首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
陈丽萍  陈青  赵辉  苏建宇 《生态学报》2020,40(9):3105-3114
以宁夏贺兰山东麓荒漠藻结皮为研究对象,对处于不同发育阶段的藻结皮中微生物群落结构及其演替进行了研究。结皮样品高通量测序结果分别得到521个16S rDNA序列操作分类单元(OTU)和64个18S rDNA序列OTU,表明藻结皮中原核微生物多样性远高于真核微生物;贺兰山东麓藻结皮中原核微生物分布于26个纲,Cyanobacteria在各个发育阶段中都是优势微生物类群,Actinobacteria、Chloroplast、Alphaproteobacteria和Bacilli在藻结皮发育的各个阶段相对丰度也较高;从属水平上分析,Bacillus、Leptolyngbya、Microcoleus、Microvirga、Chroococcidiopsis、Rubellimicrobium、Phormidium、Mastigocladopsis、Skermanella、Nostoc、Scytonema共11个属在各个发育阶段的藻结皮中都存在,只是出现了丰度的差异。Bacillus在藻结皮形成期、发育初期和发育中期相对丰度较大,成熟期丰度显著下降,而成熟期Microvirga丰度较前3个时期显著增加,表现出明显的细菌菌群演替现象。藻结皮样品中主要真核微生物分布于13个纲,其中Dothideomycetes和Pezizomycetes在各个发育阶段样品中丰度都很高,Agaricomycetes在形成期样品中相对丰度高达32.6%,但在藻结皮发育过程中其相对丰度迅速下降;原生生物的相对丰度在藻结皮发育过程中逐渐增加;4个发育阶段藻结皮样品中均未检测到真核微藻序列。4个发育阶段的藻结皮样品中有明确分类学信息的真核微生物共13个属,其中4个发育阶段中共有的为Coniothyrium、Dendryphion、Friedmanniomyces、Phloeopeccania、Sarocladium共5个属,其余8个属只在个别发育阶段样品中检出,表明在藻结皮发育过程中真核微生物的群落结构也发生着变化。藻结皮厚度、全氮含量及有机质含量是影响结皮层微生物群落组成的主要因素。  相似文献   

2.
生物脱氮是由微生物主导的地球氮循环中的重要环节之一,主要包括硝化、反硝化和厌氧氨氧化(anaerobic ammonium oxidation,anammox)等过程。在微生物联合作用下,污水中的有机氮及氨氮经一系列作用转化为氮气,这种经济高效、环境友好的处理工艺在世界范围内得到广泛应用。群体感应(quorum sensing,QS)以信号分子为媒介通过改变菌群密度和周围环境变化来调节微生物的各种行为。大量的研究已证实调控QS信号分子在生物脱氮中具有应用潜力。本文介绍了各种信号分子类型,从基因组学、实际应用等方面综述了各类信号分子以及检测方法,同时针对酰基高丝氨酸内酯(acyl homoserine lactones,AHLs)类信号分子在生物脱氮中的作用进行详细介绍。然而不足之处在于信号分子研究只是停留在实验室阶段,仅仅研究了单一信号分子对生物脱氮的影响。未来可将信号分子应用于实际污水,研究多种信号分子共同作用以及多种微生物之间的QS现象。  相似文献   

3.
四氢蒽醌类化合物是一类比较少见的天然结构,以微生物次生代谢产物居多,少量来源于植物,具有细胞毒活性、抗菌活性、抗疟原虫等生物活性。本文主要从四氢蒽醌类化合物及其衍生物的结构和生物活性两方面来对天然四氢蒽醌化合物进行综述,共综述了54个四氢蒽醌类化合物,45个来源于微生物,9个来源于植物南山花的根中,其中altersolanol A具有很好的抗肿瘤活性,是一个有很大吸引力的抗癌先导化合物。通过对四氢蒽醌类化合物的综述,为四氢蒽醌类化合物的进一步研究和开发提供依据。  相似文献   

4.
The existing relationships were studied among the different types of filamentous microorganisms that appear in the biofilm of a biological contactor system. Using the hierarchical cluster analysis it was observed that, in all the stages, Beggiatoa sp. and the Eikelboom’s types 0803 and 1863 always appeared associated, while Sphaerotilus natans was always associated with the morphological type 021N. The remaining microorganisms were associated in variable forms in the plants. In addition, different association models were obtained according to the season of the year and the stage-season interaction. It has also been observed that a significant correlation exists among the filamentous microorganisms we have studied and the different physical-chemical parameters.  相似文献   

