首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuromedin K and neuromedin L are novel mammalian tachykinins isolated from porcine spinal cord. We have developed a highly sensitive radioimmunoassay for neuromedin K. Since the radioimmunoassay for neuromedin K has significant crossreactivity with neuromedin L and substance P, we can simultaneously determine the tissue concentrations of neuromedin K, neuromedin L and substance P after separation of the tissue extracts by reverse phase high performance liquid chromatography. Substance P is found to be the most abundant mammalian tachykinin in every brain region. The ratio of the concentration of substance P to neuromedin K is small in cerebral cortex and large in medulla-pons, while that of substance P to neuromedin L is rather constant in a range of 2.0–2.5. In spinal cord, dorsal half contains more neuromedin K and L than ventral half as is the case with substance P. These results indicate that both neuromedin K and L are endogenous mammalian tachykinins with specific physiological functions.  相似文献   

2.
P-type, E-type, and K-type tachykinin binding sites have been identified in the mammalian CNS. These sites may be tachykinin receptors for which the mammalian neuropeptides substance P, neuromedin K, and substance K are the preferred natural agonists, respectively. In the present investigation, we have compared the pharmacology and the autoradiographic distribution of CNS binding sites for the iodinated (125I-Bolton-Hunter reagent) tachykinins substance P, eledoisin, neuromedin K, and substance K. Iodinated eledoisin and neuromedin K exhibited an E-type binding pattern in cortical membranes. Iodinated eledoisin, neuromedin K, and substance K each labeled sites that had a similar distribution but one that was considerably different from that of sites labeled by iodinated substance P. CNS regions where there were detectable densities of binding sites for iodinated eledoisin, neuromedin K, and substance K and few or no sites for iodinated substance P included cortical layers IV–VI, mediolateral septum, supraoptic and paraventricular nuclei, interpeduncular nucleus, ventral tegmental area, and substantia nigra pars compacta. Binding sites for SP were generally more widespread in the CNS. CNS regions where there was a substantial density of binding sites for iodinated substance P and few or no sites for iodinated eledoisin, neuromedin K, and substance K included cortical layers I and II, olfactory tubercle, nucleus accumbens, caudate-putamen, globus pallidus, medial and lateral septum, endopiriform nucleus, rostral thalamus, medial and lateral preoptic nuclei, arcuate nucleus, dorsal raphe nucleus, dorsal parabrachial nucleus, parabigeminal nucleus, cerebellum, inferior olive, nucleus ambiguus, retrofacial and reticular nuclei, and spinal cord autonomic and somatic motor nuclei. In the brainstem, iodinated substance P labeled sites in both sensory and motor nuclei whereas iodinated eledoisin, neuromedin K, and substance K labeled primarily sensory nuclei. Our results are consistent with either of two alternatives: (1) that iodinated eledoisin, neuromedin K, and substance K bind to the same receptor site in the rat CNS, or (2) that they bind to multiple types of receptor sites with very similar distribution.  相似文献   

3.
We have suggested that substance P, in cerebral cortex, causes a phosphatidylinositol (PI) breakdown by a dual mechanism suggesting the involvement of either phospholipase A2 or phospholipase C. We have presently characterized further these effects. Substance P (65 pM) provoked an increase in lysoPI concomitant with a decrease in PI level. This finding confirms the involvement of phospholipase A2 activation. To study the involvement of phospholipase C in the action of higher doses (0.65 M) of the peptide, we used pulse-chase experiments (where phospholipid depletion was monitored) and short-term32P-labeled slices (where phospholipid synthesis was studied). Substance P evoked an acceleration of both hydrolysis and resynthesis of PI as early as 15 s. A prolonged exposure (30 min) resulted in stimulation of PI hydrolysis without subsequent resynthesis. The peptide did not cause any effect on inositol 1,4-bisphosphate and inositol 1,4,5-trisphosphate. These alterations in PI metabolism take place simultaneously with a generation of diacylglycerol which showed two maxima at both indicated times.  相似文献   

