首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fang Q  Guo J  Chang M  Chen LX  Chen Q  Wang R 《Peptides》2005,26(5):791-797
Neuropeptide FF (NPFF) and NPVF, two closely NPFF related peptides, have different affinities for the two NPFF receptors (NPFF1 and NPFF2). To assess the peripheral effects of NPFF receptors in the gastrointestinal tract motility, NPFF and NPVF were tested in the mouse isolated distal colon. Both NPFF (1-15 microM) and NPVF (1-15 microM) dose-dependently caused significant colonic contractions. Pre-treatment with the putative NPFF antagonist, BIBP3226 (30 microM) abolished the contractile responses to the two neuropeptides (3 microM). They had no additional contractile activities in colonic preparations contracted by Nomega-nitro-L-arginine (30 microM). Moreover, the contractions of these two neuropeptides were weakened by L-arginine (2 mM). The responses to NPFF (5 microM) and NPVF (5 microM) were not modified by atropine or naloxone (1 microM). Furthermore, NPFF (1 microM) and NPVF (1 microM) did not influence the contractive responses to acetylcholine (0.1-10 microM), morphine (1 microM) or nociceptin (0.1 microM). These data suggest that NPFF and NPVF cause contractions of the mouse distal colon via their NPFF receptors and this effect is mediated by NO but not by cholinergic pathways, independently from opioid system. In addition, the isolated bioassay may be applied as a simple parameter to characterize the potential NPFF agonists and antagonists.  相似文献   

2.
Opiate tolerance and dependence are major clinical and social problems. The anti-opiate neuropeptides FF and AF (NPFF and NPAF) have been implicated in pain modulation as well as in opioid tolerance and may play a critical role in this process, although their mechanism of action has remained unknown. Here we describe a cDNA encoding a novel neuropeptide Y-like human orphan G protein-coupled receptor (GPCR), referred to as HLWAR77 for which NPAF and NPFF have high affinity. Cells transiently or stably expressing HLWAR77 bind and respond in a concentration-dependent manner to NPAF and NPFF and are also weakly activated by FMRF-amide (Phe-Met-Arg-Phe-amide) and a variety of related peptides. The high affinity and potency of human NPFF and human NPAF for HLWAR77 strongly suggest that these are the cognate ligands for this receptor. Expression of HLWAR77 was demonstrated in brain regions associated with opiate activity, consistent with the pain-modulating activity of these peptides, whereas the expression in adipose tissue suggests other physiological and pathophysiological activities for FMRF-amide neuropeptides. The discovery that the anti-opiate neuropeptides are the endogenous ligands for HLWAR77 will aid in defining the physiological role(s) of these ligands and facilitate the identification of receptor agonists and antagonists.  相似文献   

3.
Neuropeptide FF (NPFF) and neuropeptide VF (NPVF) are octapeptides belonging to the RFamide family of peptides that have been implicated in a wide variety of physiological functions in the brain, including central autonomic and neuroendocrine regulation. The effects of these peptides are mediated via NPFF1 and NPFF2 receptors that are abundantly expressed in the rat brain, including the hypothalamic paraventricular nucleus (PVN), an autonomic nucleus critical for the secretion of neurohormones and the regulation of sympathetic outflow. In this study, we examined, using whole cell patch-clamp recordings in the brain slice, the effects of NPFF and NPVF on inhibitory GABAergic synaptic input to parvocellular PVN neurons. Under voltage-clamp conditions, NPFF and NPVF reversibly and in a concentration-dependent manner reduced the evoked bicuculline-sensitive inhibitory postsynaptic currents (IPSCs) in parvocellular PVN neurons by 25 and 31%, respectively. RF9, a potent and selective NPFF receptor antagonist, blocked NPFF-induced reduction of IPSCs. Recordings of miniature IPSCs in these neurons following NPFF and NPVF applications showed a reduction in frequency but not amplitude, indicating a presynaptic locus of action for these peptides. Under current-clamp conditions, NPVF and NPFF caused depolarization (6-9 mV) of neurons that persisted in the presence of TTX but was abolished in the presence of bicuculline. Collectively, these data provide evidence for a disinhibitory role of NPFF and NPVF in the hypothalamic PVN via an attenuation of GABAergic inhibitory input to parvocellular neurons of this nucleus and explain the central autonomic effects of NPFF.  相似文献   

