首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Plants offer an alternative inexpensive and convenient technology for large scale production of recombinant proteins especially recombinant antibodies (plantibodies). In this paper, we describe the expression of a model single chain antibody fragment (B6scFv) in transgenic tobacco. Four different gene constructs of B6scFv with different target signals for expression in different compartments of a tobacco plant cell with and without endoplasmic reticulum (ER) retention signal were used. Agrobacterium mediated plant transformation of B6scFv gene was performed with tobacco leaf explants and the gene in regenerated plants was detected using histochemical GUS assay and PCR. The expression of B6scFv gene was detected by western blotting and the recombinant protein was purified from putative transgenic tobacco plants using metal affinity chromatography. The expression level of recombinant protein was determined by indirect enzyme-linked immunosorbent assay. The highest accumulation of protein was found up to 3.28 % of the total soluble protein (TSP) in plants expressing B6scFv 1003 targeted to the ER, and subsequently expression of 2.9 % of TSP in plants expressing B6scFv 1004 (with target to apoplast with ER retention signal). In contrast, lower expression of 0.78 and 0.58 % of TSP was found in plants expressing antibody fragment in cytosol and apoplast, without ER retention signal. The described method/system could be used in the future for diverse applications including expression of other recombinant molecules in plants for immunomodulation, obtaining pathogen resistance against plant pathogens, altering metabolic pathways and also for the expression of different antibodies of therapeutic and diagnostic uses.  相似文献   

2.
We evaluated the concept for protection of plants against virus infection based on the expression of single-chain Fv (scFv) fragments in the apoplasm or cytosol of transgenic plants. Cloned cDNA of a tobacco mosaic virus (TMV)-specific scFv antibody, which binds to intact virions, was integrated into the plant expression vector pSS and used for Agrobacterium-mediated transformation of Nicotiana tabacum cv. Xanthi-nc. Regenerated transgenic tobacco plants were analysed by northern blot, western blot and ELISA to assess expression and functionality of recombinant antibody (rAb) fragments. A significant increase of scFv levels in T1 progeny was obtained for plants secreting apoplastic scFv antibodies but not for scFvs expressed in the cytosol. Bioassays revealed that T1 progeny producing scFvs in different plant cell compartments showed different levels of resistance upon inoculation with TMV. The most dramatic reduction of necrotic local lesion numbers upon virus infection was observed in T1 plants expressing scFv fragments in the cytosol. Infectivity could be reduced by more than 90%, despite the observation that protein expression levels for functional scFv antibodies were very low. Furthermore, upon inactivation of the N-resistance gene at elevated temperature, a significant portion of the T1 progenies inhibited systemic virus spread, indicating that expression of TMV-specific cytosolic scFvs confers virus resistance in these transgenic plants. Moreover, inoculation of protoplasts isolated from transgenic and non-transgenic tobacco plants with TMV-RNA demonstrated that accumulation of virus particles is affected by cytosolic scFv expression.  相似文献   

3.
Semenyuk  E. G.  Stremovskii  O. A.  Orlova  I. V.  Balandin  T. G.  Nosov  A. M.  Buryanov  Ya. I.  Deyev  S. M.  Petrov  R. V. 《Molecular Biology》2003,37(5):780-786
A recombinant scFv antibody against human spleen ferritin was expressed as a barstar-fused protein in Escherichia coli and in Nicotiana tabacum plants and suspension cell cultures. As demonstrated by immunoblotting with antibarstar antibodies, direction of the recombinant protein to the endomembrane system of plant cells ensured its stability and solubility. Production of the recombinant protein did not differ between parental transgenic plants and their first-generation progeny. Fusion with barstar allowed not only immunochemical detection of the recombinant scFv antibody, but also their purification from the plant material by affinity chromatography with barnase-His6 immobilized on a metal-affinity carrier.  相似文献   

4.
We tested the hypothesis that membrane-anchored anti-viral antibodies can confer viral resistance to transgenic plants. A heterologous expression system was developed for plasma membrane targeting of anti-viral antibodies using mammalian transmembrane domains. A tobacco mosaic virus (TMV) neutralizing single-chain Fv antibody fragment (scFv24) was targeted to the endoplasmic reticulum and integrated into the plasma membrane of tobacco cells, using mammalian signal peptides and membrane receptor transmembrane domains. The human platelet-derived growth factor receptor (PDGFR) transmembrane domain or the T-cell receptor -domain (TcR) transmembrane domain was fused to the C-terminus of TMV-specific scFv24 to target expression of scFv24 as an extracellularly facing plasma membrane protein. Western blot and ELISA analyses were carried out to confirm functional expression of the recombinant fusion proteins scFv24-PDGFR and scFv24-TcR in transgenic tobacco suspension cultures and transgenic plants. Immunofluorescence and electron microscopy showed that the TcR transmembrane domain targeted scFv24 to the tobacco plasma membrane. Bioassays of viral infection showed that transgenic tobacco plants expressing scFv24-TcR were resistant to TMV infection. These results demonstrated that membrane anchored anti-viral antibody fragments are functional, can be targeted to the plasma membrane in planta and are a novel approach for engineering disease-resistant crops.  相似文献   