4.
The present experiments examined the local effects of two new mammalian tachykinins isolated from porcine spinal cord, substance K and neuromedin K, on gastroduodenal motility of anesthetized dogs. Tachykinins were injected through the gastroepiploic and cranial pancreaticoduodenal arteries at concentrations ranging from 1 to 100 ng/ml. Substance K, neuromedin K and substance P increased gastroduodenal smooth muscle contractions in a dose-dependent manner. The contractile response of the gastric antrum to newly discovered tachykinins was not as long-lasting as that to substance P. The potencies of various tachykinins on contractile responses showed the following rank order of potencies: physalaemin = eledoisin = substance P greater than substance K = neuromedin K in gastric smooth muscle; physalaemin = substance P = eledoisin greater than substance K = neuromedin K in the duodenal smooth muscle. Administration of atropine (100-200 micrograms/kg) inhibited the effect of tachykinins both in the gastric antrum and in the proximal duodenum. These results indicate that substance K and neuromedin K could act as transmitters or as modulators of neuronal activity influencing gastroduodenal motility.  相似文献   

5.
The specific binding of the 125I-Bolton-Hunter labeled tachykinins substance K (BHSK), eledoisin (BHE), and substance P (BHSP) was examined in crude membrane suspensions and by autoradiography in rat submaxillary gland. All three ligands at 0.1 nM concentrations exhibited binding that was inhibited by tachykinins in a potency rank order of substance P > physalaemin > substance K > eledoisin > kassinin > neuromedin K with slope factors essentially equal to unity. All tachykinins were 5 to 10 times more potent in inhibiting BHSK and BHE binding compared to BHSP binding. Autoradiographic visualization of BHSK and BHSP binding sites in the gland revealed extensive labeling of mucous and serous acini. The intensity of labeling was much less for BHSK than for BHSP. The results indicate that the rat submaxillary gland contains predominantly P-type tachykinin binding sites.  相似文献   

6.
Cloning and expression of a rat neuromedin K receptor cDNA   总被引:28,自引:0,他引:28  
Functional cDNA clones for rat neuromedin K receptor were isolated from a rat brain cDNA library by cross-hybridization with the bovine substance K receptor cDNA. Injection of the mRNA synthesized in vitro from the cloned cDNA into Xenopus oocytes elicited electrophysiological responses to tachykinins, with the most potent sensitivity being to neuromedin K. Ligand-binding displacement in membranes of mammalian COS cells transfected with the cDNA indicated the rank order of affinity of the receptor to tachykinins: neuromedin K greater than substance K greater than substance P. The hybridization analysis showed that the neuromedin K receptor mRNA is expressed in both the brain and the peripheral tissues at different levels. The rat neuromedin K receptor consists of 452 amino acid residues and belongs to the family of G protein-coupled receptors, which are though to have seven transmembrane domains. The sequence comparison of the rat neuromedin K, substance P, and substance K receptors revealed that these receptors are highly conserved in the seven transmembrane domains and the cytoplasmic sides of the receptors. They also show some structural characteristics, including the common presence of histidine residues in transmembrane segments V and VI and the difference in the numbers and distributions of serine and threonine residues as possible phosphorylation sites in the cytoplasmic regions. This paper thus presents the first comprehensive analysis of the molecular nature of the multiple peptide receptors that exhibit similar but pharmacologically distinguishable activities.  相似文献   

7.
Neuromedin K: a novel mammalian tachykinin identified in porcine spinal cord   总被引:21,自引:0,他引:21  
A new peptide, designated "neuromedin K" has been discovered and isolated from porcine spinal cord by using bioassays for a tachykinin-like effect on the contractility of smooth muscle preparation from guinea-pig ileum. Porcine neuromedin K has been identified by microsequencing as: Asp-Met-His-Asp-Phe-Phe-Val-Gly-Leu-Met-NH2. The sequence thus determined has been confirmed by synthesis. Neuromedin K has been found to have not only a remarkable sequence homology to kassinin and substance P, but also a prompt stimulant activity on guinea-pig ileum in a manner similar to that of substance P, suggesting that neuromedin K may be involved in neural transmission.  相似文献   

8.
Y Yokota  C Akazawa  H Ohkubo    S Nakanishi 《The EMBO journal》1992,11(10):3585-3591
The mammalian tachykinin receptors belong to the family of G protein-coupled receptors and consist of the substance P, substance K and neuromedin K receptors (SPR, SKR and NKR). We constructed 14 chimeric receptors in which seven transmembrane segments were sequentially exchanged between the rat SPR and SKR and examined the subtype specificity of the chimeric receptors by radioligand binding and inositol phosphate measurements after transfection into COS cells. All chimeric receptors showed maximum responses in agonist-induced inositol phosphate stimulation. Detailed analysis of five receptors with agonist selectivity similar to SPR indicated that the selectivity is mainly determined by the region extending from transmembrane segment II to the second extracellular loop together with a minor contribution of the extracellular N-terminal portion. This conclusion was more directly confirmed by an additional chimeric formation in which the introduction of the above middle portion of SPR into the corresponding region of SKR conferred a high affinity binding to substance P. The tachykinin receptors can thus be divided into two functional domains: the region covering transmembrane segments V-VII and responsible for fundamental recognition of the common tachykinin sequence; and its preceding portion involved in evoking subtype specificity by interacting with the divergent sequences of the peptides.  相似文献   

