomycorrhizal development on eucalypts under nursery conditions and this is particularly important for fast growing eucalypt species where the retention time of seedlings in the nursery is of short duration (2–3 months).  相似文献   

16.
Summary A greenhouse study was conducted to evaluate the effect of ectomycorrhizae on loblolly pine (Pinus taeda L.) growing in a Piedmont soil. Pine seedlings were inoculated with one of four species of fungi (Scleroderma aurantium, Pisolithus tinctorius, Thelophora terrestris, andRhizopogon roseolus). The seedlings were grown in pots containing a Cecil sandy clay loam amended to create a gradient of extractable P ranging from 5.9 to 52.5 g/g. After ten months, all colonized seedlings were significantly larger than control seedlings. However, of the four fungi,Scleroderma aurantium mediated a far superior shoot growth response to increasing levels of soil P; the seedlings were significantly larger than those colonized by any other fungus and also had the largest root systems and greatest degree of mycorrhizal colonization.  相似文献   

17.
? Premise of the study: Mixotrophy is a strategy whereby plants acquire carbon both through photosynthesis and heterotrophic exploitation of mycorrhizal fungi. In Euro-American Pyroleae species studied hitherto, heterotrophy levels vary according to species, sites of study, and possibly light conditions. We investigated mycorrhizal association and mixotrophy in the Asiatic forest species Pyrola japonica, and their plasticity under different light conditions. ? Methods: Pyrola japonica was sampled bimonthly in sunny and shaded conditions from a deciduous broadleaf forest. We microscopically assessed the rate of fungal colonization and sequenced the ITS to identify the mycorrhizal fungi. We measured (13)C and (15)N isotopic abundances in P. japonica as compared with neighboring autotrophic and mycoheterotrophic plants, to evaluate P. japonica's heterotrophy level. ? Key results: Pyrola japonica formed arbutoid mycorrhizas devoid of fungal mantles, with intracellular hyphal coils and a Hartig net. It tended to be more colonized by mycorrhizal fungi in spring and summer. Most associated fungi belonged to ectomycorrhizal taxa, and 84% of identified fungi were Russula spp. Rate of mycorrhizal colonization and Russula frequency tended to be higher in shaded conditions. Both δ(13)C and δ(15)N values of P. japonica were significantly higher in autotrophic plants, showing that about half of the carbon on average was received from mycorrhizal fungi. Both isotopic values negatively correlated with light availability, suggesting higher heterotrophy levels in shaded conditions. ? Conclusions: The mixotrophic P. japonica undergoes changes in mycorrhizal symbionts and carbon nutrition according to light availability. Our results suggest that during Pyroleae evolution, a tendency to increased heterotrophy emerged in the Pyrola/Orthilia clade.  相似文献   

18.
A study was undertaken to determine the ability to form ectomycorrhizae with Pinus pinaster Ait. in pure culture syntheses of 98 isolates of putative mycorrhizal fungi, mainly collected in northern Spain. A total of 35 species in 16 genera — Amanita, Cenococcum, Collybia, Cortinarius, Hebeloma, Laccaria, Lactarius, Lyophyllum, Melanogaster, Paxillus, Pisolithus, Rhizopogon, Scleroderma, Suillus, Thelephora and Xerocomus — formed ectomycorrhizae. Many of these fungal species were not previously reported as symbiotic with Pinus pinaster. Results obtained increase the range of potential fungal candidates for inoculation of nursery seedlings.  相似文献   

19.
Arbuscule-forming fungi in the order Glomales form obligate endomycorrhizal associations with plants that make them difficult to quantify, and taxonomy of the group is only beginning to be objectively understood. Fatty acid methyl ester (FAME) profiles were analyzed to assess the diversity and quantity of fatty acids in 53 isolates of 24 glomalean species. Spores and endomycorrhizal roots of sudan grass (Sorghum sudanense) and the citrus rootstock Carrizo citrange (Poncirus trifoliata x Citrus sinensis) were examined. Spores yielded reproducible FAME profiles from replicate spore collections extracted from soil pot cultures despite being grown in association with a host plant and with contaminating microorganisms present. Unweighted pair group analysis revealed relatively tight clusters of groups at the intraspecific, specific, and generic levels; however, lipid profiles at the family level were convergent. Thus, FAME profile comparisons provided a robust measure of similarity below the family level. FAME profiles in sudan grass roots containing vesicles and/or spores of Glomus intraradices were more similar to spore profiles than to profiles from nonmycorrhizal roots. The FAME profiles for Gigaspora species, which do not form vesicles or spores in roots, were less distinct from nonmycorrhizal roots. G. intraradices and G. rosea produced fatty acids in roots that were distinguishable from each other as well as from the host root. Production in citrus roots of the fatty acid 16:1(inf(omega)5) cis by two Glomus species was correlated with the development of mycorrhizal colonization as measured by clearing and staining procedures and by estimates of total incidence and vesicle intensity. FAME analysis of roots not only provided a measure of colonization development but also served as an index of carbon allocated to intraradical fungal growth and lipid storage.  相似文献   

20.
Ectomycorrhizal plants and fungi are ubiquitous in mainland forests, but because of dispersal limitations are predicted to be less common on isolated islands. For instance, no native ectomycorrhizal plants or fungi have ever been reported from Hawaii, one of the most remote archipelagos on Earth. Members of the plant tribe Pisonieae are common on many islands, and prior evidence shows that some species associate with ectomycorrhizal fungi. However, until now, the Pisonieae species of Hawaii had yet to be examined for their mycorrhizal status. Here we sampled roots from members of the genus Pisonia growing on the Hawaiian islands of Oahu, Maui and Hawaii. We used molecular and microscopic techniques to categorize trees with respect to their mycorrhizal associations. We report that the Hawaiian endemic Pisonia sandwicensis forms ectomycorrhizas with at least five fungal operational taxonomic units (corresponding closely to species) belonging to four genera. We also report that this tree species is monophyletic with other ectomycorrhizal Pisonia species. We suggest that in light of the newly discovered Hawaiian ectomycorrhizal fungal community and other island ectomycorrhizal communities, dispersal limitations do not prevent the colonization of remote islands by at least some ectomycorrhizal fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号