首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plant-parasitic cyst nematodes secrete CLAVATA3 (CLV3)/ESR (CLE)-like effector proteins. These proteins have been shown to act as ligand mimics of plant CLE peptides and are required for successful nematode infection; however, the receptors for nematode CLE-like peptides have not been identified. Here we demonstrate that CLV2 and CORYNE (CRN), members of the receptor kinase family, are required for nematode CLE signaling. Exogenous peptide assays and overexpression of nematode CLEs in Arabidopsis demonstrated that CLV2 and CRN are required for perception of nematode CLEs. In addition, promoter-reporter assays showed that both receptors are expressed in nematode-induced syncytia. Lastly, infection assays with receptor mutants revealed a decrease in both nematode infection and syncytium size. Taken together, our results indicate that perception of nematode CLEs by CLV2 and CRN is not only required for successful nematode infection but is also involved in the formation and/or maintenance of nematode-induced syncytia.  相似文献   

2.
Peptidomics is a challenging field in which to create a link between genomic information and biological function through biochemical analysis of expressed peptides, including precise identification of post-translational modifications and proteolytic processing. We found that secreted peptides in Arabidopsis plants diffuse into the medium of whole-plant submerged cultures, and can be effectively identified by o- chlorophenol extraction followed by LC-MS analysis. Using this system, we first confirmed that a 12-amino-acid mature CLE44 peptide accumulated at a considerable level in the culture medium of transgenic plants overexpressing CLE44 . Next, using an in silico approach, we identified a novel gene family encoding small secreted peptides that exhibit significant sequence similarity within the C-terminal short conserved domain. We determined that the mature peptide encoded by At1g47485 , a member of this gene family, is a 15-amino-acid peptide containing two hydroxyproline residues derived from the conserved domain. This peptide, which we have named CEP1, is mainly expressed in the lateral root primordia and, when overexpressed or externally applied, significantly arrests root growth. CEP1 is a candidate for a novel peptide plant hormone.  相似文献   

3.
CLE peptides are small extracellular proteins important in regulating plant meristematic activity through the CLE‐receptor kinase‐WOX signalling module. Stem cell pools in the SAM (shoot apical meristem), RAM (root apical meristem) and vascular cambium are controlled by CLE signalling pathways. Interestingly, plant‐parasitic cyst nematodes secrete CLE‐like effector proteins, which act as ligand mimics of plant CLE peptides and are required for successful parasitism. Recently, we demonstrated that Arabidopsis CLE receptors CLAVATA1 (CLV1), the CLAVATA2 (CLV2)/CORYNE (CRN) heterodimer receptor complex and RECEPTOR‐LIKE PROTEIN KINASE 2 (RPK2), which transmit the CLV3 signal in the SAM, are required for perception of beet cyst nematode Heterodera schachtii CLEs. Reduction in nematode infection was observed in clv1, clv2, crn, rpk2 and combined double and triple mutants. In an effort to develop nematode resistance in an agriculturally important crop, orthologues of Arabidopsis receptors including CLV1, CLV2, CRN and RPK2 were identified from soybean, a host for the soybean cyst nematode Heterodera glycines. For each of the receptors, there are at least two paralogues in the soybean genome. Localization studies showed that most receptors are expressed in the root, but vary in their level of expression and spatial expression patterns. Expression in nematode‐induced feeding cells was also confirmed. In vitro direct binding of the soybean receptors with the HgCLE peptide was analysed. Knock‐down of the receptors in soybean hairy roots showed enhanced resistance to SCN. Our findings suggest that targeted disruption of nematode CLE signalling may be a potential means to engineer nematode resistance in crop plants.  相似文献   

4.
Guo Y  Ni J  Denver R  Wang X  Clark SE 《Plant physiology》2011,157(1):476-484
Nematodes that parasitize plant roots cause huge economic losses and have few mechanisms for control. Many parasitic nematodes infect plants by reprogramming root development to drive the formation of feeding structures. How nematodes take control of plant development is largely unknown. Here, we identify two host factors involved in the function of a receptor ligand mimic, GrCLE1, secreted by the potato cyst nematode Globodera rostochiensis. GrCLE1 is correctly processed to an active form by host plant proteases. Processed GrCLE1 peptides bind directly to the plant CLE receptors CLV2, BAM1, and BAM2. Involvement of these receptors in the ligand-mimicking process is also supported by the fact that the ability of GrCLE1 peptides to alter plant root development in Arabidopsis (Arabidopsis thaliana) is dependent on these receptors. Critically, we also demonstrate that GrCLE1 maturation can be entirely carried out by plant factors and that the availability of CLE processing activity may be essential for successful ligand mimicry.  相似文献   