9.
The relationship between glucose-induced insulin secretion and metabolism of inositol phospholipid was investigated by means of an islet perifusion method and direct measuring of inositol phosphates after sonicating the islets. The results showed that the time course of inositol phospholipid breakdown is coincident with the first phase of glucose-induced insulin secretion. Analysis of the effluent perifusate as well as the water soluble inositol-containing substance after sonication of stimulated islets revealed that most of the metabolite of inositol phospholipid is inositol-triphosphate, the hydrolysis product of phosphatidylinositol-4,5-bisphosphate. On the other hand, perifusion of islets with exogenous inositol-triphosphate showed a monophasic and dose-dependent response of insulin secretion. Thus, the initial process of glucose stimulation is accompanied with the formation of inositol-triphosphate, which is a possible candidate for the triggering of first phase insulin secretion.  相似文献   

10.
H P Too  J E Maggio 《Peptides》1991,12(3):431-443
Specific antisera directed against substance P and neuromedin K (neurokinin B) have been used in double-label immunofluorescence studies to unambiguously localize these two neuropeptides of the tachykinin family in single tissue sections of rat spinal cord and dorsal root ganglia. Substance P-like immunoreactivity (SPLI) is present but neuromedin K-like immunoreactivity (NMKLI) is undetectable in dorsal root ganglia. Both peptides are present in the spinal cord, but NMKLI is largely restricted to the dorsal gray while SPLI shows a broader distribution. In the spinal gray, NMKLI coexists with SPLI in some, but not all, fibers. While substance P in the dorsal spinal cord is largely of primary afferent origin, neuromedin K appears to originate largely from intrinsic spinal neurons.  相似文献   

11.
Using an antiserum directed at the COOH-terminus of tachykinins, we have examined postmortem tissue from two cases of metastatic ileal carcinoid for the presence of tachykinin-like immunoreactivity. The vast majority of the immunoreactive tachykinin-like material eluted from a Sephadex G-50 column as two peaks at positions corresponding to molecular weights of 1300 and 850. The 1300 dalton peak was resolved by reverse-phase-HPLC into two components which by Edman sequencing, amino acid analysis, and fast atom bombardment (FAB)-mass spectrometry criteria, were identified as substance P and substance K. The 850 dalton peak was also resolved on RP-HPLC into two peaks which were resistant to Edman degradation but from amino acid analysis and FAB-mass spectrometry criteria were identified as pyro-Glu-substance P 5-11 and oxidized pyro-Glu-substance P 5-11. In control experiments substance P 5-11 was converted to pyro-Glu-substance P 5-11 during the extraction procedure. Both tumors also contained a minor immunoreactive peak which eluted from a Sephadex G-50 sizing column at a position corresponding to a molecular weight of 4000 which probably represents neuropeptide K. These results suggest that beta-preprotachykinin is preferentially expressed in carcinoid tumors and that substance K may also play a role in the carcinoid syndrome.  相似文献   

12.
Cortical slices from rat brain were used to study carbachol-stimulated inositol phospholipid hydrolysis. Omission of calcium during incubation of slices with [3H]inositol increased its incorporation into receptor-coupled phospholipids. Carbachol-stimulated hydrolysis of [3H]inositol phospholipids in slices was dose-dependent, was affected by the concentrations of calcium and lithium present and resulted in the accumulation of mostly [3H]inositol-l-phosphate. Incubation of slices withN-ethylmaleimide or a phorbol ester reduced the response to carbachol. Membranes prepared from cortical slices labeled with [3H]inositol retained the receptor-stimulated inositol phospholipid hydrolysis reaction. The basal rate of inositol phospholipid hydrolysis was higher than in slices and addition of carbachol further stimulated the process. Addition of GTP stimulated inositol phospholipid hydrolysis, suggesting the presence of a guanine nucleotide-binding protein coupled to phospholipase C. Carbachol and GTP-stimulated inositol phospholipid hydrolysis in membranes was detectable following a 3 min assay period. In contrast to slices, increased levels of inositol bisphosphate and inositol trisphosphate were detected following incubation of membranes with carbachol. These results demonstrate that agonist-responsive receptors are present in cortical membranes, that the receptors may be coupled to phosphatidylinositol 4,5-bisphosphate, rather than phosphatidylinositol, hydrolysis and that a guanine nucleotide-binding protein may mediate the coupling of receptor activation to inositol phospholipid hydrolysis in brain.  相似文献   