4.
Neuropeptide FF (NPFF) belongs to an opioid-modulating peptide family. NPFF has been reported to play important roles in the control of pain and analgesia through interactions with the opioid system. However, very few studies examined the effect of supraspinal NPFF system on analgesia induced by opiates administered at the peripheral level. In the present study, intracerebroventricular (i.c.v.) injection of NPFF (1, 3 and 10 nmol) dose-dependently inhibited systemic morphine (0.12 mg, i.p.) analgesia in the mouse tail flick test. Similarly, i.c.v. administration of dNPA and NPVF, two agonists highly selective for NPFF(2) and NPFF(1) receptors, respectively, decreased analgesia induced by i.p. morphine in mice. Furthermore, these anti-opioid activities of NPFF and related peptides were blocked by pretreatment with the NPFF receptors selective antagonist RF9 (10 nmol, i.c.v.). These results demonstrate that activation of central NPFF(1) and NPFF(2) receptors has the similar anti-opioid actions on the antinociceptive effect of systemic morphine.  相似文献   

5.
We have applied a recently developed HPLC-MS enzymatic assay to investigate the cryptic peptides generated by the action of the insulin-degrading enzyme (IDE) on some neuropeptides (NPs) involved in the development of tolerance and dependence to opioids. Particularly, the tested NPs are generated from the NPFF precursor (pro-NPFF (A)): NPFF (FLFQPQRF) and NPAF (AGEGLSSPFWSLAAPQRF). The results show that IDE is able to cleave NPFF and NPAF, generating specific cryptic peptides. As IDE is also responsible for the processing of many other peptides in the brain (amyloid beta protein among the others), we have also performed competitive degradation assays using mixtures of insulin and the above mentioned NPs. Data show that insulin is able to slow down the degradation of both NPs tested, whereas, surprisingly, NPAF is able to accelerate insulin degradation, hinting IDE as the possible link responsible of the mutual influence between insulin and NPs metabolism.  相似文献   

6.
Fang Q  Guo J  He F  Peng YL  Chang M  Wang R 《Peptides》2006,27(9):2207-2213
BIBP3226 {(R)-N2-(diphenylacetyl)-N-[(4-hydroxyphenyl)-methyl]-argininamide} was recently shown to display relatively high affinities for neuropeptide FF (NPFF) receptors and exhibit antagonist activities towards NPFF receptors in vitro. The present study was undertaken to investigate the antagonistic effects of BIBP3226 on several in vivo pharmacologic profiles induced by exogenous NPFF and NPVF. (1) BIBP3226 (5 nmol) injected into the third ventricle completely antagonized the hypothermic effects of NPFF (30 nmol) and NPVF (30 nmol) after cerebral administration in mice; (2) BIBP3226 (5 nmol, i.c.v.) prevented the anti-morphine actions of NPFF (10 nmol, i.c.v.) in the mouse tail-flick assay; (3) in urethane-anaesthetized rats, both NPFF (200 nmol/kg, i.v.) and NPVF (200 nmol/kg, i.v.) increased the mean arterial blood pressure, which were significantly reduced by pretreatment with BIBP3226 (500 nmol/kg, i.v.). Collectively, these data suggest that BIBP3226, a mixed antagonist of NPY Y1 and NPFF receptors, shows in vivo antagonistic effects on NPFF receptors. In addition, it seems to be clear that the in vivo pharmacological profiles of NPFF are mediated directly by NPFF receptors.  相似文献   

