首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cardiovascular diseases are the human diseases with the highest death rate and atherosclerosis is one of the major underlying causes of cardiovascular diseases. Inflammatory and innate immune mechanisms, employing monocytes, innate receptors, innate cytokines, or chemokines are suggested to be involved in atherogenesis. Among the inflammatory pathways the cytokines are central players. Plasma levels of cytokines and related proteins, such as CRP, have been investigated in cardiovascular patients, tissue mRNA expression was analyzed and correlations to vascular diseases established. Consistent with these findings the generation of cytokine-deficient animals has provided direct evidence for a role of cytokines in atherosclerosis. In vitro cell culture experiments further support the suggestion that cytokines and other innate mechanisms contribute to atherogenesis. Among the initiation pathways of atherogenesis are innate mechanisms, such as toll-like-receptors (TLRs), including the endotoxin receptor TLR4. On the other hand, innate cytokines, such as IL-1 or TNF, or even autoimmune triggers may activate the cells. Cytokines potently activate multiple functions relevant to maintain or spoil homeostasis within the vessel wall. Vascular cells, not least smooth muscle cells, can actively contribute to the inflammatory cytokine-dependent network in the blood vessel wall by: (i) production of cytokines; (ii) response to these potent cell activators; and (iii) cytokine-mediated interaction with invading cells, such as monocytes, T-cells, or mast cells. Activation of these pathways results in accumulation of cells and increased LDL- and ECM-deposition which may serve as an 'immunovascular memory' resulting in an ever-growing response to subsequent invasions. Thus, vascular cells may potently contribute to the inflammatory pathways involved in development and acceleration of atherosclerosis.  相似文献   

2.
Inflammatory pathways are involved in the development of atherosclerosis. Interaction of vessel wall cells and invading monocytes by cytokines may trigger local inflammatory processes. 3‐Hydroxy‐3‐methylglutaryl coenzyme A reductase inhibitors (statins) are standard medications used in cardiovascular diseases. They are thought to have anti‐inflammatory capacities, in addition to their lipid‐lowering effects. We investigated the anti‐inflammatory effect of statins in the cytokine‐mediated‐interaction‐model of human vascular smooth muscle cells (SMC) and human mononuclear cells (MNC). In this atherosclerosis‐related inflammatory model LPS (lipopolysaccharide, endotoxin), as well as high mobility group box 1 stimulation resulted in synergistic (i.e. over‐additive) IL‐6 (interleukin‐6) production as measured in ELISA. Recombinant IL‐1, tumour necrosis factor‐α and IL‐6 mediated the synergistic IL‐6 production. The standard anti‐inflammatory drugs aspirin and indomethacin (Indo) reduced the synergistic IL‐6 production by 60%. Simvastatin, atorvastatin, fluvastatin or pravastatin reduced the IL‐6 production by 53%, 50%, 64% and 60%, respectively. The inhibition by the statins was dose dependent. Combination of statins with aspirin and/or Indo resulted in complete inhibition of the synergistic IL‐6 production. The same inhibitors blocked STAT3 phosphorylation, providing evidence for an autocrine role of IL‐6 in the synergism. MNC from volunteers after 5 day aspirin or simvastatin administration showed no decreased IL‐6 production, probably due to drug removal during MNC isolation. Taken together, the data show that anti‐inflammatory functions (here shown for statins) can be sensitively and reproducibly determined in this novel SMC/MNC coculture model. These data implicate that statins have the capacity to affect atherosclerosis by regulating cytokine‐mediated innate inflammatory pathways in the vessel wall.  相似文献   

