首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Insect Biochemistry》1989,19(8):767-774
The fatty acid content and composition of the house cricket Acheta domesticus have been investigated in entire insects at different developmental stages and in selected organs of male and female adults. We have also determined the fatty acid composition of the various lipid classes within extracts of the organs of adult female insects. Fatty acids were analysed by capillary gas chromatography or mass spectrometry as their methyl esters (FAMEs) after direct transesterification of insect material or separated lipid classes.The major esterified fatty acids in all extracts were palmitate (C16:0), stearate (C18:0), oleate (C18:1) and linoleate (C18:2). Levels of esterified fatty acid varied considerably between organs but the fatty acid compositions showed only small variations. The levels of polyunsaturated fatty acids of the C18 series were considerably higher in phospholipid fractions than in other lipid classes. Triacylglycerols formed the major lipid class in ovaries, fat-body and newly-laid eggs, whereas diacylglycerols and phospholipid predominate in the haemolymph. Triacylglycerols, phospholipids, diacylglycerols and free fatty acids were all found in significant amounts in the gut tissue.  相似文献   

2.
The fatty acid composition of the total lipid fractions of five different Leishmania organisms grown on Eagle's medium was determined by gas chromatography. The major fatty acids identified in the total lipid fractions of L. donovani, L. tropica major, L. tropica minor, L. tropica (England strain), and L. enriettii were C12:0, C13:0, C14:0, C15:0, C16:0, C17:0, C18:0, C18:1, C18:2, and C18:3. The statistical differences among the fatty acid methyl esters of different Leishmania organisms are discussed.Gas chromatographic analysis of the fatty acid methyl esters of the total lipid fractions of the original Eagle's medium and the media after harvesting of various Leishmania species revealed the presence of C18:3 fatty acid in the total lipid fraction of the medium of L. donovani and the complete absence of 18-carbon unsaturated fatty acids in the total lipid fraction of the medium of L. enriettii. The use of such differences in the differentiation of various Leishmania species is discussed.  相似文献   

3.
The lipid and fatty acid compositions in two edible subtropical algae (the brown alga Cladosiphon okamuranus Tokida and the green alga Caulerpa lentillifera J. Agardh) were determined to clarify their lipid characteristics and nutritional values. Glycolipids and phospholipids were the major lipid classes, with significant levels of triacylglycerols. Polyunsaturated fatty acids (PUFA) were the major fatty acids of both algae. The lipid class composition and major fatty acids were similar in both the algal species, irrespective of wild and cultured specimens. Typical n‐6 PUFA, such as 18:2n‐6 (linoleic acid) and 20:4n‐6 (arachidonic acid), occurred in characteristically high levels in both of the algae. High levels of n‐3 PUFA were measured in all lipid classes of both species without 22:6n‐3 (docosahexaenoic acid), 18:3n‐3, 18:4n‐3, and 20:5n‐3 (eicosapentaenoic acid) for Cl. okamuranus; and 16:3n‐3, 18:3n‐3, and 20:5n‐3 for Ca. lentillifera. The finding suggests that the green algal species, which mainly biosynthesizes short‐chain (C16 and C18) PUFA, differs from that of the brown alga, which is capable of biosynthesizing high 20:5n‐3 levels. The PUFA levels in glycolipids of the two algal species comprised up to 60%, even though they are subtropical marine species. High n‐6 PUFA levels in the algal lipids probably influence the significant levels of n‐6 PUFA in herbivorous fishes, because the n‐6 PUFA levels in marine fish lipids are generally undetectable or negligible.  相似文献   

