首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Small RNAs capable of self-cleavage and ligation might have been the precursors for the much more complex self-splicing group I and II introns in an early RNA world. Here, we demonstrate the activity of engineered hairpin ribozyme variants, which as self-splicing introns are removed from their parent RNA. In the process, two cleavage reactions are supported at the two intron-exon junctions, followed by ligation of the two generated exon fragments. As a result, the hairpin ribozyme, here acting as the self-splicing intron, is cut out. Two self-splicing hairpin ribozyme variants were investigated, one designed by hand, the other by a computer-aided approach. Both variants perform self-splicing, generating a cut-out intron and ligated exons.  相似文献   

2.
Because of the ability to cleave RNA substrates in trans, the hairpin ribozyme has great potential for therapeutic application. Activity of a three-stranded version of the minimal truncated form is enhanced by the presence of the polyamine spermine. Since spermine is the most abundant polyamine in eucariots, improved prospects for the hairpin ribozyme as therapeutic agent were predicted. We have found that not all hairpin ribozyme variants accept spermine equally well as counter-ion. Particularly the two-stranded versions commonly used for therapeutic studies show rather decreased activity when spermine is present. We have investigated a number of hairpin ribozyme derivatives regarding their ability to carry out spermine supported catalysis. Among the studied structures a two-stranded reverse-joined hairpin ribozyme displayed the highest cleavage rates in a synergistic mixture of magnesium ions and spermine. The specific features of this ribozyme along with its potential for in vivo application are discussed.  相似文献   

3.
Current methods for evaluating the kinetics of ribozyme-catalyzed reactions rely primarily on the use of radiolabeled RNA substrates, and so require tedious electrophoretic separation and quantitation of reaction products for each data point in any experiment. Here, we report the use of fluorescent substrates for real-time analysis of the time course of reactions of the hairpin ribozyme. Fluorescence of 3' fluorescein-labeled substrates was quenched upon binding to the hairpin ribozyme or its isolated substrate-binding strand (SBS), under conditions of ribozyme or SBS excess. This decrease was accompanied by an increase in anisotropy, and resulted from a base-specific quenching by a guanosine residue added to the 5' end of the SBS, close to fluorescein in the complex. Fluorescence quenching was used to determine rate constants for substrate binding (1.4 x 10(8) M(-1) min(-1)), cleavage (0.15 min(-1)), and substrate dissociation (0.010 min(-1)) by a structurally well-defined ribozyme at 25 degrees C in 50 mM Tris-HCI, pH 7.5, 12 mM MgCl2. These rates are in excellent agreement with those obtained using traditional radioisotopic methods. Measurements of dissociation rates provided physical support for interdomain interactions within the substrate-ribozyme complex. We estimate that 2.1 kcal/mol of additional substrate binding energy is provided by the B domain of the ribozyme. Part of this free energy apparently stems from coaxial stacking of helices in the hinge region between domains, and it is plausible that the remainder might be contributed by direct interactions with loop B. The fluorescence quenching and dequenching methods described here should be readily adaptable to studying a wide variety of RNA interactions and reactions using ribozymes and other model systems.  相似文献   

4.
Mutagenesis of the hairpin ribozyme.   总被引:5,自引:1,他引:5       下载免费PDF全文
Extensive in vitro mutagenesis studies have been performed on the hairpin ribozyme and substrate in an effort to refine the overall secondary structure of the molecule and provide further insight into what elements are essential for activity. A secondary structure consisting of four helices and five loop regions remains the basic model as originally proposed. Two helices, helix 1 and 2, form between the substrate and ribozyme while helices 3 and 4 are within the ribozyme itself. Our results suggest that helices 3 and 4 are smaller than previously proposed, consisting of four base pairs and three base pairs respectively. Helix 4 can be extended without loss of activity and loop 3 at the closed end of the hairpin model can be varied in sequence with retention of activity. There is an unpaired nucleotide between helices 2 and 3 consisting of a single A base, suggesting the opportunity for flexibility within the tertiary structure at this point. Comparisons are made between the new data and previously published mutagenesis and phylogenetic data. Substrate targeting rules require base pairing between helices 1 and 2 with cleavage (*) occurring in a preferred 5'(g/c/u)n*guc3' sequence of the substrate.  相似文献   