3.
Dungan LS  Mills KH 《Cytokine》2011,56(1):126-132
The interleukin (IL)-1 cyokine family plays a vital role in inflammatory responses during infection and in autoimmune diseases. The pro-inflammatory cytokines, IL-1β and IL-18 are members of the IL-1 family that require cleavage by caspase-1 in the inflammasome to generate the mature active cytokines. Cells of the innate immune system, including γδ T cells and invariant natural killer T (iNKT) cells respond rapidly to invading pathogens by producing inflammatory cytokines, such as IFN-γ and IL-17. IL-1β or IL-18 in combination with IL-23 can induce IL-17 production by γδ T cells without T cell receptor (TCR) engagement. IL-1β and IL-23 can also synergize to induce IL-17 production by iNKT cells. Furthermore, CD4+ αβ effector memory T cells secrete IL-17 in response to IL-23 in combination with either IL-1β or IL-18, in the absence of any TCR stimulation. The early IL-17 produced by innate cells induces recruitment of neutrophils to the site of infection, stimulates local epithelial cells to secrete anti-microbial proteins, such as lipocalins and calgranulins, induces production of structural proteins important in tight junction stability, and promotes production of matrix metalloproteinases. Caspase-1 processed IL-1 family cytokines therefore play a vital role in the innate immune response and induction of IL-17 from innate immune cells which functions to fight infections and promote autoimmunity.  相似文献   

4.
5.
Cytokine regulation of endothelial cell function.   总被引:49,自引:0,他引:49  
Endothelial cells have long been viewed as a passive lining of blood vessels endowed essentially with negative properties such as that of being nonreactive to blood components. It is now evident that upon exposure to environmental signals, cytokines in particular, vascular cells undergo profound changes in gene expression and function that allow these cells to participate actively in inflammatory reactions, immunity, and thrombosis. Different mediators (e.g., interleukin-1 [IL-1] and interferon-gamma) activate relatively distinct sets of functions. These functional programs expressed in activated endothelial cells include the production by the same cells of cytokines (e.g., IL-1, IL-6, chemotactic cytokines, and colony-stimulating factors), which regulate hematopoiesis, the differentiation and proliferation of T and B lymphocytes, and the extravasation of leukocytes. The identification of cytokine circuits through which vascular cells participate to thrombotic, inflammatory, and immune reactions provides novel targets for therapeutic intervention.  相似文献   

6.
Copper chelation regulates the production of inflammatory mediators in vivo during vascular inflammation and atherogenesis. Little is known about how the copper egress pump ATP7A regulates the production of these mediators. In this study, we isolated ATP7A deficient macrophages (MΦ) from the peritoneal cavity of blotchy mice and identified the lipopolysaccharide (LPS)-induced inflammatory mediators that were altered by ATP7A deficiency. These results were compared with the effect of neocuproine (a copper chelator) treatment on both ATP7A deficient and control MΦ. Seven of the 24 inflammatory mediators examined in this study had significant changes in expression in the ATP7A deficient MΦ compared to controls; 16 of these mediators were significantly reduced in MΦ treated with neocuproine compared to controls. Both neocuproine treatment and ATP7A deficiency reduced IFN-γ, MCP-1, MCP-3, and VEGF-A levels. Interestingly, the production of KC/GRO was upregulated by ATP7A deficiency but downregulated by neocuproine treatment. Neocuproine, but not ATP7A deficiency, reduced the production of FGF-9, IL-1α, IL-12p70, IL-2, IL-3, IL-4, IL-6, MIP-1β, MIP-2, RANTES, and TNFα. ATP7A deficiency but not neocuproine treatment reduced IP-10 and MCP-5 levels. In addition, both ATP7A deficiency and neocuproine treatment had no effect on GM-CSF, IL-10, IL-11, IL-7, OSM, and SCF. Together, these findings provide evidence that MΦ ATP7A selectively regulates LPS-induced inflammatory mediators, in part, via modulation of cellular copper availability, whereas neocuproine generally inhibits the production of inflammatory mediators. These results also imply that although copper chelation and ATP7A downregulation may result in different copper concentrations, gradients, and/or distribution in the cells, they may not lead to opposite biological effects on inflammatory mediator production.  相似文献   