5.
以早熟和晚熟品种大白菜为试材,根据化肥氮(尿素)、有机肥氮(生物有机肥)配施比例设置4个施肥处理,测定不同施肥处理下不同熟期大白菜土壤酶活性、可培养微生物数量及产量、品质的变化特征.结果 表明:早熟品种'德高16'大白菜莲座期和结球紧实期均以配施1/2生物有机肥(T2)处理的土壤蔗糖酶、土壤脲酶、土壤过氧化氢酶活性较强...  相似文献   

6.
Exposure to biological agents in the workplace can cause infection, allergy or toxicosis. Health effects caused by biological agents in the workplace are related both to incidental exposure and to deliberate work with microorganisms. A small but significant percentage of occupational allergy is associated with biological agents in organic dusts, and a new reporting scheme recorded more than 1000 new cases of occupational infection in its first year. Assessing risks from workplace biological agents in the UK forms part of the Control of Substances Hazardous to Health (COSHH) regulations. Legislation (Schedule 9) and guidance which deals with biological agents were added to implement EC Biological Agents Directives and to emphasise the position of biological agents in COSHH.We evaluated the impact of COSHH Schedule 9 by interviewing representatives of workers in laboratories deliberately handling microorganisms and discussing in a Focus Group format with representatives from industries where incidental exposure to microorganisms could occur. This paper describes the outcome of that evaluation and examines the tools available to assess risks from exposure to workplace microorganisms.  相似文献   

7.
于雪  张威  吴玉洁  陈拓  刘光琇 《微生物学报》2022,62(4):1231-1246
近年来,随着人工合成色素的大量使用引起一系列环境和健康问题,增加了人们对安全、无毒天然色素的需求.天然色素主要来源于植物和微生物,由于植物生长周期较长使植物源色素在大规模应用中受限.与植物源天然色素相比,微生物源色素易于大规模快速培养,具有更广阔的应用前景.本文系统总结了不同微生物源色素产生机制,及其在抗菌、抗氧化及抗...  相似文献   

8.
为了解气候变暖情景下雪被减少对冬季土壤微生物特征的影响,采用人工遮雪的方法,研究了雪被去除对原始冷杉林土壤微生物生物量和可培养微生物数量的影响.结果表明:雪被去除显著影响土壤微生物生物量碳(MBC)和氮(MBN)以及可培养细菌和真菌数量,但土壤微生物在雪被覆盖不同阶段具有不同的响应特征.在雪被去除处理下,土壤有机层MBC和MBN在雪被形成初期和雪被融化前期显著降低,而在雪被覆盖期和雪被融化后期显著增加;在雪被形成初期至雪被覆盖期,可培养细菌数量都显著降低,但可培养真菌数量都显著增加.雪被融化后,雪被去除显著降低土壤有机层MBC和可培养真菌数量,显著增加可培养细菌数量,对MBN无显著影响.矿质土壤层MBC、MBN和可培养微生物数量在雪被去除下的变化趋势与土壤有机层基本一致,但波动较小.雪被去除还改变了川西高山冷杉林冬季土壤微生物类群比,提高了土壤可培养真菌数量的冬季优势.  相似文献   

9.
The performance of integrated aerobic digestion and ozonation for the treatment of high strength distillery wastewater (i.e., cherry stillage) is reported. Experiments were conducted in laboratory batch systems operating in draw and fill mode. For the biological step, activated sludge from a municipal wastewater treatment facility was used as inoculum, showing a high degree of activity to distillery wastewater. Thus, BOD and COD overall conversions of 95% and 82% were achieved, respectively. However, polyphenol content and absorbance at 254 nm (A(254)) could not be reduced more than 35% and 15%, respectively, by means of single biological oxidation. By considering COD as substrate, the aerobic digestion process followed a Contois' model kinetics, from which the maximum specific growth rate of microorganisms (mu(max)) and the inhibition factor, beta, were then evaluated at different conditions of temperature and pH. In the combined process, the effect of a post-ozonation stage was studied. The main goals achieved by the ozonation step were the removal of polyphenols and A(254). Therefore, ozonation was shown to be an appropriate technology to aid aerobic biological oxidation in the treatment of cherry stillage.  相似文献   

