首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gene encoding a thermostable peroxidase was cloned from the chromosomal DNA of Bacillus stearothermophilus IAM11001 in Escherichia coli. The nucleotide sequence of the 3.1-kilobase EcoRI fragment containing the peroxidase gene (perA) and its flanking region was determined. A 2,193-base-pair open reading frame encoding a peroxidase of 731 amino acid residues (Mr, 82,963) was observed. A Shine-Dalgarno sequence was found 9 base pairs upstream from the translational starting site. The deduced amino acid sequence coincides with those of the amino terminus and four peptides derived from the purified peroxidase of B. stearothermophilus IAM11001. E. coli harboring a recombinant plasmid containing perA produced a large amount of thermostable peroxidase which comigrated on polyacrylamide gel electrophoresis with the B. stearothermophilus peroxidase. The peroxidase of B. stearothermophilus showed 48% homology in the amino acid sequence to the catalase-peroxidase of E. coli.  相似文献   

2.
The xylose isomerase gene from the thermophile Thermus thermophilus was cloned by using a fragment of the Streptomyces griseofuscus gene as a probe. The complete nucleotide sequence of the gene was determined. T. thermophilus is the most thermophilic organism from which a xylose isomerase gene has been cloned and characterized. The gene codes for a polypeptide of 387 amino acids with a molecular weight of 44,000. The Thermus xylose isomerase is considerably more thermostable than other described xylose isomerases. Production of the enzyme in Escherichia coli, by using the tac promoter, increases the xylose isomerase yield 45-fold compared with production in T. thermophilus. Moreover, the enzyme from E. coli can be purified 20-fold by simply heating the cell extract at 85 degrees C for 10 min. The characteristics of the enzyme made in E. coli are the same as those of enzyme made in T. thermophilus. Comparison of the Thermus xylose isomerase amino acid sequence with xylose isomerase sequences from other organisms showed that amino acids involved in substrate binding and isomerization are well conserved. Analysis of amino acid substitutions that distinguish the Thermus xylose isomerase from other thermostable xylose isomerases suggests that the further increase in thermostability in T. thermophilus is due to substitution of amino acids which react during irreversible inactivation and results also from increased hydrophobicity.  相似文献   

3.
We have determined the primary structure of a delta 5-3-oxosteroid isomerase from Pseudomonas putida biotype B. The enzyme is a dimeric protein of two identical subunits, each consisting of a polypeptide chain of 131 residues and a Mr = 14,536. The intact S-carboxymethyl protein was sequenced from the NH2 terminus using standard automated Edman degradation and automated Edman degradation using fluorescamine treatment at known prolines to suppress background. The isomerase was fragmented using CNBr, trypsin, iodosobenzoic acid, and acid cleavage at aspartyl-prolyl peptide bonds. The peptides resulting from each fragmentation were separated by reversed-phase high performance liquid chromatography and sequenced by automated Edman degradation. The full sequence was deduced by the overlapping of the various peptides. A search for homologous proteins was performed. Only the oxosteroid isomerase from Pseudomonas testosteroni, an expected homology, was found to be similar. Comparison of the two proteins shows that the region of strongest homology is the region containing the aspartic acid at which steroidal affinity and photoaffinity reagents have been shown to react in the P. testosteroni isomerase. The P. putida isomerase contains 3 cysteines and 2 tryptophans, whereas the P. testosteroni isomerase lacks these amino acids. The two proteins are not highly conserved.  相似文献   

4.
The gene encoding a novel L-ribose isomerase (L-RI) from Acinetobacter sp. was cloned into Escherichia coli and nucleotide sequence was determined. The gene corresponded to an open reading frame of 747 bp that codes for a deduced protein of 249 amino acids, which showed no amino acid sequence similarity with any other sugar isomerases. After expression of the gene in E. coli using pUC118 the recombinant L-RI was purified to homogeneity using different chromatographic methods. The overall enzymatic properties of the purified recombinant L-RI were the same as those of the authentic L-RI. To our knowledge, this is the first time report concerning the L-RI gene.  相似文献   

