首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Apolipoprotein B-100 (apoB-100) is the major protein constituent of human plasma low-density lipoproteins (LDL). On the basis of its amino acid sequence [Chen, S.-H., Yang, C.-Y., Chen, P.-F., Setzer, D., Tanimura, M., Li, W.-H., Gotto, A. M., Jr., & Chan, L. (1986) J. Biol. Chem. 261, 12918-12921], apo B-100 is one of the largest monomeric proteins known with a calculated molecular weight of 512937. Heparin binds to the LDL surface by interacting with positively charged amino acid residues of apoB-100, forming soluble complexes in the absence of divalent metals and insoluble complexes in their presence. The purpose of this study was to isolate and characterize the heparin-binding domain(s) of apoB-100. Human plasma LDL were fragmented with cyanogen bromide (CNBr). After delipidation and reduction-carboxymethylation, the CNBr peptides were fractionated by sequential chromatography on DEAE-Sephacel, Mono S, and high reactive heparin (HRH) AffiGel-10; HRH was purified by chromatography of crude bovine lung heparin on LDL AffiGel-10. Heparin-binding peptides were further purified by reverse-phase high-performance liquid chromatography. Heparin-binding activity was monitored by a dot-blot assay with 125I-HRH. The amino-terminal sequences of four CNBr heparin-binding peptides (CNBr-I-IV) were determined. CNBr-I-IV correspond to residues 2016-2151, 3109-3240, 3308-3394, and 3570-3719, respectively, of the amino acid sequence of apoB-100. Each CNBr peptide contains a domain(s) of basic amino acid residues which we suggest accounts for their heparin-binding activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Heparin was fractionated on an affinity column of bovine milk lipoprotein lipase (LpL) immobilized to Affi-Gel-15. The bound heparin, designated high-reactive heparin (HRH), enhanced LpL activity, presumably by stabilizing the enzyme against denaturation. The unbound heparin fraction had no observable effect on the initial rate of enzyme activity. However, at longer times of incubation there was inhibition of LpL activity. LpL-specific HRH also showed a high, Ca2+-dependent precipitating activity towards human plasma low density lipoproteins (LDL). Since LpL and LDL both bind to heparin-like molecules at the surface of the arterial wall, we suggest that their similar heparin-binding specificity may have physiological consequences as it relates to the development of atherosclerosis.

Heparin binding Lipoprotein lipase LDL Apolipoprotein Lipolysis  相似文献   


3.
Bovine spermatozoa that have been exposed to seminal plasma possess more binding sites for heparin than sperm from the cauda epididymis that have not been exposed to accessory sex gland secretions. Seminal plasma exposure enables sperm, following incubation with heparin, to undergo zonae pellucidae-induced exocytosis of the acrosome. In this study, the regulatory role of seminal plasma heparin-binding proteins in capacitation of bovine spermatozoa by heparin was investigated. Plasma membranes from sperm exposed to seminal plasma in vivo or in vitro contained a series of acidic 15-17 kDa proteins not found in cauda epididymal sperm. Western blots of membrane proteins indicated that these 15-17 kDa proteins bound [125I]-heparin. Heparin-binding proteins were isolated by heparin affinity chromatography from seminal plasma from vasectomized bulls. Gel electrophoresis indicated that the heparin-binding peaks contained 14-18 kDa proteins with isoelectric variation, a basic 24 kDa protein, and a 31 kDa protein. Western blots probed with [125I]-heparin confirmed the ability of each of these proteins to bind heparin. Each of these proteins, as well as control proteins, bound to epididymal sperm. The seminal plasma proteins were peripherally associated with sperm since they were removed by hypertonic medium and did not segregate into the detergent phase of Triton X-114. Seminal plasma heparin-binding proteins potentiated zonae pellucidae-induced acrosome reactions in epididymal sperm. However, seminal plasma proteins that did not bind to the heparin affinity column were unable to stimulate zonae-sensitivity. Control proteins, including lysozyme--which binds to both heparin and sperm, were ineffective at enhancing zonae-induced acrosome reactions. These data provide evidence for a positive regulatory role of seminal plasma heparin-binding proteins in capacitation of bovine spermatozoa.  相似文献   

