首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Receptor-mediated endocytosis of specific ligands is mediated through clustering of receptor-ligand complexes in coated pits on the cell surface, followed by internalization of the complex into endocytic vesicles. We show that internalization of asialoglycoprotein by HepG2 hepatoma cells is accompanied by a rapid (t1/2 = 0.5-1 min) depletion of surface asialoglycoprotein receptors. This is followed by a rapid (t1/2 = 2-4 min) reappearance of surface receptors; most of these originate from endocytosed cell-surface receptors. The loss and reappearance of asialoglycoprotein receptors is specific, and depends on prebinding of ligand to its receptor. HepG2 cells also contain abundant receptors for both insulin and transferrin. Endocytosis of asialoglycoprotein and its receptor has no effect on the number of surface binding sites for transferrin or insulin. We conclude that binding of asialoglycoprotein to its surface receptor triggers a rapid and specific endocytosis of the receptor-ligand complex, probably due to a clustering in clathrin-coated pits or vesicles.  相似文献   

2.
We subfractionated intracellular vesicles from rat adipocytes in order to examine the subcellular distribution of endocytic vesicles or endosomes with respect to insulin-regulatable glucose-transporter (GT)-containing vesicles [James, Lederman & Pilch (1987) J. Biol. Chem. 262, 11817-11824]. Vesicles mediating fluid-phase endocytosis sedimented as a single major peak of greater density than the single distinct peak of GT-containing vesicles. This difference was also apparent during cellular insulin exposure and after insulin removal. Endocytosis of insulin and IGF (insulin-like growth factor) II was also examined. In sucrose gradients, IGF II-containing vesicles were less dense than those containing internalized insulin. Receptor-mediated endocytic vesicles were distinct from fluid-phase endocytic vesicles, but overlapped with the GT-containing vesicles. Vesicles containing internalized ligand were further fractionated by agarose-gel electrophoresis after various times of internalization. At least three different vesicle subpopulations containing the iodinated ligands were resolved after 5 min of internalization. Endocytic vesicles containing rapidly internalized insulin (1.5 min at 37 degrees C) consistently co-migrated with GT-containing vesicles. These data indicate that fluid-phase and receptor-mediated endocytosis occur via different pathways in adipocytes. Furthermore, whereas the intracellular GT-containing vesicles are distinct from fluid-phase vesicles, a rapidly labelled pool of insulin-containing vesicles consistently co-fractionated with GT-containing vesicles when separation techniques based on size, density and charge were used. This suggests that the insulin receptor may directly interact with the intracellular GT-containing vesicles after insulin-induced endocytosis.  相似文献   

3.
We have used defined subcellular fractions to reconstitute in a cell-free system vesicle fusions occurring in the endocytic pathway. The endosomal fractions were prepared by immuno-isolation using as antigen an epitope located on a foreign protein, the transmembrane glycoprotein G (G-protein) of vesicular stomatitis virus. The G-protein was first implanted in the cell plasma membrane and subsequently endocytosed for 15 to 30 min at 37 degrees C. The endosomal fractions were immuno-isolated on a solid support using as antigen the cytoplasmic domain of the G-protein in combination with a specific monoclonal antibody. For comparative studies the plasma membrane was immuno-isolated from cells in the absence of G internalization with a monoclonal antibody against the exoplasmic domain of the G-protein. The immuno-isolated endosomal vesicles contained 70% of horseradish peroxidase internalized in the endosome fluid phase, exhibited an acidic luminal pH as shown by acridine orange fluorescence and differed in their protein composition from the immuno-isolated plasma membrane fraction. The fusion of endocytic vesicles originating from different stages of the pathway was studied in a cell-free assay using both a bio-chemical and a morphological detection system. These well defined endosomal vesicles were immuno-isolated with the G-protein on the solid support and provided the recipient compartment of the fusion (acceptor). They were mixed with a post-nuclear supernatant containing endosomes loaded with exogenous lactoperoxidase (donor) at 37 degrees C. Fusion delivered the donor peroxidase to the lumen of acceptor vesicles permitting fusion-specific iodination of the G-protein itself. The fusion of vesicles required ATP and was detected only with an endosomal fraction prepared after internalization of the G-protein for 15 min at 37 degrees C but not with a plasma membrane or with an endosomal fraction prepared after 30 min G-protein internalization.  相似文献   