7.
8.
Cerebral malaria (CM) is a complex parasitic disease caused by Plasmodium sp. Failure to establish an appropriate balance between pro- and anti-inflammatory immune responses is believed to contribute to the development of cerebral pathology. Using the blood-stage PbA (Plasmodium berghei ANKA) model of infection, we show here that administration of the pro-Th2 cytokine, IL-33, prevents the development of experimental cerebral malaria (ECM) in C57BL/6 mice and reduces the production of inflammatory mediators IFN-γ, IL-12 and TNF-α. IL-33 drives the expansion of type-2 innate lymphoid cells (ILC2) that produce Type-2 cytokines (IL-4, IL-5 and IL-13), leading to the polarization of the anti-inflammatory M2 macrophages, which in turn expand Foxp3 regulatory T cells (Tregs). PbA-infected mice adoptively transferred with ILC2 have elevated frequency of M2 and Tregs and are protected from ECM. Importantly, IL-33-treated mice deleted of Tregs (DEREG mice) are no longer able to resist ECM. Our data therefore provide evidence that IL-33 can prevent the development of ECM by orchestrating a protective immune response via ILC2, M2 macrophages and Tregs.  相似文献   

9.
Reactive oxygen species (ROS) are generated in the vascular wall upon stimulation by proinflammatory cytokines and are important mediators of diverse cellular responses that occur as a result of vascular injury. Members of the NADPH oxidase (NOX) family of proteins have been identified in vascular smooth muscle (VSM) cells as important sources of ROS. In this study, we tested the hypothesis that NOX4 is a proximal mediator of IL-1β-dependent activation of PKCδ and increases IL-1β-stimulated c-Jun kinase (JNK) signaling in primary rat aortic VSM cells. We found that stimulation of VSM cells with IL-1β increased PKCδ activity and intracellular ROS generation. SiRNA silencing of NOX4 but not NOX1 ablated the IL-1β-dependent increase in ROS production. Pharmacological inhibition of PKCδ activity as well as siRNA depletion of PKCδ or NOX4 blocked the IL-1β-dependent activation of JNK. Further studies showed that the IL-1β-dependent upregulation of inducible NO synthase expression was inhibited through JNK inhibition and NOX4 silencing. Taken together, these results indicate that IL-1β-dependent activation of PKCδ is modulated by NOX4-derived ROS. Our study positions PKCδ as an important redox-sensitive mediator of IL-1β-dependent signaling and downstream activation of inflammatory mediators in VSM cells.  相似文献   

10.
Mast cells are a heterogeneous multifunctional cellular population that promotes connective tissue homeostasis by slow release of biologically active substances, affecting primarily the permeability of vessels and vascular tone, maintenance of electrolyte and water balance, and composition of the extracellular matrix. Along with this, they can rapidly release inflammatory mediators and chemotactic factors that ensure the mobilization of effector innate immune cells to fight against a variety of pathogens. Furthermore, they play a key role in initiation of allergic reactions. Aggregation of high affinity receptors to IgE (FcεRI) results in rapid degranulation and release of inflammatory mediators. It is known that reactive oxygen species (ROS) participate in intracellular signaling and, in particular, stimulate production of several proinflammatory cytokines that regulate the innate immune response. In this review, we focus on known molecular mechanisms of FcεRI-dependent activation of mast cells and discuss the role of ROS in the regulation of this pathway.  相似文献   

11.
Atherosclerosis is an inflammatory disease characterized by the influx of macrophages and T cells and IL-17 may connect innate and adaptive immune responses involved in atherogenesis. We investigated the role of IL-17 receptor signaling in atherosclerosis and transplanted LDLr deficient recipient mice with IL-17R deficient bone marrow. Induction of atherosclerosis by Western-type diet induced a 46% reduction in lesion size in the aortic root and the plaque composition revealed no significant changes in collagen content and neutrophil counts, but a reduction in mast cell number and an increase in macrophage number. In addition, we observed a decrease in anti-oxLDL antibodies of the IgG class upon IL-17R BMT, while introduction of IL-17R deficient bone marrow resulted in a reduced IL-6 production and an increased IL-10 production.In conclusion, signaling via the IL-17 receptor in bone marrow derived cells enhances the process of atherosclerosis.  相似文献   