10.
Erythritol is a natural sweetener commonly used in the food and pharmaceutical industries. Produced by microorganisms as an osmoprotectant, it is an ideal sucrose substitute for diabetics or overweight persons due to its almost zero calorie content. Currently, erythritol is produced on an industrial scale through the fermentation of sugars by some yeasts, such as Moniliella sp. However, the popularity of erythritol as a sweetener is still small because of its high retail price. This creates an opportunity for further process improvement. Recent years have brought the rapid development of erythritol biosynthesis methods from the low-cost substrates, and a better understanding of the metabolic pathways leading to erythritol synthesis. The yeast Yarrowia lipolytica emerges as an organism effectively producing erythritol from pure or crude glycerol. Moreover, novel erythritol producing organisms and substrates may be taken into considerations due to metabolic engineering. This review focuses on the modification of erythritol production to use low-cost substrates and metabolic engineering of the microorganisms in order to improve yield and productivity.  相似文献   

11.
Shake flask studies examined the rate and extent of biodegradation of pentachlorophenol (PCP) and 42 components of coal-tar creosote present in contaminated groundwater recovered from the American Creosote Works Superfund site, Pensacola, Fla. The ability of indigenous soil microorganisms to remove these contaminants from aqueous solutions was determined by gas chromatographic analysis of organic extracts of biotreated groundwater. Changes in potential environmental and human health hazards associated with the biodegradation of this material were determined at intervals by Microtox assays and fish toxicity and teratogenicity tests. After 14 days of incubation at 30 degrees C, indigenous microorganisms effectively removed 100, 99, 94, 88, and 87% of measured phenolic and lower-molecular-weight polycyclic aromatic hydrocarbons (PAHs) and S-heterocyclic, N-heterocyclic, and O-heterocyclic constituents of creosote, respectively. However, only 53% of the higher-molecular-weight PAHs were degraded; PCP was not removed. Despite the removal of a majority of the organic contaminants through biotreatment, only a slight decrease in the toxicity and teratogenicity of biotreated groundwater was observed. Data suggest that toxicity and teratogenicity are associated with compounds difficult to treat biologically and that one may not necessarily rely on indigenous microorganisms to effectively remove these compounds in a reasonable time span; to this end, alternative or supplemental approaches may be necessary. Similar measures of the toxicity and teratogenicity of treated material may offer a simple, yet important, guide to bioremediation effectiveness.  相似文献   

12.
Acid pretreatment of lignocellulosic biomass releases furan and phenolic compounds, which are toxic to microorganisms used for subsequent fermentation. In this study, we isolated new microorganisms for depletion of inhibitors in lignocellulosic acid hydrolysates. A sequential enrichment strategy was used to isolate microorganisms from soil. Selection was carried out in a defined mineral medium containing a mixture of ferulic acid (5 mM), 5-hydroxymethylfurfural (5-HMF, 15 mM), and furfural (20 mM) as the carbon and energy sources, followed by an additional transfer into a corn stover hydrolysate (CSH) prepared using dilute acid. Subsequently, based on stable growth on these substrates, six isolates—including five bacteria related to Methylobacterium extorquens, Pseudomonas sp, Flavobacterium indologenes, Acinetobacter sp., Arthrobacter aurescens, and one fungus, Coniochaeta ligniaria—were chosen. All six isolates depleted toxic compounds from defined medium, but only C. ligniaria C8 (NRRL 30616) was effective at eliminating furfural and 5-HMF from CSH. C. ligniaria NRRL 30616 may be useful in developing a bioprocess for inhibitor abatement in the conversion of lignocellulosic biomass to fuels and chemicals.Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable  相似文献   

13.
Molecular strategies in biological evolution of antimicrobial peptides   总被引:6,自引:0,他引:6  
Nicolas P  Vanhoye D  Amiche M 《Peptides》2003,24(11):1669-1680
Gene-encoded antimicrobial peptides that protect the skin of hylid and ranin frogs against noxious microorganisms are processed from a unique family of precursor polypeptides with a unique pattern of conserved and variable regions opposite to that of conventional secreted peptides. Precursors belonging to this family, designated the preprodermaseptin, have a common N-terminal preproregion that is remarkably well conserved both within and between species, but a hypervariable C-terminal domain corresponding to antimicrobial peptides with very different lengths, sequences, charges and antimicrobial spectra. Each frog species has its own distinct panoply of 10-20 antimicrobial peptides so that the 5000 species of ranids and hylids may produce approximately 100,000 different peptide antibiotics. The strategy that these frogs have evolved to generate this enormous array of peptides includes repeated duplications of a 150 million years old ancestral gene, focal hypermutation of the antimicrobial peptide domain maybe involving a mutagenic DNA polymerase similar to Escherichia coli Pol V, and subsequent actions of positive (diversifying) selection. The hyperdivergence of skin antimicrobial peptides can be viewed as the successful evolution of a multi-drug defense system that provides frogs with maximum protection against rapidly changing microbial biota and minimizes the chance of microorganisms developing resistance to individual peptides. The impressive variations in the expression of frog skin antimicrobial peptides may be exploited for discovering new molecules and structural motifs targeting specific microorganisms for which the therapeutic armamentarium is scarce.  相似文献   