4.
125I-labeled heparin was used to detect basic fibroblast growth factor (bFGF) in crude tumor cell extracts after separation by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. 125I-labeled heparin bound avidly to native recombinant bFGF immobilized on nitrocellulose and eluted with 1.5-2.0 M NaCl. However, Western transfer of bFGF to nitrocellulose after SDS-polyacrylamide gel electrophoresis destroyed heparin-binding ability. In contrast, bFGF was detected by incubation of the polyacrylamide gels directly with 125I-labeled heparin in a gel overly technique. Heparin affinity and NaCl elution pattern from bFGF in gel were similar to those observed for native bFGF spotted on nitrocellulose. This procedure permitted detection of bFGF in crude extracts of a human astrocytoma cell line. In view of the rapid growth of the heparin-binding fibroblast growth factor gene family, this technique should prove useful for the rapid and sensitive detection of other heparin-binding growth factors.  相似文献   

5.
This study characterizes the physical-chemical interactions of heparin with human plasma low-density lipoproteins (LDL). A high reactive heparin (HRH) specific for the surface determinants of LDL was isolated by chromatography of commercial bovine lung heparin on LDL immobilized to AffiGel-10. HRH was derivatized with fluoresceinamine and repurified by affinity chromatography, and its interaction with LDL in solution was monitored by steady-state fluorescence polarization. Binding of LDL to fluoresceinamine-labeled HRH (FL . HRH) was saturable, reversible, and specific; HRH stoichiometrically displaced FL . HRH from the soluble complex, and acetylation of lysine residues on LDL blocked heparin binding. Titration of FL.HRH with excess LDL yielded soluble complexes with two LDL molecules per heparin chain (Mr 13,000) characterized by an apparent Kd of 1 microM. Titration of LDL with excess HRH resulted in two classes of heparin binding with two and five heparin molecules bound per LDL and apparent Kd values of 1 and 10 microM, respectively. At physiological pH and ionic strength, the soluble HRH-LDL complexes were maximally precipitated with 20-50 mM Ca2+. Insoluble complexes contained 2-10 HRH molecules per LDL with the final product stoichiometry dependent on the ratio of the reactants. The affinity of HRH for LDL in the insoluble complexes was estimated between 1 and 10 microM. Insoluble LDL-heparin complexes were readily dissociated with 1.0 M NaCl, and their formation was prevented by acetylation of the lysine residues on LDL.  相似文献   

6.
The binding of 125I-labeled derivatives of heparin has been used by several investigators to identify heparin-binding fragments of different heparin-binding proteins. In this report we utilize the procedure described by J.W. Smith and D.J. Knauer (1987, Anal. Biochem. 160, 105-114) to produce 125I-fluorescein-heparin. Using this derivative, we compare the use of gel overlay procedures with "Western blot" procedures for the detection of heparin-binding proteins following polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. We show that the gel overlay procedure is a relatively simple and sensitive method for visualizing heparin-binding proteins. In addition, we use the procedure to characterize the heparin-binding properties of heparin-binding growth factor 1 (acidic fibroblast growth factor) with synthetic peptide competitors and site-directed mutants of the growth factor.  相似文献   