5.
Diverse and conserved roles of CLE peptides   总被引:1,自引:0,他引:1  
The function of plant CLAVATA3 (CLV3)/ENDOSPERM SURROUNDING REGION (ESR) (CLE) peptides in shoot meristem differentiation has been expanded in recent years to implicate roles in root growth and vascular development among different CLE family members. Recent evidence suggests that nematode pathogens within plant roots secrete ligand mimics of plant CLE peptides to modify selected host cells into multinucleate feeding sites. This discovery demonstrated an unprecedented adaptation of an animal gene product to functionally mimic a plant peptide involved in cellular signaling for parasitic benefit. This review highlights the diverse and conserved role of CLE peptides in these different contexts.  相似文献   

6.
Ni J  Clark SE 《Plant physiology》2006,140(2):726-733
Arabidopsis (Arabidopsis thaliana) CLAVATA3 (CLV3) is hypothesized to act as a ligand for the CLV1 receptor kinase in the regulation of stem cell specification at shoot and flower meristems. CLV3 is a secreted protein, with an amino-terminal signal sequence and a conserved C-terminal domain of 15 amino acids, termed the CLE (CLV3/ESR-related) domain, based on its similarity to a largely unstudied protein family broadly present in land plants. We have tested the function of 13 Arabidopsis CLEs in vivo and found a significant variability in the ability of CLEs to replace CLV3, ranging from complete to no complementation. The best rescuing CLE depends on CLV1 for function, while other CLEs act independently of CLV1. Domain-swap experiments indicate that differences in function can be traced to the CLE domain within these proteins. Indeed, when the CLE domain of CLV3 is placed downstream of an unrelated signal sequence, it is capable of fully replacing CLV3 function. Finally, we have detected proteolytic activity in extracts from cauliflower (Brassica oleracea) that process both CLV3 and CLE1 at their C termini. For CLV3, processing appears to occur at the absolutely conserved arginine-70 found at the beginning of the CLE domain. We propose that CLV3 and other CLEs are C-terminally processed to generate an active CLE peptide.  相似文献   