14.
Shake flask studies examined the rate and extent of biodegradation of pentachlorophenol (PCP) and 42 components of coal-tar creosote present in contaminated groundwater recovered from the American Creosote Works Superfund site, Pensacola, Fla. The ability of indigenous soil microorganisms to remove these contaminants from aqueous solutions was determined by gas chromatographic analysis of organic extracts of biotreated groundwater. Changes in potential environmental and human health hazards associated with the biodegradation of this material were determined at intervals by Microtox assays and fish toxicity and teratogenicity tests. After 14 days of incubation at 30 degrees C, indigenous microorganisms effectively removed 100, 99, 94, 88, and 87% of measured phenolic and lower-molecular-weight polycyclic aromatic hydrocarbons (PAHs) and S-heterocyclic, N-heterocyclic, and O-heterocyclic constituents of creosote, respectively. However, only 53% of the higher-molecular-weight PAHs were degraded; PCP was not removed. Despite the removal of a majority of the organic contaminants through biotreatment, only a slight decrease in the toxicity and teratogenicity of biotreated groundwater was observed. Data suggest that toxicity and teratogenicity are associated with compounds difficult to treat biologically and that one may not necessarily rely on indigenous microorganisms to effectively remove these compounds in a reasonable time span; to this end, alternative or supplemental approaches may be necessary. Similar measures of the toxicity and teratogenicity of treated material may offer a simple, yet important, guide to bioremediation effectiveness.  相似文献   

15.
The identification, cloning, and characterization of protein toxins from various species of bacilli have demonstrated the existence of mosquitocidal toxins with different structures, mechanisms of action, and host ranges. A start has been made in understanding the polypeptide determinants of toxicity and insecticidal activity, and the purification of toxins from recombinant organisms may lead to the elucidation of their X-ray crystal structures and the cloning of brush border membrane receptors. The results of cloning mosquitocidal toxins in heterologous microorganisms show the potential of expanding the range of susceptible mosquito species by combining several toxins of different host specificity in one cell. Toxins have been expressed in new microorganisms with the potential for increasing potency by persisting at the larval feeding zone. The powerful tools of bacterial genetics are being applied to engineer genetically stable, persistent toxin expression and expand the insecticidal host ranges of Bacillus sphaericus and Bacillus thuringiensis strains. These techniques, together with modern formulation technology, should eventually lead to the construction of mosquitocidal microorganisms which are effective enough to have a real impact on mosquito-borne diseases.  相似文献   

16.
利用微生物细胞工厂实现高效的原料利用和目标物质合成是合成生物学的重要研究方向之一。传统工业微生物主要以糖基类原料作为发酵底物,而发掘更为廉价的碳资源并实现其高效利用,值得探究。甲酸是重要的有机一碳资源,亦是基本有机化工原料之一,广泛应用于农药、皮革、染料、医药和橡胶等工业。近年来受产业需求波动的影响,甲酸生产面临产能过剩的困境,亟待发展新的转化路径来拓展和延伸相关产业链,而生物路线是重要方向之一。然而,天然的甲酸利用微生物普遍存在生长缓慢、甲酸代谢效率低以及分子工具匮乏造成遗传改造困难等问题,亟待改造和优化;而人工构建甲酸利用微生物的研究尚处于起始阶段,存在极大的发展空间,值得关注。文中对近年来甲酸生物利用的研究进展进行了梳理和总结,并对今后的研究重点和方向提出建议。  相似文献   