7.
The binding of human 125I-labeled HDL3 (high-density lipoproteins, rho 1.125-1.210 g/cm3) to a crude membrane fraction prepared from bovine liver closely fit the paradigm expected of a ligand binding to a single class of identical and independent sites, as demonstrated by computer-assisted binding analysis. The dissociation constant (Kd), at both 37 and 4 degrees C, was 2.9 micrograms protein/ml (approx. 2.9 X 10(-8) M); the capacity of the binding sites was 490 ng HDL3 (approx. 4.9 pmol) per mg membrane protein at 37 degrees C and 115 at 4 degrees C. Human low-density lipoproteins (LDL) and very-low-density lipoproteins (VLDL) also bound to these sites (Kd = 41 micrograms protein/ml, approx. 6.7 X 10(-8) M for LDL, and Kd = 5.7 micrograms protein/ml, approx. 7.0 X 10(-9) M for VLDL), but this observation must be considered in light of the fact that the normal circulating concentrations of these lipoproteins are much lower than those of HDL. The binding of 125I-labeled HDL3 to these sites was inhibited only slightly by 1 M NaCl, suggesting the presence of primarily hydrophobic interactions at the recognition site. The binding was not dependent on divalent cations and was not displaceable by heparin; the binding sites were sensitive to both trypsin and pronase. Of exceptional note was the finding that various subclasses of human HDL (including subclasses of immunoaffinity-isolated HDL) displaced 125I-labeled HDL3 from the hepatic HDL binding sites with different apparent affinities, indicating that these sites are capable of recognizing highly specific structural features of ligands. In particular, apolipoprotein A-I-containing lipoproteins with prebeta electrophoretic mobility bound to these sites with a strikingly lower affinity (Kd = 130 micrograms protein/ml) than did the other subclasses of HDL.  相似文献   

8.
Primary cultures of rabbit hepatocytes which were preincubated for 20 h in a medium containing lipoprotein-deficient serum subsequently bound, internalized and degraded 125I-labeled high-density lipoproteins2 (HDL2). The rate of degradation of HDL2 was constant in incubations from 3 to 25 h. As the concentration of HDL2 in the incubation medium was increased, binding reached saturation. At 37 degrees C, half-maximal binding (Km) was achieved at a concentration of 7.3 micrograms of HDL2 protein/ml (4.06 X 10(-8)M) and the maximum amount bound was 476 ng of HDL2 protein/mg of cell protein. At 4 degrees C, HDL2 had a Km of 18.6 micrograms protein/ml (1.03 X 10(-7)M). Unlabeled low-density lipoproteins (LDL) inhibited only at low concentrations of 125I-labeled HDL2. Quantification of 125I-labeled HDL2 binding to a specific receptor (based on incubation of cells at 4 degrees C with and without a 50-fold excess of unlabeled HDL) yielded a dissociation constant of 1.45 X 10(-7)M. Excess HDL2 inhibited the binding of both 125I-labeled HDL2 and 125I-labeled HDL3, but excess HDL3 did not affect the binding of 125I-labeled HDL3. Preincubation of hepatocytes in the presence of HDL resulted in only a 40% reduction in specific HDL2 receptors, whereas preincubation with LDL largely suppressed LDL receptors. HDL2 and LDL from control and hypercholesterolemic rabbits inhibited the degradation of 125I-labeled HDL2, but HDL3 did not. Treatment of HDL2 and LDL with cyclohexanedione eliminated their capacity to inhibit 125I-labeled HDL2 degradation, suggesting that apolipoprotein E plays a critical role in triggering the degradative process. The effect of incubation with HDL on subsequent 125I-labeled LDL binding was time-dependent: a 20 h preincubation with HDL reduced the amount of 125I-labeled LDL binding by 40%; there was a similar effect on LDL bound in 6 h but not on LDL bound in 3 h. The binding of 125I-labeled LDL to isolated liver cellular membranes demonstrated saturation kinetics at 4 degrees C and was inhibited by EDTA or excess LDL. The binding of 125I-labeled HDL2 was much lower than that of 125I-labeled LDL and was less inhibited by unlabeled lipoproteins. The binding of 125I-labeled HDL3 was not inhibited by any unlabeled lipoproteins. EDTA did not affect the binding of either HDL2 or HDL3 to isolated liver membranes. Hepatocytes incubated with [2-14C]acetate in the absence of lipoproteins incorporated more label into cellular cholesterol, nonsaponifiable lipids and total cellular lipid than hepatocytes incubated with [2-14C]acetate in the presence of any lipoprotein fraction. However, the level of 14C-labeled lipids released into the medium was higher in the presence of medium lipoproteins, indicating that the effect of those lipoproteins was on the rate of release of cellular lipids rather than on the rate of synthesis.  相似文献   