5.
S W Kim  S Joo  G Choi  H S Cho  B H Oh    K Y Choi 《Journal of bacteriology》1997,179(24):7742-7747
In order to clarify the roles of three cysteines in ketosteroid isomerase (KSI) from Pseudomonas putida biotype B, each of the cysteine residues has been changed to a serine residue (C69S, C81S, and C97S) by site-directed mutagenesis. All cysteine mutations caused only a slight decrease in the k(cat) value, with no significant change of Km for the substrate. Even modification of the sulfhydryl group with 5,5'-dithiobis(2-nitrobenzoic acid) has almost no effect on enzyme activity. These results demonstrate that none of the cysteines in the KSI from P. putida is critical for catalytic activity, contrary to the previous identification of a cysteine in an active-site-directed photoinactivation study of KSI. Based on the three-dimensional structures of KSIs with and without dienolate intermediate analog equilenin, as determined by X-ray crystallography at high resolution, Asp-103 was found to be located within the range of the hydrogen bond to the equilenin. To assess the role of Asp-103 in catalysis, Asp-103 has been replaced with either asparagine (D103N) or alanine (D103A) by site-directed mutagenesis. For D103A mutant KSI there was a significant decrease in the k(cat) value: the k(cat) of the mutant was 85-fold lower than that of the wild-type enzyme; however, for the D103N mutant, which retained some hydrogen bonding capability, there was a minor decrease in the k(cat) value. These findings support the idea that aspartic acid 103 in the active site is an essential catalytic residue involved in catalysis by hydrogen bonding to the dienolate intermediate.  相似文献   

6.
7.
The gene for leucine dehydrogenase (EC 1.4.1.9) from Bacillus stearothermophilus was cloned and expressed in Escherichia coli. The selection for the cloned gene was based upon activity staining of the replica printed E. coli cells. A transformant showing high leucine dehydrogenase activity was found to carry an about 9 kilobase pair plasmid, which contained 4.6 kilobase pairs of B. stearothermophilus DNA. The nucleotide sequence including the 1287 base pair coding region of the leucine dehydrogenase gene was determined by the dideoxy chain termination method. The translated amino acid sequence was confirmed by automated Edman degradation of several peptide fragments produced from the purified enzyme by trypsin digestion. The polypeptide contained 429 amino acid residues corresponding to the subunit (Mr 49,000) of the hexameric enzyme. Comparison of the amino acid sequence of leucine dehydrogenase with those of other pyridine nucleotide dependent oxidoreductases registered in a protein data bank revealed significant sequence similarity, particularly between leucine and glutamate dehydrogenases, in the regions containing the coenzyme binding domain and certain specific residues with catalytic importance.  相似文献   

8.
The DNA encoding the exfoliative toxin A gene (eta) of Staphylococcus aureus was cloned into bacteriophage lambda gt11 and subsequently into plasmid pLI50 on a 1,391-base-pair DNA fragment of the chromosome. Exfoliative toxin A is expressed in the Escherichia coli genetic background, is similar in length to the toxin purified from culture medium, and is biologically active in an animal assay. The nucleotide sequence of the DNA fragment containing the gene was determined. The protein deduced from the nucleotide sequence is a polypeptide of 280 amino acids. The mature protein is 242 amino acids. The DNA sequence of the exfoliative toxin B gene was also determined. Corrections indicate that the amino acid sequence of exfoliative toxin B is in accord with chemical sequence data.  相似文献   

9.
禾谷缢管蚜体内的病毒结合蛋白基因的克隆与原核表达   总被引:7,自引:0,他引:7  
利用一对特异性引物,用PCR的方法从禾谷缢管蚜体内扩增出了病毒结合蛋白基因,序列测定结果表明其长度 为1647 bp,编码548个氨基酸,与GenBank中的禾谷缢管蚜美国生物型Buchnera groELNT核苷酸序列同源性为97%,氨基酸同源性为97.4%。构建了2个原核表达载体并进行表达得到了69kD融合蛋白和63kD的非融合蛋白。  相似文献   