4.
Matured females of two Lake Baikal endemic fish species, Comephorus baicalensis and Comephorus dybowski, have been investigated for lipid of the whole body and specific tissues (liver, muscles, ovaries), phospholipid classes and fatty acids of neutral and polar lipids. Total lipid in the body (38.9% fresh weight), liver (23.5%) and muscles (14.5%) of C. baicalensis were greater than those of C. dybowski (4.7, 8.7 and 2.6%, respectively); only their ovaries were similar (5.3 and 5.6% lipid, respectively). In both species, phosphatidylcholine and phosphatidylethanolamine were the major phospholipids, ranging from 60.7 to 75.1% of total phospholipid and 14.5–25.7%, respectively. In most cases, monounsaturated fatty acids (MUFA) were the major fatty acid group in C. baicalensis, whereas polyunsaturated fatty acids (PUFA) were the major group in C. dybowski. The MUFA 18:1(n-9) prevailed over other fatty acids in C. baicalensis and varied from 19% in polar lipids of muscles to 56.1% in neutral lipids of muscles. In polar lipid of C. dybowski, the PUFA 22:6(n-3) prevailed over other fatty acids in muscles and ovaries, while 16:0 dominated polar liver lipids and neutral lipids of all tissues. Other major fatty acids included 16:1(n-7), 18:1(n-7), and 20:5(n-3). Values of the (n-3)/(n-6) fatty acid ratio for neutral lipids of C. baicalensis (0.5–0.9) are well below the range of values characteristic either for marine or freshwater fish, while these values for polar lipids (1.6–1.8) are in the range typical of freshwater fish. Neutral lipid fatty acid ratios in C. dybowski (2.5–3.1) allow it to be assigned to freshwater fish, but polar lipids (2.8–3.7) leave it intermediary between freshwater and marine fish.  相似文献   

5.
Maturation of mustard (Sinapis alba) seed proceeds with a sharp decrease in the amounts of palmitic and linoleic acids in the total lipids up to 6 weeks after flowering (WAF). Concomitantly, the concentration of oleic acid increases, reaching a plateau at 4 WAF, which is followed by chain elongation of oleic acid to gadoleic and erucic acids. Compositional changes in constituent fatty acids of individual lipid classes indicate that the very long-chain monounsaturated fatty acids (C20 and C22), as opposed to common long-chain fatty acids (C16 and C18), are metabolized to triacylglycerols mainly by esterification to preformed diacylglycerols and monoacylglycerols, rather than via esterification to glycerol-3-phosphate or lysophosphatidic acids.  相似文献   

6.
  1. Endomycopsis vernalis was cultivated on media with different N supply: series A 1%, series B 0,125% asparagine. Sonified cells were extracted and yielded 14.3% (A) and 65.3 (B) total lipids/non lipid dry matter respectively.
  2. Neutral and complex lipids were separated by rubber membrane dialysis. There is no difference in the percentage of complex lipids of both series. The increase of lipids in cells grown on low N level is due to a higher content of neutral lipids.
  3. Components of the neutral lipids, analysed by DC, were diglycerides, triglycerides, free and esterified ergosterol. Their percentage is influenced by the nutritional conditions. There is a significant increase of triglycerides and of sterol esters in the high lipid cells of series B.
  4. Methyl esters of component fatty acids of glycerides and sterol esters were analyzed by GLC. Saturated acids C14, C15, C16, C17, C18, monoenic acids C16 and C18, linoleic and linolenic acids were found to be present. Major acids were in all cases 18:1 (17–57%), 18:2 (18–50%) and 16:0 (10–18%). Linolenic acid is higher in di-and triglycerides of low lipid cells of series A than in high lipid cells of series B. Both qualitative and quantitative differences of fatty acids were found in sterol esters of series A and B respectively.
  5. The major components of complex lipids, identified by DC and isolated by CC, in both series, were phosphatidyl choline (A:36.5, B:41.0%) and phosphatidyl ethanolamine (A:24.9, B:20.5%) in addition to small amounts of lysophosphatidyl choline, lysophosphatidyl ethanolamine, phosphatidyl serine, monophosphoinositide, diphosphatidyl glycerol and, possibly cerebroside like substances.
  6. Methyl esters of the fatty acids of phosphatidyl choline and ethanolamine from both series were determined by GLC. In all samples 16:0, 18:0, 18:1, 18:2 and 18:3 acids were present besides of traces of 16:1 and 17:0. In contrast to neutral lipids the major acid of phospholipids is linoleic (53–58%), followed by oleic (8–24%) and linolenic acid (1–18%). The percentages of palmitic (4–8%) and stearic acids (tr.-1%) are small. Low lipid cells of series A differ from high lipid cells of series B by an increase of linolenic, and a decrease of linoleic acids, both in phosphatidyl choline and phosphatidyl ethanolamine.
  相似文献   