9.
Discrete apolipoprotein E-containing lipoproteins can be identified when EDTA plasma is fractionated on columns of 4% agarose. The present study has demonstrated, by physical and metabolic criteria, that these apolipoprotein E-containing lipoprotein subclasses may be further isolated by immunoaffinity chromatography. Whole plasma was first bound to an anti-apolipoprotein E immunoadsorbent prior to gel filtration on 4% agarose. After elution from the affinity column and dialysis, the bound fraction was chromatographed on 4% agarose. Discrete subfractions of apolipoprotein E could be demonstrated within elution volumes similar to those observed in the original plasma. When whole plasma was first submitted to gel filtration and the apolipoprotein E-containing lipoproteins of either intermediate- or of high-density lipoprotein (HDL) size were subsequently bound to anti-apolipoprotein E columns, the bound eluted fractions maintained their size and physical properties as shown by electron microscopy and by rechromatography on columns of 4% agarose. The metabolic integrity of apolipoprotein E-containing very-low-density lipoproteins (VLDL) was examined by coinjection into a cynomolgus monkey of 125I-labeled apolipoprotein E-rich and 131I-labeled apolipoprotein E-deficient human VLDL which had been separated by immunoaffinity chromatography. The plasma specific activity time curves of the apolipoprotein B in VLDL, intermediate-density (IDL) and low-density (LDL) lipoproteins demonstrated rates of decay and precursor-product relationships similar to those obtained after injection of whole labeled VLDL, supporting the metabolic integrity of VLDL isolated by immunoaffinity chromatography.  相似文献   

10.
Factors affecting the association of apolipoprotein E (apoE) with human plasma very low density lipoprotein (VLDL) were investigated in experiments in which the lipid content of the lipoprotein was modified either by lipid transfer in the absence of lipolysis or through the action of lipoprotein lipase. In both cases, lipoprotein particles initially containing no apoE (VLDL-E), isolated by heparin affinity chromatography, were modified until they had the same lipid composition as native apoE-containing VLDL (VLDL+E) from the same plasma. Transfer-modified lipoproteins, unlike native VLDL+E, did not bind apoE or interact with heparin. In contrast, VLDL-E, whose lipid composition was modified to the same extent by lipase, bound apoE and bound to heparin under the same conditions as native VLDL+E. A structural protein (apolipoprotein B) epitope characteristic of VLDL+E was expressed during lipolysis prior to ApoE or heparin binding. The data suggest that the reaction of apoE with VLDL-E is a two-step reaction. The appearance of apoB is modified during lipolysis, with expression of a major heparin-binding site. The modified VLDL then becomes competent to bind apoE. The lipid composition of VLDL appears not to be a major factor in the ability of VLDL to bind apoE or to bind to heparin.  相似文献   

11.
Ligand blotting with 125I-fluoresceinamine-heparin   总被引:3,自引:0,他引:3  
A highly sensitive method for ligand blotting with heparin has been developed. This ligand-blotting method is successful largely due to the ability to prepare heparin derivatives of high radiospecific activity. Heparin was modified with fluoresceinamine according to the method of C.G. Glabe, P.K. Harty, and S.D. Rosen [1983) Anal. Biochem. 130, 287-294), and this fluoresceinamine-derivatized heparin can be radioiodinated to a specific activity of 100,000 cmp/ng of uronic acid. This is a 500-fold increase in specific activity over Bolton-Hunter-modified heparin, as prepared by A.D. Cardin, K.R. Witt, and R.L. Jackson [1984) Anal. Biochem. 137, 368-373). 125I-Fluoresceinamine-derivatized heparin retains its ability to interact specifically with heparin-binding proteins such as human protease nexin-I and antithrombin III. 125I-Fluoresceinamine-derivatized heparin can be used to visualize and quantify heparin binding proteins on nitrocellulose. Protease nexin-I can be visualized at the nanogram level. In addition, ligand blotting with 125I-fluoresceinamine heparin can be combined with Cleveland digestion (D.W. Cleveland, S. Fisher, M.W. Kirschner, and U.K. Laemmli (1977) J. Biol. Chem. 252, 1102-1106) in order to identify heparin binding fragments of proteins with heparin binding domains.  相似文献   