10.
Cytochrome P-450cam catalyzes the stereospecific methylene hydroxylation of camphor to form 5-exohydroxycamphor and is encoded by the camC gene on the CAM plasmid of Pseudomonas putida, ATCC 17453. The cytochrome P-450cam structural gene has been cloned by mutant complementation in P. putida (Koga, H., Rauchfuss, B., and Gunsalus, I. C. (1985) Biochem. Biophys. Res. Commun. 130, 412-417). We report the complete nucleotide sequence of the camC gene along with 155 base pairs of 5' and 175 base pairs of 3' flanking sequence. Upon comparison of the amino acid sequence derived from the gene sequence to the one obtained from the purified protein (Haniu, M., Armes, L. G., Yasunobu, K. T., Shastry, B. A., and Gunsalus, I. C. (1982) J. Biol. Chem. 257, 12664-12671), five differences were found. The most significant was the addition of a Trp and a Thr residue between Val-54 and Arg-55, thereby increasing the amino acid numbering scheme by 2 after Val-54, bringing the total number of amino acids to 414. Other differences were: Gln-274----Glu-276, Ser-359----His-361, and Asn-405----Asp-407. N-terminal amino acid sequence analysis of the cloned cytochrome P-450cam enzyme expressed in Escherichia coli under the lac promoter showed a faithful translation of the hemo-protein, with the N-terminal Met removed by processing as found in P. putida. Purification to homogeneity of the cloned protein was accomplished by the method used for the CAM plasmid-encoded enzyme of P. putida. The G + C content of the camC gene was found to be 59.0%, caused by a preferred usage of G and C terminated codons. The gene encoding putidaredoxin reductase, camA, was located 22 nucleotides downstream from the cytochrome P-450cam gene. The camA gene initiated with a novel GUG codon, the first such initiator documented in Pseudomonas.  相似文献   

11.
H C Lin  S P Lei  G Wilcox 《Gene》1985,34(1):123-128
The nucleotide sequence of gene araA of Salmonella typhimurium LT2 has been determined. The gene encodes an L-arabinose isomerase (EC 5.3.1.4) of 500 amino acid residues with a calculated Mr of 55814. The ATG start codon of araA is 10 bp distal to the TAA termination codon of araB. A presumed ribosome-binding site (RBS) "TAAGGA" 7 bp from the ATG codon overlaps the stop codon of araB. L-Arabinose isomerase was purified and the amino acid composition is in agreement with that predicted from the DNA sequence. The NH2-terminus of the protein is modified as the sequence cannot be analyzed by the automated Edman degradation. Amino acid composition analyses of both NH2-terminal and C-terminal cyanogen bromide (CNBr) cleaved peptides and partial amino acid sequence of the C-terminal peptide are consistent with the deduced amino acid sequence.  相似文献   

12.
Multidimensional NMR was employed to investigate the structural changes in the urea-induced equilibrium unfolding of the dimeric ketosteroid isomerase (KSI) from Pseudomonas putida biotype B. Sequence specific backbone assignments for the native KSI and the protein with 3.5 M urea were carried out using various 3D NMR experiments. Hydrogen exchange measurements indicated that the secondary structures of KSI were not affected significantly by urea up to 3.5 M. However, the chemical shift analysis of (1)H-(15)N HSQC spectra at various urea concentrations revealed that the residues in the dimeric interface region, particularly around the beta5-strand, were significantly perturbed by urea at low concentrations, while the line-width analysis indicated the possibility of conformational exchange at the interface region around the beta6-strand. The results thus suggest that the interface region primarily around the beta5- and beta6-strands could play an important role as the starting positions in the unfolding process of KSI.  相似文献   

13.
The gene that codes for xylose isomerase in Escherichia coli has been cloned by complementation of a xylose isomerase-negative E. coli mutant. The structural gene is 1320 nucleotides in length and codes for a protein of 440 amino acids. An additional 209 nucleotides 5' and 82 nucleotides 3' to the structural gene were also sequenced. To verify that the cloned gene encodes E. coli xylose isomerase, the enzyme was purified to homogeneity and the sequence of the first 25 amino acid residues was determined by a semimicromanual Edman procedure. These results establish that the NH2-terminal methionine of xylose isomerase is specified by an ATG which is 7 nucleotides downstream from a Shine-Dalgarno sequence.  相似文献   