7.
The intensitive investigations on the lipid profile of Thiobacillus ferrooxidans at various culture ages suggest some correlations of the lipid constitutents with the membrane-bound iron oxidation system. Phosphatidic acid, phosphatidyl serine and phosphatidyl ethanolamine were the major polar components; hydrocarbon, triglyceride and diglyceride were the main neutral components. Major fatty acids were C16:0, C16:1, C16:3, C18:1, C18:3, C22:1 while C20:1, C20:2, C12:0, C14:2, C18:0, C18:2, C20:0, C22:0 were found in trace amounts which also depended upon the phase of the growth. One lipoamino acid was identified as ornithine lipid in the polar fraction. Each and every component varied to some extent at different growth phasesindicating relationship of these lipids to the iron oxidation system of the strain.  相似文献   

8.
The monocarboxylic fatty acids and hydroxy fatty acids of three species of freshwater microalgae—Vischeria punctata Vischer, Vischeria helvetica (Vischer et Pascher) Taylor, and Eustigmatos vischeri (Hulbert) Taylor, all from the class Eustigmatophyceae— were examined. Each species displayed a very similar distribution of fatty acids, the most abundant of which were 20:5n-3, 16:0, and 16:1n-7; C18 polyunsaturated fatty acids were minor components. These fatty acid distributions closely resemble those found in marine eustigmatophytes but are quite distinct from those found in most other algal classes. These microalgae also contain long-chain saturated and unsaturated monohydroxy fatty acids. Two distinct types of hydroxy fatty acids were found: a series of saturated α-hydroxy acids ranging from C24 to C30 with a shorter series of monounsaturated α-hydroxy acids ranging from C26 to C30 together with a series of saturated β-hydroxy acids ranging from C26 to C30. The latter have not previously been reported in either marine or freshwater microalgae, although C30 to C34 midchain (ω-18)-hydroxy fatty acids have been identified in hydrolyzed extracts from marine eustigmatophytes of the genus Nannochloropsis, and C22 to C26 saturated and monounsaturated α-hydroxy fatty acids have been found in three marine chlorophytes. These findings have provided a more complete picture of the lipid distributions within this little studied group of microalgae as well as a range of unusual compounds that might prove useful chemotaxonomic markers. The functions of the hydroxy fatty acids are not known, but a link to the formation of the lipid precursors of highly aliphatic biopolymers is suggested.  相似文献   

9.
Aims: This study provides a first approach to observing the alterations of the cell membrane lipids in the adaptation response of Listeria monocytogenes to the sanitizer benzalkonium chloride. Methods and Results: A thorough investigation of the composition of polar and neutral lipids from L. monocytogenes grown when exposed to benzalkonium chloride is compared to cells optimally grown. The adaptation mechanism of L. monocytogenes in the presence of benzalkonium chloride caused (i) an increase in saturated‐chain fatty acids (mainly C16:0 and C18:0) and unsaturated fatty acids (mainly C16:1 and C18:1) at the expense of branched‐chain fatty acids (mainly Ca‐15:0 and Ca‐17:0) mainly because of neutral fatty acids; (ii) no alteration in the percentage of neutral and polar lipid content among total lipids; (iii) a decrease in lipid phosphorus and (iv) an obvious increase in the anionic phospholipids and a decrease in the amphiphilic phosphoaminolipid. Conclusions: These lipid changes could lead to decreased membrane fluidity and also to modifications of physicochemical properties of cell surface and thus changes in bacterial adhesion to abiotic surfaces. Significance and Impact of the Study: The adaptation and resistance of L. monocytogenes to disinfectants is able to change its physiology to allow growth in food‐processing plants. Understanding microbial stress response mechanisms would improve the effective use of disinfectants.  相似文献   