7.
Like other biotrophic plant pathogens, plant-parasitic nematodes secrete effector proteins into host cells to facilitate infection. Effector proteins that mimic plant CLAVATA3/ENDOSPERM SURROUNDING REGION-related (CLE) proteins have been identified in several cyst nematodes, including the potato cyst nematode (PCN); however, the mechanistic details of this cross-kingdom mimicry are poorly understood. Plant CLEs are posttranslationally modified and proteolytically processed to function as bioactive ligands critical to various aspects of plant development. Using ectopic expression coupled with nanoliquid chromatography-tandem mass spectrometry analysis, we show that the in planta mature form of proGrCLE1, a multidomain CLE effector secreted by PCN during infection, is a 12-amino acid arabinosylated glycopeptide (named GrCLE1-1Hyp4,7g) with striking structural similarity to mature plant CLE peptides. This glycopeptide is more resistant to hydrolytic degradation and binds with higher affinity to a CLAVATA2-like receptor (StCLV2) from potato (Solanum tuberosum) than its nonglycosylated forms. We further show that StCLV2 is highly up-regulated at nematode infection sites and that transgenic potatoes with reduced StCLV2 expression are less susceptible to PCN infection, indicating that interference of the CLV2-mediated signaling pathway confers nematode resistance in crop plants. These results strongly suggest that phytonematodes have evolved to utilize host cellular posttranslational modification and processing machinery for the activation of CLE effectors following secretion into plant cells and highlight the significance of arabinosylation in regulating nematode CLE effector activity. Our finding also provides evidence that multidomain CLEs are modified and processed similarly to single-domain CLEs, adding new insight into CLE maturation in plants.Plants are vulnerable to attack by plant-parasitic nematodes. The cyst-forming endoparasitic nematodes (Globodera and Heterodera spp.) are among the most damaging plant pathogens, causing tremendous crop losses globally (Chitwood, 2003). Cyst nematodes have evolved an intimate parasitic relationship with their hosts by transforming normal root cells into a unique feeding structure called a syncytium that serves as the sole nutritive source required for subsequent growth and development (Hussey and Grundler, 1998; Davis et al., 2004). Cyst nematodes are soil-borne pathogens. Once infective juveniles hatch in the soil, they penetrate into the roots of host plants and select a single cell near the root vasculature to initiate a syncytium. The syncytium forms by the fusion of cells adjacent to the initial syncytial cell through extensive cell wall dissolution and develops into a large fused cell that is highly metabolically active and contains numerous enlarged nuclei and nucleoli (Endo, 1964). Like other plant pathogens, cyst nematodes use secreted effector proteins to facilitate plant parasitism. Effector proteins, originating from the nematode esophageal gland cells (two subventral and one dorsal) and secreted into root tissues through the nematode stylet (a mouth spear), represent important molecular signals that manipulate various host cellular processes to redifferentiate normal root cells into a syncytium (Davis et al., 2004; Mitchum et al., 2008, 2013).Genes encoding effector proteins with sequence similarity to plant CLAVATA3/ENDOSPERM SURROUNDING REGION-related (CLE) proteins have recently been cloned from several cyst nematode species, including the potato cyst nematode (PCN [Globodera rostochiensis; Gr]; Wang et al., 2001, 2011; Gao et al., 2003; Lu et al., 2009), a regulated and devastating pest of potato (Solanum tuberosum [St]) and tomato (Solanum lycopersicum) crops. Plant CLE proteins, identified from diverse monocot and dicot species (Cock and McCormick, 2001; Oelkers et al., 2008), are a class of peptide hormones that regulate many aspect of plant growth and development (Yamada and Sawa, 2013). Plant CLE genes encode small proteins that contain an N-terminal signal peptide, an internal variable domain, and either a single or multiple conserved C-terminal CLE domain(s) (Cock and McCormick, 2001; Kinoshita et al., 2007; Oelkers et al., 2008). The Arabidopsis (Arabidopsis thaliana [At]) genome encodes at least 32 single-domain CLEs, of which CLAVATA3 (CLV3) is the best characterized member. CLV3 is found to interact with three major membrane-associated receptor complexes, CLV1, CLV2-CORYNE (CRN), and RECEPTOR LIKE PROTEIN KINASE2 (RPK2; Clark et al., 1993; Jeong et al., 1999; Müller et al., 2008; Kinoshita et al., 2010; Zhu et al., 2010), to control the fate of stem cells in the shoot apical meristem (Fletcher et al., 1999). Among the three CLV3 receptors, CLV1 and RPK2 are leucine-rich repeat (LRR) receptor-like kinases, whereas CLV2 is an LRR receptor-like protein that acts together with a membrane-associated protein kinase, CRN, to transmit the CLV3 signal. The 96-amino acid CLV3 precursor is proteolytically processed into a mature 13-amino acid arabinosylated glycopeptide derived from its CLE domain, in which one (at position 7) of the two Hyp residues (at positions 4 and 7) is further modified by the addition of three units of l-Ara (Ohyama et al., 2009). The mature CLV3 glycopeptide exhibits full biological activity and binds to the LRR domain of CLV1 more strongly than nonarabinosylated forms (Ohyama et al., 2009). Hyp arabinosylation, a posttranslational modification unique to plants, also has been observed in mature CLE2 and CLE9 peptides from Arabidopsis as well as in CLE-ROOT SIGNAL2, an Arabidopsis CLE2 ortholog that controls nodulation in Lotus japonicus (Lj; Ohyama et al., 2009; Shinohara et al., 2012; Okamoto et al., 2013), where the arabinoside chains are revealed to have important roles in biological activity, receptor binding, and peptide conformation (Shinohara and Matsubayashi, 2013). Many Arabidopsis CLE genes are expressed in roots (Sharma et al., 2003; Jun et al., 2010), and evidence is emerging that CLE-receptor signaling pathways regulate root meristem function (Stahl et al., 2009, 2013; Meng and Feldman, 2010).Nematode CLE genes are expressed exclusively within the dorsal gland cell and encode secreted proteins with the characteristic CLE motif(s) at their C termini (Mitchum et al., 2008; Lu et al., 2009; Wang et al., 2011). Outside the conserved CLE motif, there is no sequence similarity between nematode and plant CLE proteins. The dramatic up-regulation of CLE genes in parasitic stages of the nematode life cycle (Wang et al., 2001, 2010b, 2011; Gao et al., 2003; Lu et al., 2009), along with the observation that transgenic plants expressing double-stranded RNA complementary to nematode CLE genes are less susceptible to nematode infection (Patel et al., 2008), have made it clear that CLE effectors play a critical role in nematode parasitism. Nematode-encoded CLE genes are the only CLE genes that have been identified outside the plant kingdom. Several lines of evidence suggest that nematode CLEs function as peptide mimics of endogenous plant CLEs. First, overexpression of nematode CLE genes in Arabidopsis generated phenotypes similar to those of plant CLE gene overexpression (Wang et al., 2005, 2011; Lu et al., 2009). Second, expression of nematode-encoded CLE genes in the shoot apical meristem of an Arabidopsis clv3-2 null mutant partially or completely rescued the mutant phenotypes (Lu et al., 2009; Wang et al., 2010b). Lastly, recent studies showed that Arabidopsis receptors, including CLV1, CLV2-CRN, and RPK2, are expressed in syncytia induced by the beet cyst nematode (BCN; Heterodera schachtii) and that receptor mutants fail to respond to BCN CLE peptides and show increased resistance to BCN infection (Replogle et al., 2011, 2013), further bolstering the notion of nematode-secreted CLE effectors as peptide mimics of endogenous plant CLEs and the importance of nematode CLE signaling in plant parasitism.Plant CLE precursors undergo posttranslational modifications and proteolytic processing to become bioactive CLE peptides (Shinohara and Matsubayashi, 2010; Shinohara et al., 2012; Okamoto et al., 2013). To fulfill a role as peptide mimics of plant CLEs, nematode CLEs are presumably recognized by the existing host modification and processing machinery for maturation. However, until now, the bioactive form of nematode-secreted CLEs that acts in planta has not been described. In addition, cyst nematodes are specialist feeders. Many agriculturally important nematode species, such as PCN, the soybean cyst nematode (Heterodera glycines), and the cereal cyst nematode (Heterodera avenae), fail to infect Arabidopsis. The mechanism of perception of nematode-secreted CLEs in crop plants still awaits investigation. In this study, we explored the molecular basis of CLE mimicry in the PCN-potato pathosystem. Using ectopic expression coupled with nanoliquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) analysis, we determined that the in planta mature form of proGrCLE1, a representative and multidomain CLE effector secreted from PCN during infection (Lu et al., 2009), is a 12-amino acid arabinosylated glycopeptide (hereafter referred to as GrCLE1-1Hyp4,7g) similar in structure to bioactive plant CLE peptides. We further cloned a CLV2-like gene from potato (hereafter referred to as StCLV2). We found that the GrCLE1-1Hyp4,7g glycopeptide binds directly to the StCLV2 ectodomain with high affinity and that transgenic potato lines with reduced StCLV2 expression are less susceptible to PCN infection. Our data provide direct evidence that nematode-secreted CLE effectors can be recognized by existing host cellular machinery to become bioactive mimics of endogenous plant CLE signals and suggest that cyst nematodes tap into the conserved CLV2 signaling pathway to promote successful infection of crop plants.  相似文献   

