首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Nodamura virus (NOV) was purified from the hind limbs of infected suckling mice and used as a source of the two genomic RNAs of the virus, RNA 1 and RNA 2. Upon transfection of the viral RNAs into baby hamster kidney (BHK21) cells in culture, vigorous RNA replication ensued and single-stranded RNAs 1 and 2 accumulated to reach an abundance which approximated that of the cellular rRNAs. Transient synthesis of a small subgenomic RNA (RNA 3) was also observed, and double-stranded versions of RNAs 1, 2, and 3 were detected. Three major viral proteins were synthesized in transfected cells. Protein A (about 115 kDa) and protein B (about 15 kDa) were made transiently at early times after transfection, whereas a large amount of protein alpha (43 kDa), the precursor to the two viral coat proteins, was made continuously starting later in the infectious cycle. When very low concentrations of viral RNAs were used for transfection, preferential replication of RNA 1 occurred. This result was attributed to segregation of the transfected viral RNAs to separate cells in culture and the subsequent replication and amplification of RNA 1 in cells that had received no RNA 2. Accordingly, multiple passages of the viral RNAs by transfection at the limit dilution resulted in the purification of RNA 1 free of RNA 2 and demonstrated that RNA 1 was capable of prolonged autonomous replication which was also accompanied by the continuous synthesis of RNA 3. In cells transfected with RNA 1 alone, protein alpha was not synthesized and proteins A and B were made continuously. Electron microscopic analysis of BHK21 cells 24 h after transfection with NOV RNAs 1 and 2 showed that large numbers of virus particles accumulated in the cytoplasm and formed paracrystalline arrays in some regions. Whole NOV purified from transfected BHK21 cells was infectious for suckling mice and had an electrophoretic mobility that was similar but not identical to that of NOV purified from infected mouse muscle. The high yield of NOV, its simple genetic composition, and its unusual genome strategy make this virus an attractive system for the study of viral RNA replication in animal cells.  相似文献   

5.
Cytoplasmic and polyribosomal RNAs from Rous sarcoma virus-transformed and phenotypically reverted field vole cells were fractionated by rate-zonal sedimentation and hybridized with a (3)H-labeled complementary DNA viral probe to determine the size classes of virus-specific RNA present in these cell types. In contrast to Rous sarcoma virus-infected permissive avian cells, only two of three discrete species of virus-specific RNA were detected in the cytoplasm of these vole cells. These included genome-length 35S RNA and a 21S RNA. However, viral 28S RNA, routinely detected in the cytoplasm of productively infected avian cells, could not be found in cytoplasmic RNA from vole cells. In addition, a low-molecular-weight viral RNA sedimenting less than 16S was detected in both infected avian and vole cells. Because of its heterogeneity this latter species is most likely generated from the intracellular degradation of the larger viral RNAs. Both the viral 35S and 21S RNA were also found to be associated with total polyribosomes from these vole cells. Studies were also performed to determine the distribution of both total viral genomic and sarcoma-specific RNA sequences among the size classes of fractionated total polyribosomes. In both vole cell types the majority of cytoplasmic viral RNA sequences were also associated with polyribosomes and were similarly distributed among the size classes of total polyribosomes. Sarcoma-specific sequences were present on both the 35S and 21S RNA species. These data suggest that the expression of the viral transforming gene in revertant field vole cells may be controlled at some stage subsequent to translation of the viral RNA.  相似文献   

6.
Viral mRNA species synthesized early in adenovirus type 2 infection in the presence of cycloheximide were compared with those synthesized in the absence of drug or in the presence of the DNA synthesis inhibitor 1-beta-D-arabinofuranosylcytosine. Cycloheximide caused approximately a 10-fold stimulation in the accumulation of [3H]uridine into early viral mRNA species. The only exception was a 24s mRNA transcribed from the transforming end of the genome; in the presence of cycloheximide, accumulation of this mRNA species was stimulated no more than 2-fold. Treatment with cycloheximide also resulted in the accumulation of polyadenylated RNAs transcribed from EcoRI-C that are heterogeneous and smaller than the 20S mRNA. Other translation inhibitors were shown to have similar effects, suggesting that inhibition of protein synthesis early after infection induces alterations in the metabolism of specific RNA sequences.  相似文献   