5.
Citrus tristeza virus (CTV) causes one of the most destructive viral diseases of citrus worldwide. Generation of resistant citrus genotypes through genetic engineering could be a good alternative to control CTV. To study whether production of single-chain variable fragment (scFv) antibodies in citrus could interfere and immunomodulate CTV infection, transgenic Mexican lime plants expressing two different scFv constructs, separately and simultaneously, were generated. These constructs derived from the well-referenced monoclonal antibodies 3DF1 and 3CA5, specific against CTV p25 major coat protein, whose mixture is able to detect all CTV isolates characterized so far. ScFv accumulation levels were low and could be readily detected just in four transgenic lines. Twelve homogeneous and vigorous lines were propagated and CTV-challenged by graft inoculation with an aggressive CTV strain. A clear protective effect was observed in most transgenic lines, which showed resistance in up to 40–60% of propagations. Besides, both a delay in symptom appearance and attenuation of symptom intensity were observed in infected transgenic plants compared with control plants. This effect was more evident in lines carrying the 3DF1scFv transgene, being probably related to the biological functions of the epitope recognized by this antibody. This is the first report describing successful protection against a pathogen in woody transgenic plants by ectopic expression of scFv recombinant antibodies.  相似文献   

6.
Antibodies have been expressed in plants to confer novel traits such as virus resistance or altered phenotype. However, not every antibody is suitable for plant expression, and successful intracellular expression of antibody fragments depends primarily on their amino acid sequence in a way that is as yet unpredictable. Therefore it is desirable to assess different constructs before embarking on the production of transgenic plants. We have used a transient expression system based on potato virus X to compare different cDNA constructs for expression and stability of antibody variable gene fragments in plants. Constructs contained an anti-plant enzyme (granule-bound starch synthase I) scFv sequence derived from a naive phage display library together with different combinations of sequences encoding the human IgG constant domain, a murine IgG secretory signal sequence, or the endoplasmic reticulum retention signal peptide KDEL. The results obtained with the potato virus X vector correlated with those from Agrobacterium-mediated stable transformation of potato. The best expression levels were obtained by incorporating sequences that target scFv to the lumen of the endoplasmic reticulum and the secretory pathway. The anti-enzyme scFv retained activity during storage of potato tubers for more than five months. The results demonstrate the utility of the potato virus X vector for the analysis and comparison of many scFv with different epitope specificities or sequence modifications. Evaluation of scFv by transient expression from the PVX vector should aid progress in selection of functional scFv for applications in plant biotechnology.  相似文献   

7.
Pichia pastoris was used to express a recombinant scFv antibody against methamidophos derived from a recombinant phage-display library. The specific scFv gene was amplified from a positive clone and then subcloned into the expression vector pPICZα C. The resulting plasmid, pPICZα C–scFv, was linearized and transformed into P. pastoris (X-33). A transformant named X-33-Pp-Met-28D4, which showed strong expression of antibodies, was isolated, and the culture conditions were optimized. Under optimal conditions, P. pastoris cultures yielded much higher levels of scFv product than the Escherichia coli expression system. Immunochemical characterization of the scFv antibodies produced in P. pastoris indicated that the affinity and specificity of scFv against methamidophos are comparable to those of scFv antibodies produced in E. coli. Recoveries of methamidophos-fortified samples demonstrated that the P. pastoris-derived scFv antibodies can be used to determine the content of methamidophos residue in environmental and agricultural samples. For our purposes, expression in Pichia proved to be an efficient and economical method for the large-scale production of functional scFv antibodies against methamidophos for downstream applications.  相似文献   