12.
As an intracellular pathogen, the mechanism by which Chlamydia invade eukaryotic cells represents a cornerstone to understanding chlamydial biology. The ability of chlamydiae specifically to bind heparan sulphate or heparin and the association of this ability to bind and enter mammalian host cells was approached by searching experimentally for chlamydial outer membrane proteins that bind heparin. The 60 000 molecular weight cysteine-rich outer membrane complex protein, OmcB, bound heparin. The ability of OmcB to bind heparin was supported by mapping the region of the protein with heparin-binding capacity and demonstrating that an OmcB synthetic 20-mer peptide from this region specifically bound heparin. Surface localization of OmcB was shown using monospecific antisera specific to the 20-mer OmcB peptide that bound the surfaces of elementary bodies (EB) and by heparin-binding peptide cross-linking of EB surface proteins.  相似文献   

13.
Rat serum phosphorylcholine-binding protein (PCBP), a member of the pentraxin family of proteins, was previously shown to bind multilamellar liposomes prepared with egg phosphatidylcholine and lysophosphatidylcholine. The results suggested that the phosphorylcholine groups on the surface of liposomes play an important role in the binding process (Nagpurkar, A., Saxena, U., and Mookerjea, S. (1983) J. Biol Chem. 258, 10518-10523). A study on the binding of human plasma lipoproteins to PCBP immobilized on Sepharose has now been initiated. Very low density lipoproteins were partially bound to a Sepharose-PCBP column, and the bound fraction contained higher concentrations of apoprotein B and E. All the low density lipoproteins applied were bound to the column. In the case of high density lipoproteins, only a small fraction was retained on the column (based on protein analysis), and that bound fraction contained all the apoprotein E and Lp(a) lipoprotein. The binding of very low, low, and high density lipoproteins to Sepharose-PCBP was Ca2+-dependent, and the bound lipoproteins were quantitatively eluted by a phosphorylcholine gradient. Apoprotein B and E were also bound when whole human plasma was applied to Sepharose-PCBP. The effect of selective modification of lysine residues by acetoacetylation and of arginine residues by cyclohexanedione on the binding of low density lipoproteins to Sepharose-PCBP was examined. Modification of arginyl residues resulted in marked reduction of binding, whereas modification of lysine had no effect. Removal of sialic acid from PCBP also had no effect on the binding of low density lipoproteins to immobilized-desialylated PCBP column. The preferential binding of apoprotein B- and E-containing lipoproteins to Sepharose-PCBP indicates a possible physiological role of PCBP and other similar circulating phosphorylcholine-binding proteins of the pentraxin family in lipoprotein metabolism.  相似文献   

14.
Pharmacological doses of 17 alpha-ethinyl estradiol induce a low density lipoprotein (LDL) receptor in the liver of male rats. Our aim was to solubilize this receptor. Isolated liver membranes (8,000-100,000 g fraction) from male rats treated with 17 alpha-ethinyl estradiol and from control rats were solubilized in 1% (w/v) Triton X-100. Using Amberlite XAD-2, more than 90% of the detergent was then removed. Liposomes were prepared by precipitating the solubilized proteins with acetone in the presence of phosphatidylcholine. The receptor activity of these liposomes was assayed using human 125I-labeled LDL. Filtration was used to separate bound from free 125I-labeled LDL. The assay was optimized; 0.25 mM CaCl2, 25 mM NaCl, pH 8.0, were chosen as the standard conditions. Binding of 125I-labeled LDL was dependent on Ca2+. Liposomes containing solubilized membrane proteins from treated rats displayed Ca2+-dependent binding which was 11 times higher than for control rats. The specific binding of 125I-labeled LDL was saturable with a Kd = 18 micrograms/ml. 125I-Labeled LDL was displaced by unlabeled lipoproteins containing apolipoproteins B and E and by dimyristoylphosphatidylcholine liposomes containing purified apolipoprotein E, but not by HDL3. The binding was abolished by pronase and was inhibited by suramin. Ligand blotting with 125I-labeled LDL revealed one band of protein with an apparent molecular weight of 133,000 daltons. These properties are characteristic of the low density lipoprotein receptor.  相似文献   