8.
Effector proteins expressed in the esophageal gland cells of cyst nematodes are delivered into plant cells through a hollow, protrusible stylet. Although evidence indicates that effector proteins function in the cytoplasm of the syncytium,13 technical constraints have made it difficult to directly determine where nematode effector proteins are initially delivered: cytoplasm, extracellular space, or both. Recently, we demonstrated that soybean cyst nematode CLE (HgCLE) propeptides are delivered to the cytoplasm of syncytial cells. Genetic and biochemical analyses indicate that the variable domain (VD) sequence is then required for targeting cytoplasmically delivered nematode CLEs to the apoplast where they function as ligand mimics of endogenous plant CLE peptides.4 The fact that nematode CLEs are targeted through the gland cell secretory pathway and delivered as mature propeptides into plant cells makes it impossible for these proteins to be subsequently delivered to the extracellular space via co-translational translocation through the endoplasmic reticulum (ER) secretory pathway of the host cell. However, when expressed in transgenic plants, if the mature nematode CLE propeptide harbored a functional cryptic signal peptide, it could possibly traffic to the apoplast through the ER secretory pathway by co-translational translocation. Here, we present evidence that VDI, the N-terminal sequence of the VD of HgCLE2,4 is sufficient for trafficking CLE peptides to the apoplast and that trafficking is indeed through an alternative pathway other than co-translational translocation.Key words: cyst nematode, effector, CLE, variable domain, trafficking, endoplasmic reticulum, co-translational translocation, post-translational  相似文献   