8.
Plants do not produce antibodies. However, plants can correctly assemble functional antibody molecules encoded by mammalian antibody genes. Many plant diseases are caused by pathogen toxins. One such disease is the soybean sudden death syndrome (SDS). SDS is a serious disease caused by the fungal pathogen Fusarium virguliforme. The pathogen, however, has never been isolated from diseased foliar tissues. Thus, one or more toxins produced by the pathogen have been considered to cause foliar SDS. One of these possible toxins, FvTox1, was recently identified. We investigated whether expression of anti-FvTox1 single-chain variable-fragment (scFv) antibody in transgenic soybean can confer resistance to foliar SDS. We have created two scFv antibody genes, Anti-FvTox1-1 and Anti-FvTox1-2, encoding anti-FvTox1 scFv antibodies from RNAs of a hybridoma cell line that expresses mouse monoclonal anti-FvTox1 7E8 antibody. Both anti-FvTox1 scFv antibodies interacted with an antigenic site of FvTox1 that binds to mouse monoclonal anti-FvTox1 7E8 antibody. Binding of FvTox1 by the anti-FvTox1 scFv antibodies, expressed in either Escherichia coli or transgenic soybean roots, was initially verified on nitrocellulose membranes. Expression of anti-FvTox1-1 in stable transgenic soybean plants resulted in enhanced foliar SDS resistance compared with that in nontransgenic control plants. Our results suggest that i) FvTox1 is an important pathogenicity factor for foliar SDS development and ii) expression of scFv antibodies against pathogen toxins could be a suitable biotechnology approach for protecting crop plants from toxin-induced diseases.  相似文献   

9.
A recombinant scFv antibody against human spleen ferritin was expressed as a barstar-fused protein in Escherichia coli and in Nicotiana tabacum plants and suspension cell cultures. As demonstrated by immunoblotting with antibarstar antibodies, direction of the recombinant protein to the endomembrane system of plant cells ensured its stability and solubility. Production of the recombinant protein did not differ between parental transgenic plants and their first-generation progeny. Fusion with barstar allowed not only immunochemical detection of the recombinant scFv antibody, but also their purification from the plant material by affinity chromatography with barnase-His6 immobilized on a metal-affinity carrier.  相似文献   

10.
We constructed a recombinant antibody fragment—single chain fragment-variable (scFv) antibody—derived from hybridoma cell lines to control the concentration of solasodine glycosides in hairy root cultures of Solanum khasianum transformed by the anti-solamargine (As)-scFv gene. The properties of the As-scFv protein expressed in Escherichia coli were almost identical to those of the parent monoclonal antibody (MAb). Up to 220 ng recombinant As-scFv was expressed per milligram of soluble protein in transgenic hairy root cultures of S. khasianum. The concentration of solasodine glycosides was 2.3-fold higher in the transgenic than in the wild-type hairy root, as reflected by the soluble As-scFv level and antigen binding activities. These results suggested that the scFv antibody expressed in transgenic hairy roots controlled the antigen level, thus representing a novel plant breeding methodology that can produce secondary metabolites.Communicated by F. Sato  相似文献   

11.
Field pea (Pisum sativum L.) appears well suited for the production of high-value molecules such as recombinant antibodies, with well-established agricultural practices world-wide and seeds that are easily stored and distributed. In order to evaluate the suitability of this grain legume for the production of biologically active antibodies, we transformed peas with a cDNA encoding the single-chain Fv fragment scFvT84.66. This scFv is derived from the monoclonal antibody T84.66, which recognises the well-characterised tumour-associated carcinoembryonic antigen. The antibody is useful for in vitro immunodiagnosis and in vivo imaging of human cancers. We expressed scFvT84.66 cDNA under the control of the seed-specific legumin A promoter. We targeted the antibody to the endoplasmic reticulum for better stability and high accumulation. Transgenic plants produced up to 9 g per gram fresh weight of functional scFvT84.66 in their seeds. The transgene was stably inherited and expressed in the progeny, and the antibody remained active after storage in dried transgenic seeds for two months at room temperature. Our results demonstrate the suitability of grain legume seeds to produce biologically active recombinant antibodies, and the utility of field pea seeds as production vehicles for recombinant pharmaceutical macromolecules.  相似文献   

12.
Canola is an important agricultural crop imparting a significant contribution to global oilseed production. As such, optimizing yield and quality is of paramount importance and canola production can be significantly affected by sclerotinia stem rot. The utility of recombinant antibody technology in plant protection has been explored by many researchers and shows promise for the generation of new lines of agriculturally significant crops with greater resistance to diseases. The objective of the current study was to generate recombinant pathogen specific antibody (scFv)-expressing transgenic Brassica napus plants with increased tolerance to the phytopathogenic fungus, Sclerotinia sclerotiorum. Transgenic canola (B. napus) lines expressing S. sclerotiorum-specific scFv antibody showed a significant level of tolerance towards S. sclerotiorum as compared to their non-transformed counterparts. Both incidence and progression of S. sclerotiorum-induced disease symptoms were reduced in plants expressing the recombinant scFv.  相似文献   