10.
Rainbow trout (Oncorhynchus mykiss) were fed either a control diet containing fish oil or an essential fatty acid (EFA) deficient diet containing only hydrogenated coconut oil and palmitic acid as lipid source (93.4% saturated fatty acids) for 14 weeks and the fatty acid compositions of individual phospholipid classes from skin and opercular membrane (OM) determined. The permeability of skin and OM to water and the production of eicosanoids in skin and gills challenged with the Ca2+ ionophore A23187 were also measured. Phospholipid (PL) fatty acid compositions were substantially modified in EFA-deficient fish, with increased saturated fatty acids and decreased polyunsaturated fatty acids (PUFA), especially arachidonic acid (AA) and eicosapentaenoic acid (EPA), while docosahexaenoic acid (DHA) was largely retained. The onset of EFA deficiency was shown by the appearance of n-9 PUFA, particularly 20:3n-9. The main effects of EFA deficiency on phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were to increase saturated fatty acids and monoenes, especially 16:1 and 18:1, and to decrease EPA and DHA. The content of DHA in phosphatidylserine (PS) was high in control animals (40% in skin and 35% in opercular membrane) and was mostly retained in EFA deficient animals. Arachidonic acid (AA) was the most abundant PUFA esterified to phosphatidylinositol (PI) and was significantly reduced in EFA deficient animals (from 31% to 13% in skin), where a large amount of 20:3n-9 (9% in skin) was also present. Influxes and effluxes of water through skin and opercular membrane were measured in vitro. No differences were detected between rainbow trout fed the control or the EFA deficient diet. 12-Hydroxyeicosatetraenoic acid (12-HETE), 12-hydroxyeicosapentaenoic acid (12-HEPE) and 14-hydroxydocosahexaenoic acid (14-HDHE) could not be detected in skin from control or EFA deficient fish. There was no difference between control and EFA deficient trout in the levels of leukotriene C4 (LTC4) and leukotriene C5 (LTC5) in skin cells challenged with the calcium ionophore A23187, and of prostaglandin F (PGF), 12-HETE and 12-HEPE in gill cells challenged similarly. Prostaglandin F (PGF) production by ionophore stimulated gill cells was significantly reduced in fish fed the EFA-deficient diet. 14-HDHE produced by gill cells was 3.3 fold higher in EFA deficient fish compared to controls.  相似文献   

11.
Suberin from the roots of carrots (Daucus carota), parsnip (Pastinaca sativa), rutabaga (Brassica napobrassica), turnip (Brassica rapa), red beet (Beta vulgaris), and sweet potato (Ipomoea batatas) was isolated by a combination of chemical and enzymatic techniques. Finely powdered suberin was depolymerized with 14% BF3 in methanol, and soluble monomers (20-50% of suberin) were fractionated into phenolic (<10%) and aliphatic (13-35%) fractions. The aliphatic fractions consisted mainly of ω-hydroxyacids (29-43%), dicarboxylic acids (16-27%), fatty acids (4-18%), and fatty alcohols (3-6%). Each fraction was subjected to combined gas-liquid chromatography and mass spectrometry. Among the fatty acids very long chain acids (>C20) were the dominant components in all six plants. In the alcohol fraction C18, C20, C22, and C24 saturated primary alcohols were the major components. C16 and C18 dicarboxylic acids were the major dicarboxylic acids of the suberin of all six plants and in all cases octadec-9-ene-1, 18-dioic acid was the major component except in rutabaga where hexadecane-1, 16-dioic acid was the major dicarboxylic acid. The composition of the ω-hydroxyacid fraction was quite similar to that of the dicarboxylic acids; 18-hydroxy-octadec-9-enoic acid was the major component in all plants except rutabaga, where equal quantities of 16-hydroxyhexadecanoic acid and 18-hydroxyoctadec-9-enoic acid (42% each) were found. Compounds which would be derived from 18-hydroxyoctadec-9-enoic acid and octadec-9-ene-1, 18-dioic acid by epoxidation, and epoxidation followed by hydration of the epoxide, were also detected in most of the suberin samples. The monomer composition of the six plants showed general similarities but quite clear taxonomic differences.  相似文献   