7.
Several neuropeptide FF (NPFF)-related peptides, known as modulators of the opioid system, have been previously characterized in bovine and rodent brain. Reverse-phase high pressure liquid chromatography (HPLC) fractions of a human with normal pressure hydrocephalus cerebrospinal fluid (CSF), co-migrating with NPFF-related synthetic peptides, were characterized by capillary HPLC coupled on-line to nanospray ion trap tandem mass spectrometry. Two peptides present in the pro-NPFF(A) precursor, NPAF (AGEGLNSQFWSLAAPQRF-NH2) and NPSF (SLAAPQRF-NH2), were identified. The monitoring of NPFF-related peptides in human CSF can be helpful to understand their roles in pain sensitivity.  相似文献   

8.
Anti-opioid activities of NPFF1 receptors in a SH-SY5Y model   总被引:2,自引:0,他引:2  
In order to elucidate the mechanisms of the neuronal anti-opioid activity of Neuropeptide FF, we have transfected the SH-SY5Y neuroblastoma cell line, which expresses mu- and delta-opioid receptors, with the human NPFF1 receptor. The SH1-C7 clone expresses high affinity NPFF1 receptors in the same range order of density as opioid receptors. Similarly to the opioids, acute stimulation with the NPFF1 agonist NPVF inhibits adenylyl cyclase activity and voltage-gated (N-type) Ca2+ currents and enhances the intracellular Ca2+ release triggered by muscarinic receptors activation. In contrast, preincubation of cells with NPVF decreases the response to opioids on both calcium signaling, thus reproducing the cellular anti-opioid activity described in neurons. SH1-C7 cells are therefore a suitable model to investigate the interactions between NPFF and opioid receptors.  相似文献   

9.
10.
Among the RFamide peptide groups, PQRFamide peptides, such as neuropeptide FF (NPFF) and neuropeptide AF (NPAF), share a common C-terminal Pro-Gln-Arg-Phe-NH(2) motif. LPXRFamide (X = L or Q) peptides, such as gonadotropin-inhibitory hormone (GnIH), frog growth hormone-releasing peptide (fGRP), goldfish LPXRFamide peptide and mammalian RFamide-related peptides (RFRPs), also share a C-terminal Leu-Pro-Leu/Gln-Arg-Phe-NH(2) motif. Such a similar C-terminal structure suggests that these two groups may have diverged from a common ancestral gene. In this study, we sought to clarify the evolutionary origin and divergence of these two groups, by identifying novel RFamide peptides from the brain of sea lamprey, one of only two extant groups of the oldest lineage of vertebrates, Agnatha. A novel lamprey RFamide peptide was identified by immunoaffinity purification using the antiserum against LPXRFamide peptide. The lamprey RFamide peptide did not contain a C-terminal LPXRFamide motif, but had the sequence SWGAPAEKFWMRAMPQRFamide (lamprey PQRFa). A cDNA of the precursor encoded one lamprey PQRFa and two related peptides. These related peptides, which also had the C-terminal PQRFamide motif, were further identified as mature endogenous ligands. Phylogenetic analysis revealed that lamprey PQRFamide peptide precursor belongs to the PQRFamide peptide group. In situ hybridization demonstrated that lamprey PQRFamide peptide mRNA is expressed in the regions predicted to be involved in neuroendocrine and behavioral functions. This is the first demonstration of the presence of RFamide peptides in the agnathan brain. Lamprey PQRFamide peptides are considered to have retained the most ancestral features of PQRFamide peptides.  相似文献   