13.
We describe the expression of the bispecific antibody biscFv2429 in transgenic suspension culture cells and tobacco plants. biscFv2429 consists of two single-chain antibodies, scFv24 and scFv29, connected by the Trichoderma reesi cellobiohydrolase I linker. biscFv2429 binds two epitopes of tobacco mosaic virus (TMV): the scFv24 domain recognizes neotopes of intact virions, and the scFv29 domain recognizes a cryptotope of the TMV coat protein monomer. biscFv2429 was functionally expressed either in the cytosol (biscFv2429-cyt) or targeted to the apoplast using a murine leader peptide sequence (biscFv2429-apoplast). A third construct contained the C-terminal KDEL sequence for retention in the ER (biscFv2429-KDEL). Levels of cytoplasmic biscFv2429 expression levels were low. The highest levels of antibody expression were for apoplast-targeted biscFv2429-apoplast and ER-retained biscFv2429-KDEL that reached a maximum expression level of 1.65% total soluble protein in transgenic plants. Plant-expressed biscFv2429 retained both epitope specificities, and bispecificity and bivalency were confirmed by ELISA and surface plasmon resonance analysis. This study establishes plant cells as an expression system for bispecific single-chain antibodies for use in medical and biological applications.  相似文献   

14.
Transgenic tobacco plants were produced that express an anti-Salmonella enterica single-chain variable fragment (scFv) antibody that binds to the lipopolysaccharide (LPS) of S. enterica Paratyphi B. The coding sequence of this scFv was optimized for expression in tobacco, synthesized and subsequently placed behind three different promoters: an enhanced tobacco constitutive ubiquitous promoter (EntCUP4), and single- and double-enhancer versions of the Cauliflower Mosaic Virus 35S promoter (CaMV 35S). These chimeric genes were introduced into Nicotiana tabacum cv. 81V9 by Agrobacterium-mediated transformation and 50 primary transgenic (T0) plants per construct were produced. Among these plants, 23 were selected for the ability to express active scFv as determined by enzyme-linked immunosorbent assay (ELISA) using S. enterica LPS as antigen. Expanded bed adsorption-immobilized metal affinity chromatography (EBA-IMAC) was used to purify 41.7 μg of scFv/g from leaf tissue. Gel filtration and surface plasmon resonance (SPR) analyses demonstrated that the purified scFv was active as a dimer or higher-order multimer. In order to identify T1 plants suitable for development of homozygous lines with heritable scFv expression, kanamycin-resistance segregation analyses were performed to determine the number of T-DNA loci in each T0 plant, and quantitative ELISA and immunoblot analyses were used to compare expression of active and total anti-Salmonella scFv, respectively, in the T1 generation. As S. enterica causes millions of enteric fevers and hundreds of thousands of deaths worldwide each year, large-scale production and purification of this scFv will have potential for uses in diagnosis and detection, as a therapeutic agent, and in applications such as water system purification.  相似文献   

15.
16.
A synthetic gene encoding a single chain Fv fragment of an antibody directed against the nuclear inclusion a (NIa) protein of potato virus Y (PVY) was used to transform two commerical potato cultivars (Claustar and BF15). The NIa protease forms the nuclear inclusion body A and acts as the major protease in the cleavage of the viral polyprotein into functional proteins. Immunoblot analysis showed that most of the resulting transgenic plants accumulate high levels of the transgenic protein. Furthermore, a majority of the selected transgenic lines showed an efficient and complete protection against the challenge virus after mechanical inoculation with PVYo strain. Two transgenic lines showed an incomplete resistance with delayed appearance of symptoms accompanied by low virus titers, whereas one line developed symptoms during the first days after inoculation but recovered rapidly, leading to a low virus accumulation rate. These results confirm that expression of scFv antibody is able to inhibit a crucial step in the virus multiplication, such as polyprotein cleavage is a powerful strategy for engineered virus resistance. It can lead to a complete resistance that was not obtained previously by expression of scFv directed against the viral coat protein.  相似文献   