4.
The effect of interacting isolated rat adipocytes with small, unilammelar vesicles on insulin receptor internalization and processing was studied. Treatment of freshly isolated cells with vesicles containing phosphatidylcholine and phosphatidylserine followed by incubation in 35 mM Tris-containing buffer considerably reduced the chloroquine-induced increase in cell-associated 125I-insulin and significantly inhibited the time and insulin dependent loss of surface insulin receptors. The internal receptor pool, as measured by insulin binding to detergent solubilized adipocytes, was relatively smaller in vesicle-treated cells. Concomitant with a slower rate of receptor internalization, insulin-sensitive hexose uptake also demonstrated significantly slower kinetics of decreased response with time. These results support the conclusion that pretreatment of fat cells with phospholipid vesicles inhibits normal insulin receptor cycling.  相似文献   

5.
Acidification of endocytic vesicles has been implicated as a necessary step in various processes including receptor recycling, virus penetration, and the entry of diphtheria toxin into cells. However, there have been few accurate pH measurements in morphologically and biochemically defined endocytic compartments. In this paper, we show that prelysosomal endocytic vesicles in HepG2 human hepatoma cells have an internal pH of approximately 5.4. (We previously reported that similar vesicles in mouse fibroblasts have a pH of 5.0.) The pH values were obtained from the fluorescence excitation profile after internalization of fluorescein labeled asialo-orosomucoid (ASOR). To make fluorescence measurements against the high autofluorescence background, we developed digital image analysis methods for estimating the pH within individual endocytic vesicles or lysosomes. Ultrastructural localization with colloidal gold ASOR demonstrated that the pH measurements were made when ligand was in tubulovesicular structures lacking acid phosphatase activity. Biochemical studies with 125I-ASOR demonstrated that acidification precedes degradation by more than 30 min at 37 degrees C. At 23 degrees C ligand degradation ceases almost entirely, but endocytic vesicle acidification and receptor recycling continue. These results demonstrate that acidification of endocytic vesicles, which causes ligand dissociation, occurs without fusion of endocytic vesicles with lysosomes. Methylamine and monensin raise the pH of endocytic vesicles and cause a ligand-independent loss of receptors. The effects on endocytic vesicle pH are rapidly reversible upon removal of the perturbant, but the effects on cell surface receptors are slowly reversible with methylamine and essentially irreversible with monensin. This suggests that monensin can block receptor recycling at a highly sensitive step beyond the acidification of endocytic vesicles. Taken together with other direct and indirect estimates of endocytic vesicle pH, these studies indicate that endocytic vesicles in many cell types rapidly acidify below pH 5.5, a pH sufficiently acidic to allow receptor-ligand dissociation and the penetration of some toxin chains and enveloped virus nucleocapsids into the cytoplasm.  相似文献   

6.
Many studies have demonstrated a role for ubiquitin (Ub) in the down-regulation of cell surface proteins. In yeast, down-regulation is marked by the internalization of proteins, followed by their delivery to the lumen of the vacuole where both the cytosolic and lumenal domains are degraded. It is generally believed that the regulatory step of this process is internalization from the plasma membrane and that protein delivery to the lysosome or vacuole is by default. By separating the process of internalization from degradation, we demonstrate that incorporation of proteins into intralumenal vesicles represents a distinct sorting step along the endocytic pathway that is controlled by recognition of ubiquitin. We show that attachment of a single ubiquitin can serve as a specific sorting signal for the degradative pathway by redirecting recycling Golgi proteins and resident vacuolar proteins into intralumenal vesicles of the yeast vacuole. This pathway is independent of PtdIns(3,5) P2 and does not rely on the specific composition of transmembrane domain segments. These data provide a physiological basis for how ubiquitination of cell surface proteins guides their degradation and removal from the recycling pathway.  相似文献   