5.
The chemical syntheses of RNA oligomers containing modifications on the 5′-carbon of the 5′-terminal nucleoside for crystallographic and mechanistic studies of the hairpin ribozyme are reported. Phosphoramidites 4 and 8 were prepared and used in solid phase syntheses of RNA oligomers containing the sequence 5′-N′UCCUCUCC, where N′ indicates either 5′-chloro-5′-deoxyguanosine or 5′-amino-5′-deoxyguanosine, respectively. A ribozyme ligation assay with the 5′-chloro- and 5′-amino-modified RNA oligomers demonstrated their inhibition of the hairpin-catalyzed RNA–RNA ligation reaction.  相似文献   

6.
Structure and function of the hairpin ribozyme   总被引:18,自引:0,他引:18  
The hairpin ribozyme belongs to the family of small catalytic RNAs that cleave RNA substrates in a reversible reaction that generates 2',3'-cyclic phosphate and 5'-hydroxyl termini. The hairpin catalytic motif was discovered in the negative strand of the tobacco ringspot virus satellite RNA, where hairpin ribozyme-mediated self-cleavage and ligation reactions participate in processing RNA replication intermediates. The self-cleaving hairpin, hammerhead, hepatitis delta and Neurospora VS RNAs each adopt unique structures and exploit distinct kinetic and catalytic mechanisms despite catalyzing the same chemical reactions. Mechanistic studies of hairpin ribozyme reactions provided early evidence that, like protein enzymes, RNA enzymes are able to exploit a variety of catalytic strategies. In contrast to the hammerhead and Tetrahymena ribozyme reactions, hairpin-mediated cleavage and ligation proceed through a catalytic mechanism that does not require direct coordination of metal cations to phosphate or water oxygens. The hairpin ribozyme is a better ligase than it is a nuclease while the hammerhead reaction favors cleavage over ligation of bound products by nearly 200-fold. Recent structure-function studies have begun to yield insights into the molecular bases of these unique features of the hairpin ribozyme.  相似文献   

7.
The hairpin ribozyme is a small catalytic RNA that has been reengineered resulting in a number of variants with extended or even new functions. Thus, manipulation of the hairpin ribozyme structure has allowed for activity control by external effectors, namely oligonucleotides, flavine mononucleotide, and adenine. Hairpin ribozyme-derived twin ribozymes that mediate RNA fragment exchange reactions as well as self-processing hairpin ribozymes were designed. Furthermore, several hairpin ribozyme variants have been engineered for knock down of specific RNA substrates by adapting the substrate-binding domain to the specific target sequence. This review will focus on hairpin ribozymes possessing structural extensions/variations and thus functionally differing from the parent hairpin ribozyme.  相似文献   

8.
Pinard R  Lambert D  Walter NG  Heckman JE  Major F  Burke JM 《Biochemistry》1999,38(49):16035-16039
To form a catalytically active complex, the essential nucleotides of the hairpin ribozyme, embedded within the internal loops of the two domains, must interact with one another. Little is known about the nature of these essential interdomain interactions. In the work presented here, we have used recent topographical constraints and other biochemical data in conjunction with molecular modeling (constraint-satisfaction program MC-SYM) to generate testable models of interdomain interactions. Visual analysis of the generated models has revealed a potential interdomain base pair between the conserved guanosine immediately downstream of the reactive phosphodiester (G(+1)) and C(25) within the large domain. We have tested this former model through activity assays, using all 16 combinations of bases at positions +1 and 25. When the standard ribozyme was used, catalytic activity was severely suppressed with substrates containing U(+1), C(+1), or A(+1). Similarly, mutations of the putative pairing partner (C(25) to A(25) or G(25)) reduce activity by several orders of magnitude. The U(25) substitution retains a significant level of activity, consistent with the possible formation of a G.U wobble pair. Strikingly, when combinations of Watson-Crick (or wobble) base pairs were introduced in these positions, catalytic activity was restored, strongly suggesting the existence of the proposed interaction. These results provide a structural basis for the guanosine requirement of this ribozyme and indicate that the hairpin ribozyme can now be engineered to cleave a wider range of RNA sequences.  相似文献   