13.
Interaction of cirazoline, an imidazoline derivative, with alpha 1-adrenoceptor coupled inositol phospholipid hydrolysis was characterized in rat brain cortical slices. Norepinephrine, a full alpha 1-agonist, and phenylephrine, a partial alpha 1-agonist, on inositol phospholipid hydrolysis were included for comparison. Norepinephrine produced a fourfold stimulation of inositol phospholipid hydrolysis, whereas cirazoline and phenylephrine caused only submaximal responses (40-60%) when compared with norepinephrine. The stimulation of inositol phospholipid hydrolysis by cirazoline was completely blocked by the alpha 1-adrenoceptor antagonist prazosin, but not by selective alpha 2- or beta-adrenoceptor antagonists. Furthermore, the norepinephrine dose-response curve was shifted to the right in the presence of cirazoline, without affecting the maximal response. These results suggest that cirazoline behaves as a partial agonist at brain alpha 1-adrenoceptors linked to inositol phospholipid hydrolysis.  相似文献   

14.
The mammalian tachykinin system consists of three distinct peptides, substance P, substance K, and neuromedin K, and possesses three corresponding receptors. In this investigation we examined intracellular signal transduction of the individual tachykinin receptors by transfection and stable expression of these receptor cDNAs in Chinese hamster ovary cells. The three receptors commonly showed a rapid and marked stimulation in both phosphatidylinositol (PI) hydrolysis and cyclic AMP formation in response to tachykinin interaction. Direct linkage of the three receptors to both phospholipase C and adenylate cyclase was evidenced by the finding that tachykinin, added together with GTP, activated these enzyme activities in membrane preparations derived from tachykinin receptor-expressing cells. The stimulation of cyclic AMP formation was less efficient than that of PI hydrolysis in receptor-expressing cells as well as their membrane preparations (about 1 order of magnitude difference in the effective peptide concentrations). However, the stimulatory responses of the PI hydrolysis and cyclic AMP formation in both receptor-expressing cells and their membrane preparations were induced in complete agreement with the tachykinin binding selectivity of each subtype of the receptors. This investigation demonstrated unequivocally that the tachykinin receptors have the potential to couple directly to both phospholipase C and adenylate cyclase and to stimulate PI hydrolysis and cyclic AMP formation.  相似文献   

15.
Y Takano  Y Takeda  K Yamada  H Kamiya 《Life sciences》1985,37(26):2507-2514
Novel tachykinins such as substance K and neuromedin K have been identified in the mammalian CNS. Bilateral injections of substance K and related peptides as well as of substance P into the dopamine cell body area of the ventral tegmental area caused dose-dependent increases in locomotor activity and rearing, in rats. As this behavior was blocked by the pretreatment with haloperidol (0.1 mg/kg, i.p.), the activation of dopaminergic systems may be involved in the hypermotility induced by the administration of substance K.  相似文献   

16.
Glycine potentiates stimulation of inositol phospholipid hydrolysis by glutamate and N-methyl-D-aspartate, but not by quisqualate or carbamylcholine, in primary cultures of cerebellar granule cells. This potentiation occurs in the absence of extracellular Mg2+, but is more evident when stimulation of inositol phospholipid hydrolysis by N-methyl-D-aspartate is measured in the presence of 1 mM Mg2+. The action of glycine is not antagonized by strychnine. These results suggest that glycine acts as a positive modulator of signal transduction at a specific class of N-methyl-D-aspartate-sensitive glutamate receptors coupled to inositol phospholipid hydrolysis in cerebellar granule cells.  相似文献   

17.
Insulin is known to increase the de novo synthesis of inositol phospholipids in rat epididymal fat pads. We presently examined the effects of insulin on the hydrolysis of inositol phospholipids in this tissue. Relatively small (30-40%) but significant increases in inositol phosphates (mono-, di-, and tri-) were apparent within 30-60 s of insulin treatment in fat pads (and adipocytes); thereafter, inositol phosphates returned to control levels. These rapid insulin-induced increases in inositol phosphates appeared to be due to phospholipase C-mediated hydrolysis of inositol phospholipids, since there were associated transient decreases in these lipids during 32P pulse-chase experiments. Increases in the synthesis of inositol phospholipids were also apparent within a few minutes of insulin treatment and persisted for at least 2 h. We conclude that, in the rat epididymal fat pad, insulin has two phospholipid effects, viz. a transient activation of phospholipase C, and a persistent increase in de novo phospholipid synthesis.  相似文献   