7.
8.
9.
When NIH/3T3 mouse fibroblasts were infected with the Moloney strain of murine leukemia virus, part of the viral genome RNA molecules were detected in polyribosomes of the infected cells early in the infectious cycle. The binding appears to be specific, since we could demonstrate the release of viral RNA from polyribosomes with EDTA. Moreover, when infection occurred in the presence of cycloheximide, most viral RNA molecules were detected in the free cytoplasm. Size analysis on polyribosomal viral RNA molecules indicated that two size class molecules, 38S and 23S, are present in polyribosomes at 3 h after infection. Analysis of the polyriboadenylate [poly(rA)] content of viral RNA extracted from infected polyribosomes demonstrated that such molecules bind with greatest abundance at 3 h after infection, as has been detected with total viral RNA. No molecules lacking poly(rA) stretches could be detected in polyribosomes. Furthermore, when a similar analysis was performed on unbound molecules present in the free cytoplasm, identical results were obtained. We conclude that no selection towards poly(rA)-containing viral molecules is evident on binding to polyribosomes. These findings suggest that the incoming viral genome of the Moloney strain of murine leukemia virus may serve as a messenger for the synthesis of one or more virus-specific proteins early after infection of mouse fibroblasts.  相似文献   

10.
In the presence of the antibiotic tunicamycin (TM), glycosylation of herpes simplex virus glycoproteins is inhibited and non-glycosylated polypeptides analogous to the glycoproteins are synthesized (Pizer et al., J. Virol. 34:142-153, 1980). The synthesis of viral proteins and DNA occurs in TM-treated cells. By electron microscopy, nucleocapsids can be observed both in the nucleus and the cytoplasm of TM-treated cells; a small number of enveloped virions were observed on the cell surface. Analyses of the proteins in partially purified virus readily detects viral glycoproteins in the control cells, but neither glycoproteins nor nonglycosylated polypeptide analogs were observed in the virus prepared from TM-treated cells. By labeling the surface of infected cells with 125I, viral glycoproteins were detected as soon as 90 min after infection even when protein synthesis was inhibited with cycloheximide and glycosylation was blocked with TM. Labeling the proteins synthesized in infected cells with [35S]methionine showed that the surface glycoproteins detected in the cycloheximide- and TM-treated cells were not synthesized de novo after infection, but were placed on the cell surface by the infecting virus. Studies with metabolic inhibitors and a temperature-sensitive mutant blocked early in the infectious cycle showed that glycoproteins gA/gB and gD were synthesized soon after infection, but that the synthesis of gC was delayed. Under conditions of infection, in which gC and its precursor pgC are not produced, we have been able to observe the relationships between the glycosylated polypeptides that correspond to pgA/pgB and the nonglycosylated analog made in the presence of TM.  相似文献   

11.
12.
J Tal  E A Craig    H J Raskas 《Journal of virology》1975,15(1):137-144
Synthesis of cytoplasmic viral RNA was studied during infection of cultured human (KB) cells with adenovirus 2. At 6 h, before viral DNA synthesis began 5% of the poly(A)-containing RNA hybridized to viral DNA; by 12 h and at later times more than 80% was virus specified. At 18 h after infection, four major size classes of cytoplasmic viral RNA were identified among the poly(A)-containing molecules. These size classes migrated as 27S, 24S, 19S, and 12 to 15S in polyacrylamide gels. The three larger size classes could also be identified in denaturing formamide gels. Hybridization of the 27S, 24S, and 19S viral RNAs was not inhibited by RNA harvested from cells at early times in infection. Therefore, these three major RNAs must code for late viral proteins. Hybridization of the 12 to 15S RNA was partially inhibited by RNA from cultures harvested at early times, suggesting that in this size class some of the RNA labeled at 18 h codes for early viral proteins.  相似文献   