9.
The hairpin ribozyme is a small catalytic motif found in plant satellite RNAs where it catalyzes a reversible self-cleavage reaction during processing of replication intermediates. Crystallographic studies of hairpin ribozymes have provided high resolution views of the RNA functional groups that comprise the active site and stimulated biochemical studies that probed the contributions of nucleobase functional groups to catalytic chemistry. The dramatic loss of activity that results from perturbation of active site architecture points to the importance of positioning and orientation in catalytic rate acceleration. The current study focuses on the network of noncovalent interactions that align nucleophilic and leaving group oxygens in the orientation required for the S(N)2-type reaction mechanism and orient the active site nucleobases near the reactive phosphate to facilitate catalytic chemistry. Nucleotide modifications that alter or eliminate individual hydrogen bonding partners had different effects on the activation barrier to catalysis, the stability of ribozyme complexes in the ground state, and the internal equilibrium between cleavage and ligation of bound products. Furthermore, substitution of hydrogen bond donors and acceptors with seemingly equivalent pairs sometimes had very different functional consequences. These biochemical analyses augment high resolution structural information to provide insights into the functional significance of active site architecture.  相似文献   

10.
Kinetics of hairpin ribozyme cleavage in yeast.   总被引:3,自引:1,他引:2       下载免费PDF全文
Hairpin ribozymes catalyze a self-cleavage reaction that provides a simple model for quantitative analyses of intracellular mechanisms of RNA catalysis. Decay rates of chimeric mRNAs containing self-cleaving ribozymes give a direct measure of intracellular cleavage kinetics in yeast. Intracellular ribozyme-mediated cleavage occurs at similar rates and shows similar inhibition by ribozyme mutations as ribozyme-mediated reactions in vitro, but only when ribozymes are located in a favorable mRNA sequence context. The impact of cleavage on mRNA abundance is shown to depend directly on intrinsic mRNA stability. Surprisingly, cleavage products are no more labile than uncleaved mRNAs despite the loss of terminal cap structures or poly (A).  相似文献   

11.
This work is an in vitro study of the efficiency of catalytic antisense RNAs whose catalytic domain is the wild-type sequence of the hairpin ribozyme, derived from the minus strand of the tobacco ringspot virus satellite RNA. The sequence in the target RNA recognized by the antisense molecule was the stem-loop structure of the human immunodeficiency virus-1 (HIV-1) TAR region. This region was able to form a complex with its antisense RNA with a binding rate of 2 x 10(4) M(-1)s(-1). Any deletion of the antisense RNA comprising nucleotides of the stem-loop resulted in a decrease in binding rate. Sequences 3' of the stem in the sense RNA also contributed to binding. This stem-loop TAR-antisense segment, covalently linked to a hairpin ribozyme, enhanced its catalytic activity. The highest cleavage rate was obtained when the stem-loop structure was present in both ribozyme and substrate RNAs and they were complementary. Similarly, an extension at the 5'-end of the hairpin ribozyme increased the cleavage rate when its complementary sequence was present in the substrate. Inclusion of the stem-loop at the 3'-end and the extension at the 5'-end of the hairpin ribozyme abolished the positive effect of both antisense units independently. These results may help in the design of hairpin ribozymes for gene silencing.  相似文献   

12.
The hairpin ribozyme derived from the minus strand of the satellite RNA associated with the tobacco ringspot virus is one of the small catalytic RNAs that has been shown to catalyze trans-cleavage reactions. There is much interest in designing hairpin ribozymes with improved catalytic activity for the development of new therapeutic agents. Extensive mutagenesis studies as well as in vitro selection experiments have been performed to define the structure and optimize its catalytic activity. This communication describes a comparative kinetic analysis of four structural variants, introduced, either alone, or in combination, into the hairpin ribozyme. We have shown that extension of the helix 2 from 4 to 6 bp resulted in a significant decrease in K(M). Furthermore, the combination of this extension with the simultaneous stabilization of helix 4, led to a more than two-fold increase in the catalytic efficiency. This variant showed a 15-fold reduction in the K(M) value in respect to the wild-type ribozyme. This could be of great interest for the in vivo application of this catalytic motif. The 9-bp enlargement of helix 4 implied about a three-fold improvement in the catalytic activity. Similarly, the U39C substitution brought up the efficiency of the ribozyme slightly. However, introduction of nucleotides at the hinge region between A and B domains reduced the catalytic activity. This reduction was gradually increased with the number of nucleotides. Results obtained with variants carrying more than one modification always agreed with the ones obtained from each single variant.  相似文献   