15.
Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (SDS-PAGE) separates rat apolipoprotein B (apoB) into one lower and two higher molecular weight components. Of the latter, peptide I (PI) corresponds to human B-100, while the slightly faster-migrating peptide II (PII) lacks a human counterpart; the smaller species peptide III (PIII) corresponds to human B-48. We describe here a competitive radioimmunoassay which separately measures the amounts of total (i.e., PI + PII + PIII) and larger (i.e., PI + PII) rat apoB peptides, with the amounts of PIII obtained by difference. Standard rat PIII and combined PI + PII (PI,II) were isolated by high-pressure gel filtration liquid chromatography in the presence of SDS, and the PI,II was used as an immunogen to raise rabbit antisera which were capable of binding all three forms of rat apoB. However, Scatchard analysis showed this binding to represent two distinct types of antibodies: one high-affinity class which bound only PI,II and a second class which bound all apoB peptides with equal but lower affinity. Thus, since 125I-labeled PIII was displaced equally effectively by PI,II and PIII, but 125I-labeled PI,II was displaced only by PI,II, the unabsorbed antiserum could be used to measure either total apoB or PI,II alone, depending on the choice of labeled ligand. The validity of the assay for apoB peptides in very-low-density and low-density lipoproteins and in liver microsomes was verified by comparison with peptide determinations by SDS-PAGE.  相似文献   

16.
Successive rechromatography of commercial bovine lung heparin on human plasma low density lipoproteins (LDL) immobilized to AffiGel-10 yielded four high reactive heparin (HRH-I to IV) fractions and an unreactive fraction (URH). HRH-I was the most sulphated HRH fraction whereas URH had the least sulphation. In the presence of 10 mM Ca2+, LDL were precipitated by these heparins in the following order: HRH-II greater than HRH-III greater than HRH-IV greater than HRH-I greater than URH. The average molecular weight of HRH-I to IV was 8600, 11400, 10,100, and 10,000, respectively. A plot of log molecular weight versus the concentration of HRH required to give half-maximal precipitation of LDL showed a negative correlation (r = -0.880). These results indicate that heparin chain length is an important determinant of heparin binding to LDL in solution and may have relevance to the binding and precipitation of LDL in the arterial wall.  相似文献   

17.
Bovine seminal plasma (BSP) contains a family of major proteins designated BSP-A1/A2, BSP-A3, and BSP-30kDa (collectively called BSP proteins) that bind to sperm at ejaculation and potentiate sperm capacitation. Homologous proteins have been identified in stallion, boar, goat, and ram seminal plasma. We report here the isolation and characterization of homologous proteins from bison seminal vesicle secretions. Seminal vesicle secretory proteins were precipitated by adding cold ethanol and recovered by centrifugation. The precipitates were resuspended in ammonium bicarbonate, dialyzed, and lyophilized. Lyophilized proteins were dissolved in 0.05 M phosphate buffer (PB) and loaded onto a gelatin-agarose column. The unadsorbed proteins and adsorbed proteins were eluted with PB and 5 M urea in PB, respectively. The gelatin-adsorbed fraction was analyzed by SDS-PAGE and revealed the presence of four major proteins designated BiSV-16kDa, BiSV-17kDa, BiSV-18kDa, and BiSV-28kDa (BiSV: bison seminal vesicle proteins). Heparin-Sepharose chromatography allowed the separation of BiSV-16kDa, which did not bind heparin from other BiSV proteins, which bound heparin. Immunoblotting revealed that BiSV-16kDa cross-reacted with BSP-A3 antibodies, BiSV-17kDa and BiSV-18kDa cross-reacted with BSP-A1/-A2 antibodies, and BiSV-28kDa cross-reacted with BSP-30kDa antibodies. Radioimmunoassays indicated that approximately 25% of bison seminal vesicle total proteins are related to BSP proteins. The amino-terminal sequencing indicated that BiSV proteins share almost 100% sequence identity with BSP proteins. In addition, BiSV proteins bind to low-density lipoproteins isolated from hen's egg yolk. These results confirm that BSP protein homologs are present in mammalian seminal plasma and they may share the same biological role.  相似文献   