12.
Surfactant protein D (SP-D) is a constituent of the innate immune system that plays a role in the host defense against lung pathogens and in modulating inflammatory responses. While SP-D has been detected in extrapulmonary tissues, little is known about its expression and function in the vasculature. Immunostaining of human coronary artery tissue sections demonstrated immunoreactive SP-D protein in smooth muscle cells (SMCs) and endothelial cells. SP-D was also detected in isolated human coronary artery SMCs (HCASMCs) by PCR and immunoblot analysis. Treatment of HCASMCs with endotoxin (LPS) stimulated the release of IL-8, a proinflammatory cytokine. This release was inhibited >70% by recombinant SP-D. Overexpression of SP-D by adenoviral-mediated gene transfer in HCASMCs inhibited both LPS- and TNF-alpha-induced IL-8 release. Overexpression of SP-D also enhanced uptake of Chlamydia pneumoniae elementary bodies into HCASMCs while attenuating IL-8 production induced by bacterial exposure. Both LPS and TNF-alpha increased SP-D mRNA levels by five- to eightfold in HCASMCs, suggesting that inflammatory mediators upregulate the expression of SP-D. In conclusion, SP-D is expressed in human coronary arteries and functions as an anti-inflammatory protein in HCASMCs. SP-D may also participate in the host defense against pathogens that invade the vascular wall.  相似文献   

13.
Cytokine levels are elevated in many cardiovascular diseases and seem to be implicated in the associated disturbances in vascular reactivity reported in these diseases. Arterial blood pressure is maintained within a normal range by changes in peripheral resistance and cardiac output. Peripheral resistance is mainly determined by small resistance arteries and arterioles. This review focuses on the effects of cytokines, mainly TNF-alpha, IL-1beta, and IL-6, on the reactivity of resistance arteries. The vascular effects of cytokines depend on the balance between the vasoactive mediators released under their influence in the different vascular beds. Cytokines may induce a vasodilatation and hyporesponsiveness to vasoconstrictors that may be relevant to the pathogenesis of septic shock. Cytokines may also induce vasoconstriction or increase the response to vasoconstrictor agents and impair endothelium-dependent vasodilatation. These effects may help predispose to vessel spasm, thrombosis, and atherogenesis and reinforce the link between inflammation and vascular disease.  相似文献   

14.
Retinoids have been shown to modulate inflammation and the immune response in many cell types including macrophages, endothelial cells, and vascular smooth muscle cells. However, present knowledge of whether inflammatory mediators modulate vitamin A status in these cells is limited. To identify the role of inflammation on retinoid metabolism in vascular smooth muscle cells, the cells were exposed to a combination of proinflammatory cytokines: interleukin-1beta, interferon-gamma, and lipopolysaccharides. Without stimulation with proinflammatory cytokines, vascular smooth muscle cells expressed retinol dehydrogenases-2 and 5 mRNA detected by RT-PCR. Stimulation with the combination of cytokines induced a substantial increase of retinol dehydrogenase-5 mRNA. This was associated with increased production of ligands for retinoic acid receptors, when assayed in a retinoic acid receptor-dependent luciferase reporter system. Our results demonstrate that inflammatory mediators activate the retinoid metabolic pathway in vascular smooth muscle cells, which potentially may modulate the inflammatory response in the vascular wall.  相似文献   

15.
Interleukin (IL)-18 bioactivity and dsRNA sensing by receptors of innate immunity are key components of anti-viral host defense. Despite extensive data on signal transduction activated by both pathways knowledge on cross-communication is incomplete. By using human PBMC and predendritic KG1 cells, as prototypic IL-18-responsive cellular models, we sought to assess cytokine production under the influence of IL-18 and the dsRNA-mimetic poly (I:C). Here, we report on potent synergy between both mediators concerning pro-inflammatory IFNγ and TNFα production. KG1 data revealed that synergistic induction likely relied on TLR3 and was associated with prolonged/increased activation of NF-κB, as detected by IκB analysis and luciferase reporter assays, respectively. Moreover, extended activation of JNK was mediated by IL-18/poly (I:C). Although vital for innate immunity, overwhelming induction of inflammatory cytokines during viral infections poses the threat of serious collateral tissue damage. The stunning synergism inherent to IL-18/dsRNA-induced TNFα/IFNγ detected herein may contribute to this pathological phenomenon.  相似文献   