12.
Qualitative and quantitative profiles of phospholipids, neutral lipids, and fatty acid composition in Cr. neoformans during the growth phase were investigated in relation to pyrophosphatidic acid. A marked increase of the total lipid content, which depended on the accumulation of triglyceride in yeast cells with the growth, was observed. The total phospholipid contents in yeast cells remained almostly constant during the exponential phase and slightly decreased in the stationary phase. The major phospholipids of this yeast were phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, and cardiolipin, the next groups being pyrophosphatidic acid, phosphatidic acid, lysophos-phatidylcholine, and unidentified components. The amounts of phosphatidylcholine, phosphatidylinositol, and cardiolipin were fairly constant throughout the growth phase, but the amount of phosphatidylethanolamine increased and that of phosphatidylserine decreased with progressive growth. The pyrophosphatidic acid contents were 0.9~0.7% for total phospholipid during the growth phase. The major fatty acids of pyrophosphatidic acid were C16:0, C18:1, and C18:2 acids. The changing patterns of fatty acid composition in pyrophosphatidic acid through the growth phase closely resembled that of phosphatidic acid, which contained larger amounts of C18:1 acid (35~45%) than C16:0 acid (30~25%) and C18:2 acid (30~25%). Phosphatidylserine and phosphatidylinositol contained considerable amounts of saturated fatty acid (C16:0 acid, more than 55%). On the other hand, phosphatidylcholine, phosphatidylethanolamine, and cardiolipin contained extremely large amounts of unsaturated fatty acid (C18:1 and C18:2 acid, 85ç90%).  相似文献   

13.
The Chlorarachniophyceae are unicellular eukaryotic algae characterized by an amoeboid morphology that may be the result of secondary endosymbiosis of a green alga by a nonphotosynthetic amoeba or amoeboflagellate. Whereas much is known about the phylogeny of chlorarachniophytes, little is known about their physiology, particularly that of their lipids. In an initial effort to characterize the lipids of this algal class, four organisms from three genera were examined for their fatty acid and sterol composition. Fatty acids from lipid fractions containing chloroplast‐associated glycolipids, storage triglycerides, and cytoplasmic membrane‐associated polar lipids were characterized. Glycolipid‐associated fatty acids were of limited composition, principally eicosapentaenoic acid [20:5(n‐3)] and hexadecanoic acid (16:0). Triglyceride‐associated fatty acids, although minor, were found to be similar in composition. The polar lipid fraction was dominated by lipids that did not contain phosphorus and had a more variable fatty acid composition with 16:0 and docosapentaenoic acid [22:5(n‐3)] dominant along with a number of minor C18 and C20 fatty acids. Crinosterol and one of the epimeric pair poriferasterol/stigmasterol were the sole sterols. Several genes required for synthesis of these sterols were computationally identified in Bigelowiella natans Moestrup. One sterol biosynthesis gene showed the greatest similarity to SMT1 of the green alga, Chlamydomonas reinhardtii. However, homologues to other species, mostly green plant species, were also found. Further, the method used for identification suggested that the sequences were transferred to a genetic compartment other than the likely original location, the nucleomorph nucleus.  相似文献   

14.
The dominant fatty acids in all neutral lipid fractions of non-water hardened eggs from two wild and one cultured stock of striped bass Morone saxatilis were the monoenes, 18 : 1n9/n7>16 : 1n7>17 : 1. The dominant fatty acids in the phospholipid fraction of all eggs, regardless of origin, were 22 : 6n3>18 : 1n9/n7>20 : 5n3>16 : 1n7>16 : 0>18 : 0. Arachadonic acid (AA, 20 : 4n6) was significantly lower (2·0%) in cultured fish eggs compared to either wild stock (5·8–6·1%). Fatty acids from the liver and eggs of wild Shubenacadie fish were similar to one another with respect to both neutral and phospholipid fractions. However, the AA and eicosapentaenoic acid (EPA, 20 : 5n3) content of the phospholipid fraction varied according to the hypothesized migration behaviour of Shubenacadie fish. The total lipid content of wild fish eggs was significantly greater than that of cultured fish. The total phospholipid content of Shubenacadie eggs was significantly higher than either Roanoke or cultured fish eggs. Phosphotidylinositol (PI) was the dominant phospholipid found ins all egg samples from all origins as opposed to phosphotidylcholine, which is usually the dominant phospholipid. These data indicate that PI and AA may have important and as yet unidentified roles in fertilization and embryonic development in these fish.  相似文献   