7.
Dynamic actin filaments are required for the formation and internalization of endocytic vesicles. Yeast actin cables serve as a track for the translocation of endocytic vesicles to early endosomes, but the molecular mechanisms regulating the interaction between vesicles and the actin cables remain ambiguous. Previous studies have demonstrated that the yeast Eps15-like protein Pan1p plays an important role in this interaction, and that interaction is not completely lost even after deletion of the Pan1p actin-binding domain, suggesting that additional proteins mediate association of the vesicle with the actin cable. Other candidates for mediating the interaction are endocytic coat proteins Sla2p (yeast Hip1R) and Ent1p/2p (yeast epsins), as these proteins can bind to both the plasma membrane and the actin filament. Here, we investigated the degree of redundancy in the actin-binding activities of Pan1p, Sla2p, and Ent1p/2p involved in the internalization and transport of endocytic vesicles. Expression of the nonphosphorylatable form of Pan1p, Pan1-18TA, caused abnormal accumulation of both actin cables and endocytic vesicles, and this accumulation was additively suppressed by deletion of the actin-binding domains of both Pan1p and Ent1p. Interestingly, deletion of the actin-binding domains of Pan1p and Ent1p in cells lacking the ENT2 gene resulted in severely defective internalization of endocytic vesicles and recruitment of actin cables to the site of endocytosis. These results suggest that Pan1p and Ent1p/2p cooperatively regulate the interaction between the endocytic vesicle and the actin cable.  相似文献   

8.
The binding of a fluorescein-isothiocyanate derivative of insulin to Swiss 3T3 cells was measured by flow cytometry. The kinetics of the subsequent internalization were also measured; at a concentration of 1 microM labeled insulin approximately 25% of the internalization was insulin-specific. The kinetics of endocytosis were contrasted to those of fluorescent derivatives of histone and dextran. In addition, the fusion of endocytic vesicles containing insulin or dextran with lysosomes was detected by measuring the pH-dependent increase in fluorescein fluorescein fluorescence caused by the addition of chloroquine. The application of these results to the analysis of growth control by insulin and related hormones is discussed.  相似文献   

9.
Kinetic studies were performed on two-day cultures of rat ovarian granulosa cells to follow the fate of surface-bound 125I-labeled human chorionic gonadotropin (125I-hCG). Low pH was used to release hCG from its surface receptor, allowing us to distinguish between surface-bound and internalized hormone. Because our results indicated that hormone is lost from the cell surface by dissociation as well as internalization, equations were derived to determine independent rate constants for each process. We calculate that if hormone binding were irreversible, the t 1/2 for internalization would be 8.5 hour. Morphometric studies on the uptake of horseradish peroxidase indicate that the t 1/2 for internalization of bulk membrane in granulosa cells is 55 to 77 minutes. Thus, the rate of uptake of surface-bound hCG appears to be seven to nine times slower than the rate of uptake of bulk plasma membrane, which suggests that the LH/hCG receptor may be selectively excluded from the endocytic vesicles of granulosa cells.  相似文献   

10.
Although recent data from our laboratory have established the occurrence of receptor-mediated endocytosis in intrahepatic bile duct epithelial cells (IBDEC) isolated from normal rat liver, no studies have assessed the role of isolated IBDEC in fluid-phase endocytosis. Therefore, to determine if IBDEC participate in fluid-phase endocytosis, we incubated morphologically polar doublets of IBDEC isolated from normal rat liver with horseradish peroxidase (HRP, 5 mg/ml), a protein internalized by fluid-phase endocytosis, and determined its intracellular distribution by electron microscopic cytochemistry. Pulse-chase studies using quantitative morphometry were also performed to assess the fate of HRP after internalization. After incubation at 37 degrees C, IBDEC internalized HRP exclusively at the apical (i.e., luminal) domain of their plasma membrane; internalization was completely blocked at 4 degrees C. After internalization, HRP was seen in acid phosphatase-negative vesicles and in acid phosphatase-positive multivesicular bodies (i.e., secondary lysosomes). Small acid phosphatase-negative vesicles containing HRP moved progressively from the apical to the basal domain of IBDEC. Pulse-chase studies showed that HRP was then discharged by exocytosis at the basolateral cell surface. These results demonstrate that IBDEC prepared from normal rat liver participate in fluid-phase endocytosis. After internalization, HRP either is routed to secondary lysosomes or undergoes exocytosis after transcytosis from the luminal to the basolateral cell surface. Our results suggest that IBDEC modify the composition of bile by internalizing both biliary proteins and fluid via endocytic mechanisms.  相似文献   