11.
Neuropeptide FF and related synthetic amidated peptides have been shown to elicit sustained anti-nociceptive responses and potently augment spinal anti-nociceptive actions of spinal morphine in tests of thermal and mechanical nociception. Recent studies have described the occurrence of another octapeptide, neuropeptide SF (NPSF) in the spinal cord and the cerebrospinal fluid and demonstrated its affinity for the NPFF receptors. This study examined the effects of NPSF and two putative precursor peptides, EFW-NPSF and NPAF, on the spinal actions of morphine in normal and opioid tolerant rats using the tailflick and pawpressure tests. In normal rats, NPSF demonstrated weak intrinsic activity but sub-effective doses of the peptide significantly increased the magnitude and duration of spinal morphine anti-nociception in both tests. A low-dose of NPSF also augmented the spinal actions of a delta receptor agonist, deltorphin. The morphine-potentiating effect of NPSF was shared by EFW-NPSF and the octadecapeptide NPAF. In animal rendered tolerant by continuous intrathecal infusion of morphine for 6 days, low dose NPSF itself elicited a significant anti-nociceptive response and potently increased morphine-induced response in both tests. In animals made tolerant by repeated injections of intrathecal morphine, administration of NPSF, EFW-NPSF, and NPAF with morphine reversed the loss of the anti-nociceptive effect and restored the agonist potency. The results demonstrate that in normal animals NPSF and related peptides exert strong potentiating effect on morphine anti-nociception at the spinal level and in tolerant animals these agents can reverse the loss of morphine potency.  相似文献   

12.
Recently, an orphan G protein coupled receptor (GPCR) termed NPGPR was described. A shorter variant of this receptor lacking exon 1 was shown to have subnanomolar affinity for neuropeptide FF (NPFF), a pain modulatory peptide, and therefore was named NPFF(2) receptor. Here, we characterize the full-length cloned NPGPR and identify a novel short form lacking exon 2 with a differential pattern of mRNA abundance in several tissues and organs. The NPGPR is most similar to the recently cloned neuropeptide FF (NPFF) receptor which lacks exon 1, but also shows high homology to the orexin and neuropeptide Y (NPY) receptor families, two neuropeptides involved in food intake regulation. Therefore, we used binding studies to examine the interaction of NPFF, orexin and NPY with the NPGPR. [125I] NPFF was displaced by NPFF with an IC(50) of 14.7 +/- 8.8 nM, whereas [125I] Orexin B was displaced by Orexin B with an IC(50) of 415 +/- 195 nM. We conclude that orexins interact with the NPGPR and that the affinity of NPFF for NPGPR is approximately 100-fold lower than for the NPFF2 receptor. We postulate that NPGPR is a splice variant of the family of NPFF receptors and displays a binding profile different from the other members of the NPFF receptor family due to the presence of exon 1. In order to evaluate whether NPGPR levels are affected by the feeding status, we examined the mRNA level using real-time PCR in two feeding models, i.e. before and after diet-induced body weight increase as well as after chronic food restriction in rats. However, hypothalamic NPGPR mRNA was unchanged in both models. Therefore, our evidence does not support the hypothesis that NPGPR is involved in feeding regulation.  相似文献   

13.
Peptides which should be generated from the neuropeptide FF (NPFF) precursor were identified in a neuronal (human neuroblastoma SH-SY5Y) cell line and in COS-7 cells after transient transfection of the human proNPFFA cDNA and were compared with those detected in the mouse spinal cord. After reverse-phase high performance liquid chromatography of soluble material, NPFF-related peptides were immunodetected with antisera raised against NPFF and identified by using on-line capillary liquid chromatography/nanospray ion trap tandem mass spectrometry. Neuronal and non-neuronal cells generated different peptides from the same precursor. In addition to NPFF, SQA-NPFF (Ser-Gln-Ala-Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-amide) and NPAF were identified in the human neuroblastoma while only NPFF was clearly identified in COS-7 cells. In mouse, in addition to previously detected NPFF and NPSF, SPA-NPFF (Ser-Pro-Ala-Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-amide), the homologous peptide of SQA-NPFF, were characterized. These data on intracellular processing of proNeuropeptide FFA are discussed in regard to the known enzymatic processing mechanisms.  相似文献   