9.
CLE (CLAVATA3/ESR-related) peptides are developmental regulators that are secreted into the apoplast. Little is known about the role of the sequences that flank CLE peptides in terms of their biological activity or how they are targeted by proteases that are known to liberate the final active CLE peptides from their precursor sequences. The biological activity of Medicago truncatula CLE36, which possesses broadly conserved border sequences flanking the putative final active CLE36 peptide product, was assessed. Using in vitro root growth assays and an in vitro root and callus formation assay it is shown that CLE36 peptides of different lengths possess differential biological activities. Using mass spectrometry, Glycine max and Medicago extracellular fluids were each shown to possess an endoproteolytic activity that recognizes and cleaves at border sequences in a synthetic 31 amino acid CLE36 'propeptide bait' to liberate biologically active peptide products. Inhibitor studies suggest that a subtilisin, in combination with a carboxypeptidase, liberated and trimmed CLE36, respectively, to form biologically relevant 11-15 amino acid cleavage products. The 15 amino acid cleavage product is more biologically potent on Arabidopsis than shorter or longer CLE peptides. In situ hybridization shows that the soybean orthologue of CLE36 (GmCLE34) is expressed in the provascular tissue. The results suggest that secreted subtilisins can specifically recognize the border sequences of CLE36 propeptides and liberate biologically active cleavage products. These secreted proteases may affect the stability and biological activity of CLE peptides in the apoplast or be involved in CLE36 processing.  相似文献   

10.
CLAVATA3 (CLV3), CLV3/ESR19 (CLE19), and CLE40 belong to a family of 26 genes in Arabidopsis thaliana that encode putative peptide ligands with unknown identity. It has been shown previously that ectopic expression of any of these three genes leads to a consumption of the root meristem. Here, we show that in vitro application of synthetic 14-amino acid peptides, CLV3p, CLE19p, and CLE40p, corresponding to the conserved CLE motif, mimics the overexpression phenotype. The same result was observed when CLE19 protein was applied externally. Interestingly, clv2 failed to respond to the peptide treatment, suggesting that CLV2 is involved in the CLE peptide signaling. Crossing of the CLE19 overexpression line with clv mutants confirms the involvement of CLV2. Analyses using tissue-specific marker lines revealed that the peptide treatments led to a premature differentiation of the ground tissue daughter cells and misspecification of cell identity in the pericycle and endodermis layers. We propose that these 14-amino acid peptides represent the major active domain of the corresponding CLE proteins, which interact with or saturate an unknown cell identity-maintaining CLV2 receptor complex in roots, leading to consumption of the root meristem.  相似文献   

11.
12.
13.
Research in the past decade revealed that peptide ligands, also called peptide hormones, play a crucial role in intercellular communication and defense response in plants. Recent studies demonstrated that a family of plant-specific genes, CLAVATA3 (CLV3)/ENDOSPERM SURROUNDING REGION (ESR) (CLE), which has at least 31 members in Arabidopsis genome, are able to generate extracellular peptides to regulate cell division and differentiation. A hydroxyl 12-amino acid peptide derived from the conserved CLE motif of CLV3 promotes cell differentiation, whereas another CLE-derived peptide suppresses the differentiation. These peptides probably interact with membrane-bound, leucine-rich repeat receptor-like kinases (LRR-RLKs) to execute the decision between cell proliferation and differentiation.  相似文献   