13.
The recent discovery of numerous catalytically active RNAs in various living species as well as the in vitro selection of a large series of RNA aptamers able to bind specifically various molecules such as metabolites and co-factors, emphasize the adaptability of RNAs through the plasticity of their secondary structure. Furthermore, all these observations give support to the "RNA world" hypothesis as a step in the primitive development of life on Earth. On this background, we used high pressure to study the mechanism of action of a model hairpin ribozyme which exhibits self-cleavage and ligation. The activation volume (DeltaV( not equal)) of the cleavage reaction (34+/-4 ml/mol) indicates that an important compaction of the RNA molecule occurs during the reaction and must be accompanied by a significant movement of water molecules . Indeed, such a release of 78+/-4 water molecules per RNA molecule could be measured by complementary osmotic shock experiments. These results are consistent with the information provided by the structural studies which indicate that two loops of the RNA molecule should come into contact for the reaction to occur .The high pressure study of a modified form of the ribozyme whose activity is strictly dependent on the presence of adenine as a co-factor should bring some information about the structural significance of this important DeltaV( not equal) of activation.  相似文献   

14.
Protein enzymes often use ionizable side chains, such as histidine, for general acid-base catalysis because the imidazole pK(a) is near neutral pH. RNA enzymes, on the other hand, are comprised of nucleotides which do not have apparent pK(a) values near neutral pH. Nevertheless, it has been recently shown that cytidine and adenine protonation can play an important role in both nucleic acid structure and catalysis. We have employed heteronuclear NMR methods to determine the pK(a) values and time scales of chemical exchanges associated with adenine protonation within the catalytically essential B domain of the hairpin ribozyme. The large, adenine-rich internal loop of the B domain allows us to determine adenine pK(a) values for a variety of non-Watson-Crick base pairs. We find that adenines within the internal loop have pK(a) values ranging from 4.8 to 5.8, significantly higher than the free mononucleotide pK(a) of 3. 5. Adenine protonation results in potential charge stabilization, hydrogen bond formation, and stacking interactions that are expected to stabilize the internal loop structure at low pH. Fast proton exchange times of 10-50 micros were determined for the well-resolved adenines. These results suggest that shifted pK(a) values may be a common feature of adenines in non-Watson-Crick base pairs, and identify two adenines which may participate in hairpin ribozyme active site chemistry.  相似文献   

15.
Great strides in understanding the molecular underpinnings of RNA catalysis have been achieved with advances in RNA structure determination by NMR spectroscopy and X-ray crystallography. Despite these successes the functional relevance of a given structure can only be assessed upon comparison with biochemical studies performed on functioning RNA molecules. The hairpin ribozyme presents an excellent case study for such a comparison. The active site is comprised of two stems each with an internal loop that forms a series of non-canonical base pairs. These loops dock into each other to create an active site for catalysis. Recently, three independent structures have been determined for this catalytic RNA, including two NMR structures of the isolated loop A and loop B stems and a high-resolution crystal structure of both loops in a docked conformation. These structures differ significantly both in their tertiary fold and the nature of the non-canonical base pairs formed within each loop. Several of the chemical groups required to achieve a functioning hairpin ribozyme have been determined by nucleotide analog interference mapping (NAIM). Here we compare the three hairpin structures with previously published NAIM data to assess the convergence between the structural and functional data. While there is significant disparity between the interference data and the individual NMR loop structures, there is almost complete congruity with the X-ray structure. The only significant differences cluster around an occluded pocket adjacent to the scissile phosphate. These local differences may suggest a role for these atoms in the transition state, either directly in chemistry or via a local structural rearrangement.  相似文献   

16.
Metal ion binding and the folding of the hairpin ribozyme   总被引:6,自引:1,他引:5       下载免费PDF全文
The hairpin ribozyme comprises two formally unpaired loops carried on two arms of a four-way helical RNA junction. Addition of divalent metal ions brings about a conformational transition into an antiparallel structure in which there is an intimate association between the loops to generate the active form of the ribozyme. In this study, we have used fluorescence resonance energy transfer to analyze the global folding of the complete ribozyme, and the simple four-way junction derived from it, over a wide concentration range of divalent and monovalent metal ions. The simple junction undergoes an ion-induced rotation into an antiparallel form. In the presence of a constant background concentration of sodium ions, the magnesium-ion-induced transition is characterized by noncooperative binding with a Hill coefficient n = 1. By contrast, the magnesium-ion-induced folding of the complete ribozyme is more complex, involving two distinct binding phases. The first phase occurs in the micromolar range, and involves the cooperative binding of at least three magnesium ions. This can also be achieved by high concentrations of sodium ions, and is therefore likely to be due to diffuse binding of cations at the junction and the interface of the loop-loop interaction. The second phase occurs in the millimolar range, and can only be induced by divalent metal ions. This transition occurs in response to the noncooperative, site-specific binding of magnesium ions. We observe a good correlation between the extent of ion-induced folding and cleavage activity.  相似文献   