11.
Insulin-responsive aminopeptidase trafficking in 3T3-L1 adipocytes   总被引:9,自引:0,他引:9  
The insulin-responsive aminopeptidase (IRAP/VP165/gp160) was identified originally in GLUT4-containing vesicles and shown to translocate in response to insulin, much like the glucose transporter 4 (GLUT4). This study characterizes the trafficking and kinetics of IRAP in exocytosis, endocytosis, and recycling to the membrane in 3T3-L1 adipocytes. After exposure of 3T3-L1 adipocytes to insulin, IRAP translocated to the plasma membrane as assessed by either cell fractionation, surface biotinylation, or the plasma membrane sheet assay. The rate of exocytosis closely paralleled that of GLUT4. In the continuous presence of insulin, IRAP was endocytosed with a half-time of about 3-5 min. IRAP endocytosis is inhibited by cytosol acidification, a property of clathrin-mediated endocytosis, but not by the expression of a constitutively active Akt/PKB. Arrival in an LDM fraction derived via subcellular fractionation exhibited a slower time course than disappearance from the cell surface, suggesting additional endocytic intermediates. As assayed by membrane "sheets," GLUT4 and IRAP showed similar internalization rates that are wortmannin-insensitive and occur with a half-time of roughly 5 min. IRAP remaining on the cell surface 10 min following insulin removal was both biotin- and avidin-accessible, implying the absence of thin-necked invaginations. Finally, endocytosed IRAP quickly recycled back to the plasma membrane in a wortmannin-sensitive process. These results demonstrate rapid endocytosis and recycling of IRAP in the presence of insulin and trafficking that matches GLUT4 in rate.  相似文献   

12.
Receptor internalization by endocytosis regulates diverse cellular processes, from the rate of nutrient uptake to the timescale of essential signaling events. The established view is that internalization is tightly controlled by specific protein-binding interactions. However, recent work suggests that physical aspects of receptors influence the process in ways that cannot be explained by biochemistry alone. Specifically, work from several groups suggests that increasing the steric bulk of receptors may inhibit their uptake by multiple types of trafficking vesicles. How do biochemical and biophysical factors work together to control internalization? Here, we show that receptor uptake is well described by a thermodynamic trade-off between receptor-vesicle binding energy and the entropic cost of confining receptors within endocytic vesicles. Specifically, using large ligands to acutely increase the size of engineered variants of the transferrin receptor, we demonstrate that an increase in the steric bulk of a receptor dramatically decreases its probability of uptake by clathrin-coated structures. Further, in agreement with a simple thermodynamic analysis, all data collapse onto a single trend relating fractional occupancy of the endocytic structure to fractional occupancy of the surrounding plasma membrane, independent of receptor size. This fundamental scaling law provides a simple tool for predicting the impact of receptor expression level, steric bulk, and the size of endocytic structures on receptor uptake. More broadly, this work suggests that bulky ligands could be used to drive the accumulation of specific receptors at the plasma membrane surface, providing a biophysical tool for targeted modulation of signaling and metabolism from outside the cell.  相似文献   

13.
Using a 125I-photoreactive insulin analogue that can be covalently coupled to its receptor we have shown that in rat hepatocytes the insulin receptor is concomitantly internalized with the labeled hormone and afterwards is progressively recycled back to the cell surface. In the course of the internalization process the insulin-receptor complex associates with clear vesicles and later on with lysosomes from which it is recycled through clear vesicles. On the basis of these observations it is suggested that modulation of the rates of internalization and of recycling of the insulin receptor can regulate the number of available surface insulin receptors. This hypothesis is supported by the results of experiments showing that monensin, an inhibitor of receptor recycling enhances insulin induced loss of its own surface receptors (down regulation) in U-937 monocytes.  相似文献   

14.
Capillary endothelium can actively regulate vascular permeability of various serum proteins. Hormones such as insulin must interact with this capillary barrier in order to reach their respective target tissues. We have studied the binding and subsequent internalization of 125I-insulin in both native (freshly isolated) and primary cultured capillary endothelium derived from rat epididymal fat pads. Insulin association with the endothelium, internalization and degradation differed between freshly isolated and primary cultured capillaries. Specific binding in freshly isolated and cultured capillaries was temperature dependent, and was competitively inhibited in the presence of unlabelled insulin. Primary cultures of capillaries grown to confluence did not exhibit specific binding of insulin. Despite the lack of specific receptors for insulin, cultured cells vesicularly internalized insulin. Greater than 50% of the total associated insulin was not degraded by cultured endothelium. Morphological examinations using ferritin labelled insulin localized insulin associated to the capillary endothelial cell membrane and sequestered within pinocytotic vesicles. Incubation of freshly isolated capillaries with insulin stimulated the fluid phase endocytosis of 14C-sucrose; however, insulin had no effect on fluid phase endocytosis in cultured capillaries. These results indicate that capillary endothelium, isolated from rat epididymal fat, exhibit specific receptors for insulin. Binding of insulin to the capillary membrane is followed by internalization into cytoplasmic vesicles and partial degradation.  相似文献   