15.
The monomeric composition of the suberins from 16 species of higher plants was determined by chromatographic methods following depolymerization of the isolated extractive-free cork layers with sodium methoxide-methanol. 1-Alkanols (mainly C18C28), alkanoic (mainly C16C30), α,ω-alkanedioic (mainly C16C24), ω-hydroxyalkanoic (mainly C16C21), dihydroxyhexadecanoic (mainly 10,16-dihydroxy- and 16-dihydroxyhexadecanoic), monohydroxyepoxyalkanoic (9,10-epoxy-18-hydroxyoctadecanoic), trihydroxyalkanoic (9,10, 18-trihydroxyoctadecanoic), epoxyalkanedioic (9,10-epoxyoctadecane-1,18-dioic) and dihydroxyalkanedioic (9,10-dihydroxyoctadecane-1 18-dioic) acids were detected in all species. The suberins differed from one another mainly in the relative proportions of these monomer classes and in the homologue content of their 1-alkanol, alkanoic, α,ω-alkanedioic and ω-hydroxyalkanoic acid fractions. C18 epoxy and vic-diol monomers were major components (32–59%) of half of the suberins examined (Quercus robur, Q. ilex, Q. suber, Fagus sylvatica, Castanea sativa, Betula pendula, Acer griseum, Fraxinus excelsior) where as ω-hydroxyalkanoic and α,ω-alkanedioic acids predominated in those that contained smaller quantities of such polar C18 monomers (Acer pseudoplatanus, Ribes nigrum, Euonymus alatus, Populus tremula, Solanum tuberosum, Sambucus nigra, Laburnum anagyroides, Cupressus leylandii). All species, however, contained substantial amounts (14–55 %) of ω-hydroxyalkanoic acids, the most common homologues being 18:1 (9) and 22: 0. The dominant α,ω-alkanedioic acid homologues were 16: 0 and 18: 1 (9) whereas 22: 0, 24: 0 and 26: 0, and 20: 0, 22: 0 and 24: 0 were usually the principal homologues in the 1-alkanol and alkanoic acid fractions, respectively. The most diagnostic feature of the suberins examined was the presence of monomers greater than C18 in chain length; most of the C16 and C18 monomers identified in the suberins also occur in plant cutins emphasizing the close chemical similarity between the two anatomical groups of lipid biopolymer.  相似文献   

16.
The protein content of the filamentous Cladophora glomerata (L.) Kz., Ulothrix zonata (Web, & Mohr) Kz. and Spirogyra sp., collected from natural populations for 1 year, averaged 8.0–12.4% of the total dry weight; whereas, the corresponding levels of lipid, cellulose and ash were 11.9–16.1%, 10.0–17.8% and 14.6–24.0%, respectively. Mean values for carbohydrates, estimated by difference, ranged from 32.8 to 56.0%. The colonial Scenedesmus dimorphus (Turp.) Kz. and the unicellular Cosmarium laeve Rab., on the other hand, contained more protein, lipid and carbohydrate (estimated by difference) averaging 13–15.0%, 22.5–25.9% and 415–46.8%, respectively, and less cellulose (7.5–9.8%) and ash (8.2–9.8%). A consistent pattern of seasonal variation in the proximate composition was not normally evident for any species, reflecting the influence of several environmental parameters on the algae. Cladophora contained the greatest amount of phospholipid averaging; 10% by weight of total lipid with the smallest quantity (5%) in Scenedesmus. The predominant phospholipid fatty acid in all species was C18:1 followed by C18:2, C18:3 and C16:1 in Cladophora, Ulothrix and Spirogyra, and C16:1, C18:2 and C16:0 in Scenedesmus and Cosmarium. Oleic (C18:1) and hexadecanoic (C16:1) acids were predominant in the neutral lipids of all the algae, followed by C16:0, C18:2 and C18:3. The concentration of the different fatty acids of each Species varied considerably during the year with the proportion of C16:0 and C16:1, usually rising and that of C18:1 failing during the colder months.  相似文献   