17.
The need for preserving the environment is tightening regulations limiting the discharge of contaminants into water bodies. Nowadays most of the effort is done on the removal of more specific contaminants such as nutrients (N and P) and sulfurous compounds since they are becoming of great concern due to its impact on the quality of water bodies. There have been two recent discoveries of microbial conversions of nitrogenous compounds. One consisting on the capability of ammonia oxidizers of denitrify under certain conditions resulting in a new one-step method for the removal of N-compounds. The second has been named the ANAMMOX process, wherein ammonium is oxidized to dinitrogen gas with nitrite as the electron acceptor. Other developments consist of operational strategies aiming at obtaining the highest efficiency at removing nitrogen at lowest cost. One strategy consists of the partial nitrification to nitrite (only successful in the SHARON process) and subsequently either the heterotrophic denitrification of nitrites or its autotrophic reduction by ANAMMOX microorganisms. Another strategy consists of the coexistence of nitrifiers and denitrifiers in the same reactor by implementing high frequency oscillations on the oxygen level.The recent developments on biological phosphorous removal are based on the capacity of some denitrifying microorganisms to store ortho-phosphate intracellular as poly-phosphate in the presence of nitrate. These microorganisms store substrate (PHB) anaerobically which is further oxidized when nitrate is present. By extracting excess sludge from the anoxic phase, phosphate is removed from the system. Removing phosphate using nitrate instead of oxygen has the advantage of saving energy (oxygen input) and using less organic carbon.The microbial conversions of sulfurous compounds involve the metabolism of several different specific groups of bacteria such as sulfate reducing bacteria, sulfur and sulfide oxidizing bacteria, and phototrophic sulfur bacteria. Some of these microorganisms can simultaneously use nitrate, what has been reported as autotrophic denitrification by sulfur and sulfide oxidizing microorganisms. More recently, the anaerobic treatment of an industrial wastewater rich in organic matter, nitrogen and sulfate, reported a singular evolution of N and S compounds that initially was hypothesized as SURAMOX (SUlfate Reduction and AMmonia OXidation). The process could not have been verified nor reproduced and further investigations on the proposed SURAMOX mechanism have given no additional insights to those initial observations.  相似文献   

18.
A series of novel indenopyrazole derivatives 2a‐j and 3a‐j were synthesized from the reaction of 1‐(4‐(hydroxy(1‐oxo‐1,3‐dihydro‐2 H‐inden‐2‐ylidene)methyl)phenyl)‐3‐phenylurea derivatives 1a‐j with hydrazine and phenylhydrazine, respectively. The obtained novel indenopyrazoles ( 2a‐j and 3a‐j ) were evaluated for anticancer activity against HeLa and C6 cell lines. Antiproliferative activity was determined by the BrdU proliferation ELISA assay; 2a , 2b , 2d , 2h , and 3h were found to be the most active compounds. The compounds were also screened for antimicrobial activity, and all compounds showed moderate activity against used microorganisms.  相似文献   

19.
Enhanced biological phosphorus removal (EBPR) from wastewater can be more-or-less practically achieved but the microbiological and biochemical components are not completely understood. EBPR involves cycling microbial biomass and influent wastewater through anaerobic and aerobic zones to achieve a selection of microorganisms with high capacity to accumulate polyphosphate intracellularly in the aerobic period. Biochemical or metabolic modelling of the process has been used to explain the types of carbon and phosphorus transformations in sludge biomass. There are essentially two broad-groupings of microorganisms involved in EBPR. They are polyphosphate accumulating organisms (PAOs) and their supposed carbon-competitors called glycogen accumulating organisms (GAOs). The morphological appearance of microorganisms in EBPR sludges has attracted attention. For example, GAOs as tetrad-arranged cocci and clusters of coccobacillus-shaped PAOs have been much commented upon and the use of simple cellular staining methods has contributed to EBPR knowledge. Acinetobacter and other bacteria were regularly isolated in pure culture from EBPR sludges and were initially thought to be PAOs. However, when contemporary molecular microbial ecology methods in concert with detailed process performance data and simple intracellular polymer staining methods were used, a betaproteobacteria called ‘Candidatus Accumulibacter phosphatis’ was confirmed as a PAO and organisms from a novel gammaproteobacteria lineage were GAOs. To preclude making the mistakes of previous researchers, it is recommended that the sludge ‘biography’ be well understood – i.e. details of phenotype (process performance and biochemistry) and microbial community structure should be linked. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
胡永隽  何池全  徐高田 《生态学杂志》2005,24(10):1250-1252
水源微生物污染严重威胁着人类的健康。为有效控制水体环境生物安全,水体环境中微生物快速而准确地监测是关键的技术基础之一。生物芯片(biochip)技术是20世纪90年代初期发展起来的一门新兴技术,能迅速检测出水中的微生物。本文阐述了生物芯片的基本概念,对基因芯片技术作了简介。重点叙述了生物芯片技术在水体环境生物监测方面的应用,并就其应用前景作了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号