13.
We have purified the seven virus-specific RNAs which were previously shown to be induced in Sac(-) cells upon infection with mouse hepatitis virus strain A59 (W. J. M. Spaan, P. J. M. Rottier, M. C. Horzinek, and B. A. M. van der Zeijst, Virology 108:424-434, 1981). The individual RNAs, prepared by agarose gel electrophoresis of the polyadenylated RNA fraction from infected cells, were obtained pure, except for the preparations of RNAs 4, 5, and 6, which contained some contamination of RNA 7. The RNAs were microinjected into Xenopus laevis oocytes, and after incubation of these cells in the presence of [35S]methionine, the proteins synthesized were analyzed by polyacrylamide gel electrophoresis. Whereas no translation products of RNAs 1, 2, 4, and 5 were detected, the synthesis of virus-specific polypeptides coded by RNAs 3, 6, and 7 was observed. RNA 7 (0.6 X 10(6) daltons) directed the synthesis of a 54,000-molecular-weight polypeptide which comigrated with viral nucleocapsid protein and which was immunoprecipitated by antiserum from mice that had been infected with the virus. RNA 6 (0.9 X 10(6) daltons) directed the synthesis of three polypeptides with molecular weights of 24,000, 25,500, and 26,500, which migrated with the same electrophoretic mobilities as three low-molecular-weight virion polypeptides. After injection of RNA 3 (3.0 X 10(6) daltons), a polypeptide with a molecular weight of about 150,000 was immunoprecipitated. This polypeptide had no counterpart in the virion, but comigrated with a virus-specific glycoprotein present in infected cells which is immunoprecipitated by a rabbit antiserum against the mouse hepatitis virus strain A59 structural proteins. This antiserum could also immunoprecipitate the translation products of RNAs 3, 6, and 7. These results indicate that RNAs 3, 6, and 7 encode viral structural proteins. The significance of the data with respect to the strategy of coronavirus replication is discussed.  相似文献   

14.
15.
16.
Regulation of simian virus 40 gene expression in Xenopus laevis oocytes.   总被引:4,自引:0,他引:4  
Expression of the simian virus 40 (SV40) early and late regions was examined in Xenopus laevis oocytes microinjected with viral DNA. In contrast to the situation in monkey cells, both late-strand-specific (L-strand) RNA and early-strand-specific (E-strand) RNA could be detected as early as 2 h after injection. At all time points tested thereafter, L-strand RNA was synthesized in excess over E-strand RNA. Significantly greater quantities of L-strand, relative to E-strand, RNA were detected over a 100-fold range of DNA concentrations injected. Analysis of the subcellular distribution of [35S]methionine-labeled viral proteins revealed that while the majority of the VP-1 and all detectable small t antigen were found in the oocyte cytoplasm, most of the large T antigen was located in the oocyte nucleus. The presence of the large T antigen in the nucleus led us to investigate whether this viral product influences the relative synthesis of late or early RNA in the oocyte as it does in infected monkey cells. Microinjection of either mutant C6 SV40 DNA, which encodes a large T antigen unable to bind specifically to viral regulatory sequences, or deleted viral DNA lacking part of the large T antigen coding sequences yielded ratios of L-strand to E-strand RNA that were similar to those observed with wild-type SV40 DNA. Taken together, these observations suggest that the regulation of SV40 RNA synthesis in X. laevis oocytes occurs by a fundamentally different mechanism than that observed in infected monkey cells. This notion was further supported by the observation that the major 5' ends of L-strand RNA synthesized in oocytes were different from those detected in infected cells. Furthermore, only a subset of those L-strand RNAs were polyadenylated.  相似文献   

17.
Previous reports from this laboratory (Honess and Roizman, 1974) have operationally defined alpha polypeptides as the viral proteins that are synthesized first in HEp-2 cells treated with cycloheximide from the time of infection with herpes simplex virus type 1 until the withdrawal of the drug 12 to 15 h after infection. It has also been shown that the viral RNA (designated alpha RNA) that accumulates in the cytoplasm during cycloheximide treatment and on polyribosomes immediately upon withdrawal of the drug is homologous to 10 to 12% of viral DNA, whereas the viral RNA accumulating in the cytoplasm of untreated cells at 8 to 14 h after infection is homologous to 43% of viral DNA (Kozak and Roizman, 1974). In the present study, alpha RNA and cytoplasmic RNA extracted from untreated cells 8 h after infection were each hybridized in liquid to in vitro labeled restriction endonuclease fragments generated by cleavage of herpes simplex virus type 1 DNA with Hsu I, with Bgl II, and with both enzymes simultaneously. The data show that only a subset of the fragments hybridized to alpha RNA, and these are scattered within both the L and S components of the DNA. There are at least five noncontiguous regions in the DNA homologous to alpha RNA; two of these are located partially within the reiterated sequences in the S component. All fragments tested hybridized more extensively with 8-h cytoplasmic RNA than with alpha RNA. Four adjacent fragments, corresponding to 30% of the DNA and mapping within the L component, hybridized exclusively with the cytoplasmic RNA extracted from cells 8 h after infection.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号