14.
Available evidence shows that short amidated neuropeptides are widespread and have important functions within the nervous systems of all flatworms (phylum Platyhelminthes) examined, and could therefore represent a starting point for new lead drug compounds with which to combat parasitic helminth infections. However, only a handful of these peptides have been characterised, the rigorous exploration of the flatworm peptide signalling repertoire having been hindered by the dearth of flatworm genomic data. Through searches of both expressed sequence tags and genomic resources using the basic local alignment search tool (BLAST), we describe 96 neuropeptides on 60 precursors from 10 flatworm species. Most of these (51 predicted peptides on 14 precursors) are novel and are apparently restricted to flatworms; the remainder comprise nine recognised peptide families including FMRFamide-like (FLPs), neuropeptide F (NPF)-like, myomodulin-like, buccalin-like and neuropeptide FF (NPFF)-like peptides; notably, the latter have only previously been reported in vertebrates. Selected peptides were localised immunocytochemically to the Schistosoma mansoni nervous system. We also describe several novel flatworm NPFs with structural features characteristic of the vertebrate neuropeptide Y (NPY) superfamily, previously unreported characteristics which support the common ancestry of flatworm NPFs with the NPY-superfamily. Our dataset provides a springboard for investigation of the functional biology and therapeutic potential of neuropeptides in flatworms, simultaneously launching flatworm neurobiology into the post-genomic era.  相似文献   

15.
Neuropeptide FF (NPFF) has been shown to act as an endogenous anti-analgesic peptide. In this paper, several peptide analogs of the selective ligand dNP(NMe)AFLFQPQRF-NH(2) modified in the putative address segment, were designed to be selective NPFF(2) receptor probes, synthesized and assayed. One peptide dA(NMe)AAFLFQPQRF-NH(2) displays a very high affinity for NPFF(2) receptors transfected in CHO cells, and a high selectivity versus NPFF(1) receptors. The exact residues carried in the N-terminal part of the ligands are not decisive to obtain a high affinity only the length of the peptide in itself seems important to create selectivity.  相似文献   

16.
NPFF precursor, pro-NPFF(A) contains three known bioactive sequences: NPFF (FLFQPQRF-NH(2)), neuropeptide AF (NPAF; AGEGLSSPFWSLAAPQRF-NH(2)) and neuropeptide SF (NPSF; SLAAPQRF-NH(2)). The key-feature of these fragments is their common PQRF-amidated sequence at their C termini. Here, we evaluated the biological activity of two other sequences derived from the mouse NPFF(A) precursor, that does not have PQRF-amidated C-terminus. One peptide was residing between positions 85 and 99 in the mice pro-NPFF(A). This peptide was referred to as neuropeptide SA (NPSA; SAWGSWSKEQLNPQA), assigned due to its flanking amino acids. Another sequence used in the experiments was N-terminal fragment of NPSA, here referred to as neuropeptide SS (NPSS; SAWGSWS). These two peptides, classified as crypteins, were synthesized and tested in the hot-plate and tail immersion tests in mice for their pharmacological activity in morphine-induced antinociception. The effects of both crypteins were compared to NPFF. Our experiments indicated that both crypteins inhibited morphine antinociception and their effects were reversed by RF9, an antagonist of NPFF receptors. These data show that NPSA and NPSS possess NPFF-like anti-opioid activity in these behavioral tests.  相似文献   

17.
Neuropeptide FF has many functions both in the CNS and periphery. Two G protein-coupled receptors (NPFF1 and NPFF2 receptors) have been identified for neuropeptide FF. The expression analysis of the peptide and receptors, together with pharmacological and physiological data, imply that NPFF2 receptor would be the primary receptor for neuropeptide FF. Here, we report for the first time a cell line endogenously expressing hNPFF2 receptor. These SK-N-MC neuroblastoma cells also express neuropeptide FF. We used the cells to investigate the hNPFF2 receptor function. The pertussis toxin-sensitive inhibition of adenylate cyclase activity upon receptor activation indicated coupling to Gi/o proteins. Upon agonist exposure, the receptors were internalized and the mitogen-activated protein kinase cascade was activated. Upon neuropeptide FF treatment, the actin cytoskeleton was reorganized in the cells. The expression of hNPFF2 receptor mRNA was up-regulated by neuropeptide FF. Concomitant with the receptor mRNA, the receptor protein expression was increased. The homologous regulation of hNPFF2 receptor correlates with our previous results in vivo showing that during inflammation, the up-regulation of neuropeptide FF mRNA precedes that of NPFF2 receptor. The regulation of hNPFF2 receptor by NPFF could also be important in the periphery where neuropeptide FF has been suggested to function as a hormone.  相似文献   