14.
An unusual xylose isomerase produced by Thermoanaerobacterium strain JW/SL-YS 489 was purified 28-fold to gel electrophoretic homogeneity, and the biochemical properties were determined. Its pH optimum distinguishes this enzyme from all other previously described xylose isomerases. The purified enzyme had maximal activity at pH 6.4 (60 degrees C) or pH 6.8 (80 degrees C) in a 30-min assay, an isoelectric point at 4.7, and an estimated native molecular mass of 200 kDa, with four identical subunits of 50 kDa. Like other xylose isomerases, this enzyme required Mn2+, Co2+, or Mg2+ for thermal stability (stable for 1 h at 82 degrees C in the absence of substrate) and isomerase activity, and it preferred xylose as a substrate. The gene encoding the xylose isomerase was cloned and expressed in Escherichia coli, and the complete nucleotide sequence was determined. Analysis of the sequence revealed an open reading frame of 1,317 bp that encoded a protein of 439 amino acid residues with a calculated molecular mass of 50 kDa. The biochemical properties of the cloned enzyme were the same as those of the native enzyme. Comparison of the deduced amino acid sequence with sequences of other xylose isomerases in the database showed that the enzyme had 98% homology with a xylose isomerase from a closely related bacterium, Thermoanaerobacterium saccharolyticum B6A-RI. In fact, only seven amino acid differences were detected between the two sequences, and the biochemical properties of the two enzymes, except for the pH optimum, are quite similar. Both enzymes had a temperature optimum at 80 degrees C, very similar isoelectric points (pH 4.7 for strain JW/SL-YS 489 and pH 4.8 for T. saccharolyticum B6A-RI), and slightly different thermostabilities (stable for 1 h at 80 and 85 degrees C, respectively). The obvious difference was the pH optimum (6.4 to 6.8 and 7.0 to 7.5, respectively). The fact that the pH optimum of the enzyme from strain JW/SL-YS 489 was the property that differed significantly from the T. saccharolyticum B6A-RI xylose isomerase suggested that one or more of the observed amino acid changes was responsible for this observed difference.  相似文献   

15.
The catechol 2,3-dioxygenase (C23O) gene in naphthalene catabolic plasmid pND6-1 of Pseudomonas sp. ND6 was cloned and sequenced. The C23O gene was consisted of 924 nucleotides and encoded a polypeptide of molecular weight 36 kDa containing 307 amino acid residues. The C23O of Pseudomonas sp. ND6 exhibited 93% and 89% identities in amino acid sequence with C23Os encoded by naphthalene catabolic plasmid NAH7 from Pseudomonas putida G7 and the chromosome of Pseudomonas stutzeri AN10 respectively. The Pseudomonas sp. ND6 C23O gene was overexpressed in Escherichia coli DH 5alpha using the lac promoter of pUC18, and its gene product was purified by DEAE-Sephacel and Phenyl-Sepharose CL-4B chromatography. The enzymology experiments indicated that the specific activity and thermostability of C23O from Pseudomonas sp. ND6 were better than those of C23O from Pseudomonas putida G7.  相似文献   

16.
The 2,3-dihydroxybiphenyl 1,2-dioxygenase (2,3-DBPD) of Pseudomonas putida OU83 was constitutively expressed and purified to apparent homogeneity. The apparent molecular mass of the native enzyme was 256 kDa, and the subunit molecular mass was 32 kDa. The data suggested that 2,3-DBPD was an octamer of identical subunits. The nucleotide sequence of a DNA fragment containing the bphC region was determined. The deduced protein sequence for 2,3-DBPD consisted of 292 amino acid residues, with a calculated molecular mass of 31.9 kDa, which was in agreement with data for the purified 2,3-DBPD. Nucleotide and amino acid sequence analyses of the bphC gene and its product, respectively, revealed that there was a high degree of homology between the OU83 bphC gene and the bphC genes of Pseudomonas cepacia LB400 and Pseudomonas pseudoalcaligenes KF707.  相似文献   