15.
The complexity of rat liver endosome fractions containing internalized radioiodinated asialotransferrin, asialo-(alkaline phosphatase), insulin and prolactin was investigated by using free-flow electrophoresis and isopycnic centrifugation in Nycodenz gradients. Two subfractions were separated by free-flow electrophoresis. Both subfractions contained receptors for asialoglycoprotein and insulin. Glycosyltransferase activities were associated with the more electronegative vesicles, whereas 5'-nucleotidase and alkaline phosphodiesterase activities were associated with the less electronegative vesicles. Three subfractions were separated on Nycodenz gradients. Two subfractions, previously shown to become acidified in vitro, contained the ligands. At short intervals after uptake (1-2 min), ligands were mainly in subfraction DN-2 (density 1.115 g/cm3), but movement into subfraction DN-1 (density 1.090 g/cm3) had occurred 10-15 min after internalization. Low amounts of glycosyltransferase activities were associated with subfraction DN-2, and 5'-nucleotidase and alkaline phosphodiesterase activities were mainly located in subfraction DN-1. The binding sites for asialoglycoproteins and insulin were distributed towards the higher density range in the Nycodenz gradients, thus indicating a segregation of receptor-enriched vesicles and those vesicles containing the various ligands 10-15 min after internalization. Electron microscopy of the subfractions separated on Nycodenz gradients indicated that whereas the ligand-transporting fractions consisted mainly of empty vesicles (average diameter 100-150 nm), the receptor-enriched component was more granular and smaller (average diameter 70-95 nm). The properties of the endosome subfraction are used to assign their origin to the regions of the endocytic compartment where ligand-receptor dissociation and separation occur.  相似文献   

16.
Isolated rat liver parenchymal cells incubated in the presence of monensin exhibited a reduced uptake of 125I-asialofetuin (125I-AF). Binding studies indicated that the effect was due to a rapid reduction in the number of active surface receptors for the asialoglycoprotein. Monensin had no effect on receptor internalization, but apparently interrupted the recycling of receptors back to the cell surface. Monensin also inhibited the degradation of 125I-AF previously bound to the cells; this inhibition was probably not due to a direct effect on intralysosomal proteolysis, as no lysosomal accumulation of undegraded ligand could be demonstrated in subcellular fractionation studies by means of sucrose gradients. It is more likely that monensin inhibits transfer of the labelled ligand from endocytic vesicles to lysosomes, as indicated by the accumulation of radioactivity in the former and by the ability of monensin to prevent the normally observed time-dependent increase in the buoyant density of endocytic vesicles. Whereas the effect of monensin on binding and uptake of asialofetuin was reversible, the effect on asialofetuin degradation could not be reversed.  相似文献   

17.
The human prostacyclin receptor (hIP) undergoes rapid agonist-induced internalization by largely unknown mechanism(s). Herein the involvement of Rab5 in regulating cicaprost-induced internalization of the hIP expressed in human embryonic kidney 293 cells was investigated. Over-expression of Rab5a significantly increased agonist-induced hIP internalization. Additionally, the hIP co-localized to Rab5a-containing endocytic vesicles in response to cicaprost stimulation and there was a coincident net translocation of Rab5 from the cytosol/soluble fraction of the cell. Co-immunoprecipitation studies confirmed a direct physical interaction between the hIP and Rab5a that was augmented by cicaprost. Whilst the dominant negative Rab5a(S34N) did not show decreased interaction with the hIP or fully impair internalization, it prevented hIP sorting to endocytic vesicles. Moreover, the GTPase deficient Rab5a(Q79L) significantly increased internalization and co-localized with the hIP in enlarged endocytic vesicles. While deletion of the carboxyl terminal (C)-tail domain of the hIP did not inhibit agonist-induced internalization, co-localization or co-immunoprecipitation with Rab5a per se, receptor trafficking was altered suggesting that it contains structural determinant(s) for hIP sorting post Rab5-mediated endocytosis. Taken together, data herein and in endothelial EA.hy 926 cells demonstrate a direct role for Rab5a in agonist-internalization and trafficking of the hIP and increases knowledge of the factors regulating prostacyclin signaling.  相似文献   