18.
Human plasma low-density lipoproteins (LDL) were incubated with 10 microM probucol for 1 h at 37 degrees C. Probucol incorporation into the LDL was complete as judged by filtration through a 0.2-micron filter, ultracentrifugation, and gel filtration. LDL with and without probucol were incubated for up to 24 h with 5 microM Cu2+ at 37 degrees C. Copper oxidation increased the content of random structure in the LDL protein from 30% to 36% at the expense of beta-structure (which decreased from 22% to 16%) without a change in alpha-helical content as measured by circular dichroism spectroscopy. This loss of beta-structure was prevented by the presence of probucol in the LDL during the copper incubation. Probucol reduced the rate of increase of fluorescence during copper oxidation at 37 degrees C. After 6 h, the fluorescence intensity at 360-nm excitation and 430-nm emission was 30% less in probucol-containing samples. Probucol had no effect on the circular dichroic spectrum of LDL and only minimal effects (less than 5%) on the fluorescence emission spectrum at wavelengths below 500 nm. Two fluorescence peaks, with emission at 420 nm and excitation at 340 and 360 nm, are resolved in three-dimensional fluorescence spectra of oxidized LDL. Probucol reduces the intensity of both peaks equally. The binding of a highly reactive heparin (HRH) fraction to LDL was measured by titration of LDL with HRH in the presence of fluoresceinamine-labeled HRH. The decrease in fluorescence anisotropy of the labeled HRH is proportional to the concentration of bound HRH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Human high density lipoprotein (HDL3) binding to rat liver plasma membranes   总被引:3,自引:0,他引:3  
The binding of human 125I-labeled HDL3 to purified rat liver plasma membranes was studied. 125I-labeled HDL3 bound to the membranes with a dissociation constant of 10.5 micrograms protein/ml and a maximum binding of 3.45 micrograms protein/mg membrane protein. The 125I-labeled HDL3-binding activity was primarily associated with the plasma membrane fraction of the rat liver membranes. The amount of 125I-labeled HDL3 bound to the membranes was dependent on the temperature of incubation. The binding of 125I-labeled HDL3 to the rat liver plasma membranes was competitively inhibited by unlabeled human HDL3, rat HDL, HDL from nephrotic rats enriched in apolipoprotein A-I and phosphatidylcholine complexes of human apolipoprotein A-I, but not by human or rat LDL, free human apolipoprotein A-I or phosphatidylcholine vesicles. Human 125I-labeled apolipoprotein A-I complexed with egg phosphatidylcholine bound to rat liver plasma membranes with high affinity and saturability, and the binding constants were similar to those of human 125I-labeled HDL3. The 125I-labeled HDL3-binding activity of the membranes was not sensitive to pronase or phospholipase A2; however, prior treatment of the membranes with phospholipase A2 followed by pronase digestion resulted in loss of the binding activity. Heating the membranes at 100 degrees C for 30 min also resulted in an almost complete loss of the 125I-labeled HDL3-binding activity.  相似文献   

20.
A method for the detection and quantitation of picomole amounts of heparin-binding proteins is described. Proteins are first spotted on nitrocellulose and then incubated with 125I-heparin. Binding of heparin to the proteins is detected by radioautography and quantitated by scanning densitometry; proteins are quantitated by densitometric analysis of the amido black stained nitrocellulose. Heparin-binding was time-dependent and sensitive to the presence of metal ions, urea, and detergents (anionic, nonionic, and zwitterionic). The divalent cations Ca2+ and Mg2+ and the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate increased heparin binding whereas NaCl, urea, sodium dodecylsulfate, and La3+ decreased binding. This assay is applicable to the identification and characterization of a variety of heparin-binding proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号