14.
Using 26 chemically synthetic CLAVATA3/ESR (CLE) peptides, which correspond to the predicted products of the 31 Arabidopsis CLE genes, we investigated the CLE peptide function in Arabidopsis and rice. Treatment with some CLE peptides inhibited root elongation in rice as well as in Arabidopsis. It also reduced the size of the shoot apical meristem in Arabidopsis but not in rice. Database searches revealed 47 putative CLE genes in the rice genome and multiple CLE domains in some CLE genes, indicating diverse CLE function in these plants.  相似文献   

15.
Few plant peptides involved in intercellular communication have been experimentally isolated. Sequence analysis of the Arabidopsis thaliana genome has revealed numerous transmembrane receptors predicted to bind proteinacious ligands, emphasizing the importance of identifying peptides with signaling function. Annotation of the Arabidopsis genome sequence has made it possible to identify peptide-encoding genes. However, such annotational identification is impeded because small genes are poorly predicted by gene-prediction algorithms, thus prompting the alternative approaches described here. We initially performed a systematic analysis of short polypeptides encoded by annotated genes on two Arabidopsis chromosomes using SignalP to identify potentially secreted peptides. Subsequent homology searches with selected, putatively secreted peptides, led to the identification of a potential, large Arabidopsis family of 34 genes. The predicted peptides are characterized by a conserved C-terminal sequence motif and additional primary structure conservation in a core region. The majority of these genes had not previously been annotated. A subset of the predicted peptides show high overall sequence similarity to Rapid Alkalinization Factor (RALF), a peptide isolated from tobacco. We therefore refer to this peptide family as RALFL for RALF-Like. RT-PCR analysis confirmed that several of the Arabidopsis genes are expressed and that their expression patterns vary. The identification of a large gene family in the genome of the model organism Arabidopsis thaliana demonstrates that a combination of systematic analysis and homology searching can contribute to peptide discovery.  相似文献   

16.
17.
18.
Mild heat shock treatment (32 degrees C) of isolated Brassica napus microspores triggers a developmental switch from pollen maturation to embryo formation. This in vitro system was used to identify genes expressed in globular to heart-shape transition embryos. One of the genes isolated encodes a putative extra-cellular protein that exhibits high sequence similarity with the in silico identified CLV3/ESR-related 19 polypeptide from Arabidopsis (AtCLE19) and was therefore named BnCLE19. BnCLE19 is expressed in the primordia of cotyledons, sepals and cauline leaves, and in some pericycle cells in the root maturation zone. Mis-expression of BnCLE19 or AtCLE19 in Arabidopsis under the control of the CaMV 35S promoter resulted in a dramatic consumption of the root meristem, the formations of pin-shaped pistils and vascular islands. These results imply a role of CLE19 in promoting cell differentiation or inhibiting cell division.  相似文献   

19.
20.
Low molecular weight secreted peptides have recently been shown to affect multiple aspects of plant growth, development, and defense responses.Here, we performed stepwise BLAST filtering to identify unannotated peptides from the Arabidopsis thaliana protein database and uncovered a novel secreted peptide family, secreted transmembrane peptides(STMPs). These low molecular weight peptides, which consist of an N-terminal signal peptide and a transmembrane domain, were primarily localized to extracellular compartments but were also detected in the endomembrane system of the secretory pathway, including the endoplasmic reticulum and Golgi. Comprehensive bioinformatics analysis identified 10 STMP family members that are specific to the Brassicaceae family. Brassicaceae plants showed dramatically inhibited root growth uponexposure to chemically synthesized STMP1 and STMP2.Arabidopsis overexpressing STMP1, 2, 4, 6, or 10 exhibited severely arrested growth, suggesting that STMPs are involved in regulating plant growth and development. In addition, in vitro bioassays demonstrated that STMP1,STMP2, and STMP10 have antibacterial effects against Pseudomonas syringae pv. tomato DC3000, Ralstonia solanacearum, Bacillus subtilis, and Agrobacterium tumefaciens, demonstrating that STMPs are antimicrobial peptides. These findings suggest that STMP family members play important roles in various developmental events and pathogen defense responses in Brassicaceae plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号