17.
For the first time, the solid–liquid phase diagrams of five binary mixtures of saturated fatty acids are here presented. These mixtures are formed of caprylic acid (C8:0) + capric acid (C10:0), capric acid (C10:0) + lauric acid (C12:0), lauric acid (C12:0) + myristic acid (C14:0), myristic acid (C14:0) + palmitic acid (C16:0) and palmitic acid (C16:0) + stearic acid (C18:0). The information used in these phase diagrams was obtained by differential scanning calorimetry (DSC), X-ray diffraction (XRD), FT–Raman spectrometry and polarized light microscopy, aiming at a complete understanding of the phase diagrams of the fatty acid mixtures. All of the phase diagrams reported here presented the same global behavior and it was shown that this was far more complex than previously imagined. They presented not only peritectic and eutectic reactions, but also metatectic reactions, due to solid–solid phase transitions common in fatty acids and regions of solid solution not previously reported. This work contributes to the elucidation of the phase behavior of these important biochemical molecules, with implications in various industrial applications.  相似文献   

18.
By a combination of thin-layer chromatography and gas liquid chromatography, a complete study of the development of the different lipid classes and of their fatty acids, during the development of the fruit of Hedera helix L., the English Ivy, has been achieved. In any part of the fruit observed, at any particular stage, the phospholipids and the neutral lipids are the most abundant lipid classes. They accumulate during the entire process of maturation, whereas significant changes occur in their relative proportions, phospholipids being largely dominant until fruit blackening. The accumulation of fatty acids during maturation is characterized by large amounts of C18:1 in the neutral lipids, especially in the seed, where petroselinic acid (C18:1Δ6) reaches 86% of the total fatty acids. To a smaller extent, the phospholipids also accumulate and thus have the character of reserve molecules. However, their composition remains more stable, which relates them to the “structural lipids” such as galactolipids that maintain their characteristic fatty acid composition, despite the radical changes occurring in the fatty acid metabolism during fruit ripening.  相似文献   

19.
The cyanobacteriumSynechocystis PCC 6803 was grown photoautotrophically in an inorganic medium at constant growth temperatures of 20, 38 (control) or 43°C for 9 h. The up and down-shift of cultivation temperature decreased the growth as measured by culture absorbance and chlorophylla content. However, high temperature slightly increased the oxygen evolution while temperature lower than control inhibited oxygen evolution during the whole incubation period. The protein synthesis studied by14C-labeled protein declined under low temperature by about 50%. The fatty acid pattern is characterized as lacking in C20/C22 acids but containing large amounts of C16 and C18 polyunsaturated fatty acids, 16:2 and 18:3 in particular. The lower temperature increased the percentage of monounsaturated fatty acids while higher temperature increased the saturated fatty acid content in total lipids and lipid classes studied.  相似文献   

20.
Aims: In this work, fatty acid content and profiles were analysed in order to differentiate the species Tenacibaculum maritimum, Tenacibaculum gallaicum, Tenacibaculum discolor and Tenacibaculum ovolyticum that are pathogenic for cultured marine fish and to assess the potential of fatty acid profiles as a tool for epizootiological typing. Methods and Results: The fatty acid methylesters (FAMEs) were extracted from cells grown on marine agar for 48 h at 25°C and were prepared and analysed according to the standard protocol of the MIDI/Hewlett Packard Microbial Identification System. The cellular fatty acid profiles of Tenacibaculum strains tested were characterized by the presence of large amounts of branched (36·1–40·2%) and hydroxylated (29·6–31·7%) fatty acids. The FAME products from the four species significantly (P < 0·05) differed in the content of iso‐C15:03‐OH, iso‐C16:03‐OH, iso‐C15:1G, summed feature 3 (a component that contains C16:1ω7c and/or iso‐C15:0 2‐OH), iso‐C16:0, C17:1ω6c, C15:03‐OH, iso‐C17:03‐OH. Conclusions: Results of present study demonstrated the existence of differences in the fatty acids content between the T. maritimum isolates from different marine fish/geographical origin and between strains of T. maritimum, T. discolor, T. gallaicum and T. ovolyticum. Significance and Impact of the Study: Profiling of fatty acids may be a useful tool to distinguish T. maritimum from other Tenacibaculum species pathogenic for fish as well as for epizootiological differentiation of T. maritimum isolates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号