17.
A gene encoding the salicylate hydroxylase was cloned from the genomic DNA of Pseudomonas fluorescens SME11. The DNA fragment containing the nahG gene for the salicylate hydroxylase was mapped with restriction endonucleases and sequenced. The DNA fragment contained an ORF of 1,305 bp encoding a polypeptide of 434 amino acid residues. The nucleotide and amino acid sequences of the salicylate hydroxylase revealed several conserved regions with those of the enzyme encoded in P. putida PpG7: The homology of the nucleotide sequence is 83% and that of amino acid sequence is 72%. We found large conserved regions of the amino acid sequence at FAD and NADH binding regions. The FAD binding site is located at the amino terminal region and a lysine residue functions as a NADH-binding site.  相似文献   

18.
A single catalase enzyme was produced by the anaerobic bacterium Bacteroides fragilis when cultures at late log phase were shifted to aerobic conditions. In anaerobic conditions, catalase activity was detected in stationary-phase cultures, indicating that not only oxygen exposure but also starvation may affect the production of this antioxidant enzyme. The purified enzyme showed a peroxidatic activity when pyrogallol was used as an electron donor. It is a hemoprotein containing one heme molecule per holomer and has an estimated molecular weight of 124,000 to 130,000. The catalase gene was cloned by screening a B. fragilis library for complementation of catalase activity in an Escherichia coli catalase mutant (katE katG) strain. The cloned gene, designated katB, encoded a catalase enzyme with electrophoretic mobility identical to that of the purified protein from the B. fragilis parental strain. The nucleotide sequence of katB revealed a 1,461-bp open reading frame for a protein with 486 amino acids and a predicted molecular weight of 55,905. This result was very close to the 60,000 Da determined by denaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the purified catalase and indicates that the native enzyme is composed of two identical subunits. The N-terminal amino acid sequence of the purified catalase obtained by Edman degradation confirmed that it is a product of katB. The amino acid sequence of KatB showed high similarity to Haemophilus influenzae HktE (71.6% identity, 66% nucleotide identity), as well as to gram-positive bacterial and mammalian catalases. No similarities to bacterial catalase-peroxidase-type enzymes were found. The active-site residues, proximal and distal hemebinding ligands, and NADPH-binding residues of the bovine liver catalase-type enzyme were highly conserved in B. fragilis KatB.  相似文献   

19.
In the present study, the xylA gene encoding a thermostable xylose (glucose) isomerase was cloned from Streptomyces chibaensis J-59. The open reading frame of xylA (1167 bp) encoded a protein of 388 amino acids with a calculated molecular mass of about 43 kDa. The XylA showed high sequence homology (92% identity) with that of S. olivochromogenes. The xylose (glucose) isomerase was expressed in Escherichia coli and purified. The purified recombinant XylA had an apparent molecular mass of 45 kDa, which corresponds to the molecular mass calculated from the deduced amino acid and that of the purified wild-type enzyme. The N-terminal sequences (14 amino acid residues) of the purified protein revealed that the sequences were identical to that deduced from the DNA sequence of the xylA gene. The optimum temperature of the purified enzyme was 85 degrees C and the enzyme exhibited a high level of heat stability.  相似文献   

20.
The gene encoding the thermostable phenylalanine dehydrogenase [EC 1.4.1.-] of a thermophile, Thermoactinomyces intermedius, was cloned and its complete DNA sequence was determined. The phenylalanine dehydrogenase gene (pdh) consists of 1,098 nucleotides and encodes 366 amino acid residues corresponding to the subunit (Mr 41,000) of the hexameric enzyme. The amino acid sequence deduced from the nucleotide sequence of the pdh gene of T. intermedius was 56.0 and 42.1% homologous to those of the phenylalanine dehydrogenases of Bacillus sphaericus and Sporosarcina ureae, respectively. It shows 47.5% homology to that of the thermostable leucine dehydrogenase from B. stearothermophilus. The pdh gene was highly expressed in E. coli JM109, the amount of phenylalanine dehydrogenase produced amounting up to about 8.3% of that of the total soluble protein. We purified the enzyme to homogeneity from transformant cells in a day, with a 58% recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号