16.
17.
Xing L  Remick DG 《Cellular immunology》2004,231(1-2):126-132
Neutrophils represent critical components of the innate immune system that bear primary responsibility for phagocytosis and killing of invading pathogens. Following stimulation of human whole blood, robust production of multiple cytokines and cytokine inhibitors occurs. We attempted to define the cell population responsible for the synthesis of different mediators by first stimulating whole blood and then isolating pure populations of granulocytes and monocytes. Monocytes produced mRNA coding for the classic pro-inflammatory cytokines tumor necrosis factor-alpha (TNF-alpha), interleukin-1beta (IL-1beta), and IL-6, while mRNA for these cytokines was not detectable in the isolated neutrophils. In contrast, neutrophils produce significant quantities of cytokine inhibitors such as the type 2 TNF soluble receptor and the IL-1 receptor antagonist. Both neutrophils and monocytes produced mRNA coding for IL-8. These data indicate that following stimulation of a mixed cell population the monocytes primarily produce pro-inflammatory mediators while the neutrophils synthesize a significant portion of the anti-inflammatory mediators. The neutrophils may be compared to firemen who bring the resources necessary to put out the flame of acute inflammation.  相似文献   

18.
Intermittent hypoxia (IH) is a hallmark feature in obstructive sleep apnea (OSA) which is increasingly recognized as an independent risk factor for atherosclerosis. Oxidative stress, inflammation, and cell apoptosis are major pathological events initiating or accelerating atherogenesis. This study addressed whether IH would affect these proatherogenic factors in endothelial cells and the mechanistic pathways involved. EA.hy926 cells were exposed to intermittent normoxia or IH for different numbers of cycles (32, 64, or 96). IH exposure time-dependently raised cellular GSSG/GSH ratio, increased production of IL-6 and IL-8, and accelerated cell apoptosis and death, concurrent with activation of NF-κB and inhibition of Nrf2/HO-1 pathways. At 64 cycles, inhibition of NF-κB attenuated IH-induced cellular oxidative stress and accumulation of inflammatory cytokines in cell culture medium but aggravated IH-induced cell apoptosis, while stimulation of HO-1 suppressed IH-induced cellular oxidative stress and cell apoptosis without affecting accumulation of inflammatory cytokines in cell culture medium. We demonstrated that early stage of exposure to IH-induced oxidative and inflammatory stresses leading to acceleration of cell apoptosis via NF-κB and Nrf2/HO-1 pathways in endothelial cells, suggesting the potential mechanisms for IH-induced vascular pathogenesis, in resemblance to OSA.  相似文献   

19.
The intracellular bacterial pathogen Chlamydia pneumoniae causes respiratory tract infection and has been associated with atherosclerosis and coronary artery disease. Since atherosclerosis is a progressive disease and is considered to be a chronic inflammation of the artery vessel wall, the interaction of C. pneumoniae with cells of the vasculature that can result in a local inflammatory response is of paramount importance. In this essay we review the pathophysiology of atherosclerosis in the context of C. pneumoniae infection and present an integrated model that includes the involvement of C. pneumoniae in all stages of atherogenesis including initiation, inflammation, fibrous plaque formation, plaque rupture and thrombosis. We hypothesize that acute and persistent infection of professional immune cells (T-cells, monocytes and macrophages) and non-immune cells (endothelial cells and smooth muscle cells) contributes to a sustained inflammatory response mediated by extensive cellular 'crosstalk' and numerous cytokines/chemokines. This cascade of inflammatory mediators may contribute to cellular dysfunction and tissue remodelling of the arterial intima. An improved understanding of the precise mechanism(s) of C. pneumoniae involvement in atherogenesis may help resolve the question of causality however, at the present time, we interpret the data as favoring a contributory rather than a causal role. Future research directed at the discovery of chlamydial virulence factors necessary for intracellular survival and subsequent alterations in host cell gene expression including signalling pathways may be important for the design of future clinical trials.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号