17.
The hairpin ribozyme is a small catalytic RNA that accelerates reversible cleavage of a phosphodiester bond. Structural and mechanistic studies suggest that divalent metals stabilize the functional structure but do not participate directly in catalysis. Instead, two active site nucleobases, G8 and A38, appear to participate in catalytic chemistry. The features of A38 that are important for active site structure and chemistry were investigated by comparing cleavage and ligation reactions of ribozyme variants with A38 modifications. An abasic substitution of A38 reduced cleavage and ligation activity by 14,000-fold and 370,000-fold, respectively, highlighting the critical role of this nucleobase in ribozyme function. Cleavage and ligation activity of unmodified ribozymes increased with increasing pH, evidence that deprotonation of some functional group with an apparent pK(a) value near 6 is important for activity. The pH-dependent transition in activity shifted by several pH units in the basic direction when A38 was substituted with an abasic residue, or with nucleobase analogs with very high or low pK(a) values that are expected to retain the same protonation state throughout the experimental pH range. Certain exogenous nucleobases that share the amidine group of adenine restored activity to abasic ribozyme variants that lack A38. The pH dependence of chemical rescue reactions also changed according to the intrinsic basicity of the rescuing nucleobase, providing further evidence that the protonation state of the N1 position of purine analogs is important for rescue activity. These results are consistent with models of the hairpin ribozyme catalytic mechanism in which interactions with A38 provide electrostatic stabilization to the transition state.  相似文献   

18.
The discovery of ribozymes strengthened the RNA world hypothesis, which assumes that these precursors of modern life both stored information and acted as catalysts. For the first time among extensive studies on ribozymes, we have investigated the influence of hydrostatic pressure on the hairpin ribozyme catalytic activity. High pressures are of interest when studying life under extreme conditions and may help to understand the behavior of macromolecules at the origins of life. Kinetic studies of the hairpin ribozyme self-cleavage were performed under high hydrostatic pressure. The activation volume of the reaction (34 ± 5 ml/mol) calculated from these experiments is of the same order of magnitude as those of common protein enzymes, and reflects an important compaction of the RNA molecule during catalysis, associated to a water release. Kinetic studies were also carried out under osmotic pressure and confirmed this interpretation and the involvement of water movements (78 ± 4 water molecules per RNA molecule). Taken together, these results are consistent with structural studies indicating that loops A and B of the ribozyme come into close contact during the formation of the transition state. While validating baro-biochemistry as an efficient tool for investigating dynamics at work during RNA catalysis, these results provide a complementary view of ribozyme catalytic mechanisms.  相似文献   

19.
20.
Catalysis by the hairpin ribozyme is stimulated by a wide range of both simple and complex metallic and organic cations. This independence from divalent metal ion binding unequivocally excludes inner-sphere coordination to RNA as an obligatory role for metal ions in catalysis. Hence, the hairpin ribozyme is a unique model to study the role of outer-sphere coordinated cations in folding of a catalytically functional RNA structure. Here, we demonstrate that micromolar concentrations of a deprotonated aqueous complex of the lanthanide metal ion terbium(III), Tb(OH)(aq)(2+), reversibly inhibit the ribozyme by competing for a crucial, yet non-selective cation binding site. Tb(OH)(aq)(2+) also reports a likely location of this binding site through backbone hydrolysis, and permits the analysis of metal binding through sensitized luminescence. We propose that the critical cation-binding site is located at a position within the catalytic core that displays an appropriately-sized pocket and a high negative charge density. We show that cationic occupancy of this site is required for tertiary folding and catalysis, yet the site can be productively occupied by a wide variety of cations. It is striking that micromolar Tb(OH)(aq)(2+) concentrations are compatible with tertiary folding, yet interfere with catalysis. The motif implicated here in cation-binding has also been found to organize the structure of multi-helix loops in evolutionary ancient ribosomal RNAs. Our findings, therefore, illuminate general principles of non-selective outer-sphere cation binding in RNA structure and function that may have prevailed in primitive ribozymes of an early "RNA world".  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号