18.
Based on database searches of DNA sequences, we previously reported a gene encoding peptides possessing Arg-Phe-NH(2) (RFamide) at their C termini. This gene, RFamide-related peptide (RFRP), was expected to encode several different peptides (i.e., RFRP-1, -2, and -3). In the present study, we purified endogenous RFRP-3 from bovine hypothalamus, and demonstrated that it consisted of 28 amino acid residues. After constructing a sandwich enzyme immunoassay for RFRP-3, we analyzed the tissue distribution of endogenous RFRP-3 in rats and found its concentration to be highest in the hypothalamus. In binding assays, [125I]-labeled RFRP-3 bound to OT7T022 with high affinity, but its binding affinity to HLWAR77 was low. On the other hand, [125I]-labeled neuropeptide FF (NPFF) bound to both OT7T022 and HLWAR77 with high affinity. By serial deletion in the N-terminal portions of RFRP-3 and NPFF, we found that four C-terminal amino acid residues (i.e., PQRFamide), which were common between the two peptides, comprised a core sequence responsible for binding with the receptors, whereas three amino acid residues (i.e., PNL in RFRP-3 and LFQ in NPFF) added to the N terminus of PQRFamide played crucial roles in the agonistic activities of RFRP-3 and NPFF for OT7T022 and HLWAR77, respectively.  相似文献   

19.
Huang EY  Li JY  Tan PP  Wong CH  Chen JC 《Peptides》2000,21(2):205-210
Neuropeptide FF (NPFF), an endogenous opioid-related neuromodulater, has been reported to show significant effects on the cardiovascular system, namely elevation of arterial blood pressure (BP) and heart rate (HR) in rats. In the present study, we synthesized two novel NPFF analogs, PFRFamide (putative NPFF agonist) and PFR(Tic)amide (putative NPFF antagonist), and examined their cardiovascular effect on BP and HR in anesthetized rats. The arterial mean BP and HR were measured by way of direct femoral artery catheterization. The data showed that PFRFamide increased BP in a dose-dependent manner, while PFR(Tic)amide decreased BP dose-dependently. These results revealed the possibility of PFRFamide and PFR(Tic)amide to be NPFF agonist and antagonist (or inverse agonist), respectively. These two NPFF analogs may possess potential in new drug design, and the NPFF system could be very important in mammalian cardiovascular function.  相似文献   

20.
Fukusumi S  Fujii R  Hinuma S 《Peptides》2006,27(5):1073-1086
Since the first discovery of a peptide with RFamide structure at its C-terminus (i.e., an RFamide peptide) from an invertebrate in 1977, numerous studies on RFamide peptides have been conducted, and a variety have been identified in various phyla throughout the animal kingdom. The first reported mammalian RFamide peptides were neuropeptide FF (NPFF) and neuropeptide AF (NPAF) in 1985. However, for many years after this, no new novel RFamide peptides were identified in mammals. A breakthrough in discovering mammalian RFamide peptides was made possible by reverse pharmacology on the basis of orphan G protein-coupled receptor (GPCR) research. The first report of an RFamide peptide identified from orphan GPCR research was prolactin (PRL)-releasing peptide (PrRP) in 1998. To date, a total of five RFamide peptide genes have been discovered in mammals. Orphan GPCR research has contributed considerably to the identification of these peptides and their receptor genes. This paper examines these mammalian RFamide peptides focusing especially on PrRP, RFamide-related peptides (RFRPs) and, the most recently identified, pyroglutamylated RFamide peptide (QRFP), the discovery of all of which the authors were at least partly involved in. We review here the strategies employed for the identification of these peptides and examine their characteristics, tissue distribution, receptors and functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号