18.
The effect of dopamine receptor stimulation on the accumulation of labelled inositol phosphates in rat striatal slices under basal and stimulated conditions was examined following preincubation with [3H]inositol. Incubation of striatal slices with the selective D-1 agonist SKF 38393 or the selective D-2 agonist LY 171555 for 5 or 30 min did not affect the basal accumulation of labelled inositol mono-, bis-, tris-, and tetrakisphosphate. Resolution by HPLC of inositol trisphosphate into inositol-1,3,4-tris-phosphate and inositol-1,4,5-trisphosphate isomers revealed that under basal conditions dopamine did not influence the accumulation of inositol-1,4,5-trisphosphate. Depolarisation evoked by KCl, or addition of the muscarinic receptor agonist carbachol, produced a marked increase in the accumulation of labelled inositol phosphates in both the presence and absence of lithium. Addition of dopamine did not reduce the ability of KCl or carbachol to increase inositol phospholipid hydrolysis. In the presence of lithium, dopamine (100 microM) enhanced KCl-stimulated inositol phospholipid hydrolysis, but this effect appears to be mediated by alpha 1 adrenoceptors because it was blocked by prazosin. SKF 38393 (10 microM) or LY 171555 (10 microM) also did not affect carbachol-stimulated inositol phospholipid hydrolysis. These data, in contrast to recent reports, suggest that striatal dopamine receptors do not appear to be linked to inositol phospholipid hydrolysis.  相似文献   

19.
Cyclic GMP formation and inositol phospholipid hydrolysis were studied in rat brain slices to determine if the two processes have common origins. Muscarinic cholinergic stimulation enhanced [3H]inositol phosphate ([ 3H]IP) accumulation from slices prelabelled with [3H]inositol but did not affect cyclic GMP formation in the cortex, striatum, or cerebellum. An elevated level of extracellular K+ stimulated accumulation of both cyclic GMP and [3H]IP in cortex slices. The former, but not the latter, was reduced by lipoxygenase and phospholipase A2 inhibition. Calcium channel activation enhanced and blockade reduced K+-stimulated [3H]IP formation without affecting the cyclic GMP level, and there were differences in the Ca2+ requirements for the two responses. Thus, there is no support for the concept that guanylate cyclase activation inevitably accompanies inositol phospholipid breakdown, and the evidence presented demonstrates that K+ stimulation promotes cyclic GMP and [3H]IP accumulation by different transducing pathways.  相似文献   

20.
Increasing the [K+] in the assay medium from 5.7 to 17.8 mM produces a large enhancement of the inositol phospholipid breakdown response to the muscarinic agonist carbachol in rat cerebral cortical miniprisms, with minor effects on basal inositol phospholipid breakdown. This effect is also found with Rb+. The enhancement by a raised [K+] is not accompanied by a change in the composition of the labelled polyphosphoinositides. The carbachol-stimulated inositol phospholipid breakdown at 17.8 and 42.7 mM K+ was antagonised by veratrine (5-80 microM), 4-aminopyridine (5 mM), and tetraethylammonium (20 mM). These compounds, however, also inhibited the binding of [3H]quinuclidinyl benzilate to cortical membranes. BRL 34915 (0.2-20 microM) was without significant effect on carbachol-stimulated inositol phospholipid breakdown at either 5.7 or 17.8 mM K+.Mg2+ (10 mM) considerably reduced the carbachol-stimulated inositol phospholipid breakdown at 17.8, but not 42.7, mM K+. Inositol phospholipid breakdown was also stimulated, albeit to a small extent, by L-glutamate (100-3,000 microM) and quisqualate (1-100 microM), with the stimulation being additive to that produced by carbachol at both 5.7 and 17.8 mM K+. N-Methyl-D-aspartate (10-1,000 microM in Mg2+-free medium) had no significant effect on basal inositol phospholipid breakdown and had little or no effect on carbachol-stimulated inositol phospholipid breakdown at either 5.7 or 17.8 mM K+. It is concluded that it may not be correct to ascribe wholly the enhancement by K+ of carbachol-stimulated inositol phospholipid breakdown to the tissue-depolarising actions of this ion and that other actions of K+ may be involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号