17.
The coding sequences for the variable regions of heavy and light chains of monoclonal antibodies (mAbs) to beet necrotic yellow vein virus (BNYVV) coat protein (cp) or the 25 kDa nonstructural protein (P25) were cloned into the pCOCK vector and expressed as single-chain antibody fragments (scFv) in Escherichia coli. For expression in higher plants the scFv were targeted either to the secretory pathway by including the sequences encoding the pectate lyase B (PelB) or the phytohemagglutinin (PHA) signal peptides in the vector constructs or they were targeted to the cytoplasm by omitting a signal peptide-encoding sequence from the constructs. The scFv were detected mainly in plants in which the PHA signal peptide had been used for targeting demonstrating for the first time the usefulness of this peptide for enabling scFv expression in plants. The scFv were not secreted into the culture fluids of suspension cultures, but were retained in the cells. The amount of expression of scFv in the best expressing plants was at least as high as in bacterial culture supernatants. In a dot blot immunoassay, 0.4 ng BNYVV cp or 0.8 ng P25 were detected by the respective scFv either from E. coli or from plants. The majority of the 21 plants expressing cp-specific scFv had near-normal growth whereas the three plants expressing P25-specific scFv grew poorly and did not form roots.  相似文献   

18.
Expression of antibodies or antibody fragments in plants is a useful tool for producing active antibody derivatives for diagnostic or pharmaceutical purposes as well as for immunomodulation. We investigated the effect of cellular expression site on the stability and yield of double-stranded RNA (dsRNA)-specific single-chain Fv-fragments (scFv) in transgenic tobacco. Two antibodies (J2 and P6) belonging to the V23(J558) heavy chain variable gene family but differing in the light chain variable domain were used. scFvs were targeted to the cytoplasm - with or without anchoring them in the plasma membrane -, into the endoplasmic reticulum (ER) and to the apoplast. Although high mRNA concentrations were detected in all cases, scFv proteins accumulated only when scFvs were made ER-resident by appropriate signal sequences. When the ER retention signal was removed to allow scFv-secretion to the apoplast, no scFv-proteins were detected. Despite the strong homology of the VH-sequences of J2 and P6 antibodies, only P6 provided a stable scFv scaffold for intracytoplasmic expression. J2-scFv could not be stabilised either by adding a C-terminal stabilisation signal or by anchoring the protein on the cytoplasmic side of the plasma membrane (PM). It was found that dsRNA-specific J2-scFvs are active in vivo and enhance Potato Virus Y induced symptoms in infected tobacco. This is the first report describing the expression and biological effect of RNA-specific antibodies in plants.  相似文献   

19.
The efficacy of cloning a recombinant mycotoxin antibody in plants was tested using Arabidopsis as a model. An antizearalenone single-chain Fv (scFv) DNA fragment was first cloned in the newly constructed phage display vector (pEY.5) and then recloned in the plant transformation vector pKYLX71::35S2. After transformation, constructs of antizearalenone scFv were introduced into immature Arabidopsis seeds via Agrobacterium tumefaciens mediation by vacuum infiltration. Only plants transformed with the construct containing a PR-1b signal peptide sequence produced transgenic offspring. The antizearalenone scFv “plantibody” from these transgenic plants bound zearalenone with a high affinity (50% inhibitory concentration, 11.2 ng/ml) that was comparable to that of bacterially produced scFv antibody and the parent monoclonal antibody (MAb). By electron microscopic immunogold labeling, the presence of antizearalenone scFv was detected mainly in the cytoplasm and only occasionally outside the cell. Like bacterially produced scFv antibody, antizearalenone scFv plantibody exhibited greater sensitivity to methanol destabilization than did the parent MAb. The sensitivity of antizearalenone scFv plantibody to acidic disassociation was similar to the sensitivities of bacterially produced scFv antibody and MAb. Expression of specific plantibodies in crops might be useful for neutralizing mycotoxins in animal feeds and for reducing mycotoxin-associated plant diseases.  相似文献   

20.
A single-chain variable fragment antibody (scFv) against plumbagin (PL) accumulated the PL production in the hairy roots of Plumbago zeylanica. Recombinant Agrobacterium rhizogenes (ATCC 15834) containing an scFv gene against PL (PL-scFv) were obtained through triparental mating and transformed into P. zeylanica to induce PL-scFv protein in the hairy roots. Up to 40 μg recombinant PL-scFv were expressed per milligram of soluble protein in transgenic P. zeylanica hairy root cultures. The mean PL content obtained from transgenic hairy roots (12.24 μg/100 mg dry weight) exhibited 2.2 times higher than those obtained from wild-type (5.48 μg/100 mg dry weight). The high correlation between the PL-scFv expression level and PL content of the recombinant plants suggested that the PL biosynthesis pathway had been modulated by the expression of PL-scFv protein in the hairy roots of P. zeylanica.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号