18.
Cardiac hormones, atrial and brain natriuretic peptides (ANP and BNP), have pivotal roles in renal hemodynamics, neuroendocrine signaling, blood pressure regulation, and cardiovascular homeostasis. Binding of ANP and BNP to the guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA) induces rapid internalization and trafficking of the receptor via endolysosomal compartments, with concurrent generation of cGMP. However, the mechanisms of the endocytotic processes of NPRA are not well understood. The present study, using 125I-ANP binding assay and confocal microscopy, examined the function of dynamin in the internalization of NPRA in stably transfected human embryonic kidney-293 (HEK-293) cells. Treatment of recombinant HEK-293 cells with ANP time-dependently accelerated the internalization of receptor from the cell surface to the cell interior. However, the internalization of ligand–receptor complexes of NPRA was drastically decreased by the specific inhibitors of clathrin- and dynamin-dependent receptor internalization, almost 85% by monodansylcadaverine, 80% by chlorpromazine, and 90% by mutant dynamin, which are specific blockers of endocytic vesicle formation. Visualizing the internalization of NPRA and enhanced GFP-tagged NPRA in HEK-293 cells by confocal microscopy demonstrated the formation of endocytic vesicles after 5 min of ANP treatment; this effect was blocked by the inhibitors of clathrin and by mutant dynamin construct. Our results suggest that NPRA undergoes internalization via clathrin-mediated endocytosis as part of its normal itinerary, including trafficking, signaling, and metabolic degradation.  相似文献   

19.
In the guinea pig and some other animals, passive immunity is conferred on the developing fetus by passage of immunoglobulin from mother to fetus across the yolk sac. In order to examine the cytological pathway involved in immunoglobulin transport, guinea pig visceral yolk sacs from late in gestation were exposed in vitro to peroxidase-conjugated guinea pig immunoglobulin G (IgG-HRP). Tissue was then fixed, incubated to show the site of localization of peroxidase reaction product and prepared for electron microscopy. The results suggested that the first step in the uptake of IgG-HRP by yolk sac is attachment of the protein to the surface coats of endocytic invaginations at the apical surfaces of the endodermal cells. The endocytic vesicles then appear to pinch off from the surface and move deeper into the cytoplasm. Some of the small endocytic vesicles fuse with large apical vacuoles, which often contain large amounts of reaction product. Other small endocytic vesicles pinch off from the surface, move deeper into the cytoplasm and fuse with the lateral plasmalemma; their protein content is emptied into the intercellular space by exocytosis. From the intercellular spaces the protein presumably diffuses across the basement membrane and connective tissue spaces and enters the vitelline capillary bed. It is postulated that the latter cellular pathway, involving small vesicles and the intercellular spaces, is utilized by those immunoglobulins which are transferred intact across the yolk sac endoderm.  相似文献   

20.
The effects of local anesthetics, including procaine and dibucaine, and some related amine compounds, such as dansyl-cadaverine, were studied with respect to their effects on the uptake and degradation of asialo-glycoproteins in isolated hepatocytes 0.5 mM of either dibucaine or dansyl-cadaverine reduced the rates of uptake to 18–19% of control values; other amines were less effective. Dibucaine and dansyl-cadaverine both acted by reducing the surface binding capacity of the cells as well as by reducing the rate of internalization of surface-bound asialo-glycoprotein. All of the compounds that affected the uptake, including dansyl-cadaverine, also reduced the rate of degradation. This effect could be studied separately from their effect on uptake. The concentrations that were required in order to reduce degradation were, in general, 0.5-0.25 of those which caused a reduction in the uptake. Even though dibucaine, lidocaine and dansyl-cadaverine were found to accumulate in the lysosomes, it was concluded from studies with isopycnic centrifugation in sucrose gradients that all three compounds inhibited the rate of transfer of endocytosed protein from endocytic vesicles to lysosomes. This effect could be due to a reduced rate of fusion between endocytic vesicles and lysosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号