首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A histogenetic investigation of the synandrous androecium and syncarpous gynoecium in the flower of Downingia bacigalupii Weiler (Campanulaceae; Lobelioideae) was undertaken for the purpose of comparing the modes of initiation, early growth and fusion in these floral whorls with that reported previously for the perianth in this species. Stamens are initiated as separate organs from the second tunica layer and underlying corpus regions of the concave floral meristem. Subsequent growth of stamens involves apical and intercalary growth in length and rudimentary marginal growth in breadth. Tissues of the four microsporangia originate from hypodermal sporangial initial cells and the filament is formed by intercalary growth at the base of the anther. Lateral fusion of stamens is ontogenetic and involves cuticular fusion of adjacent epidermal layers. The two emergent carpel primordia arise as crescentic organs by periclinal divisions in the second tunica layer and corpus zones. Carpel primordia also undergo apical and intercalary growth in length as well as extensive marginal growth in breadth. Radial growth in carpels is mediated by an adaxial meristem which shows its greatest concentration of activity at the carpel margins. Carpel fusion appears to be partially ontogenetic accompanied by zonal growth. Closure of the stylar canal is by the formation of a transmitting tissue derived from the protodermal layers of the adaxial carpel surfaces. A discoid nectary is initiated around the base of the style and formation of the inferior ovary is by intercalary growth of the base of the concave floral bud. The two parietal placentae originate as longitudinal outgrowths from the walls of the floral cup. Ovule initiation is simultaneous at first and then intercalary during subsequent elongation of the ovary. The ovules are anatropous, unitegmic and tenuinucellate. Stamen and carpel procambium shows a slight delay in differentiation when compared to that reported for the perianth and bract, but in all other respects carpels resemble other floral organs in their patterns of histogenesis and early growth. Stamens diverge from the other floral organs in their early pattern of growth, but a consideration of all features of their histogenesis suggests an appendicular rather than an axial interpretation of these organs.  相似文献   

2.
The inflorescence of Houttuynia cordata produces 45–70 sessile bracteate flowers in acropetal succession. The inflorescence apical meristem has a mantle-core configuration and produces “common” or uncommitted primordia, each of which bifurcates to form a floral apex above, a bract primordium below. This pattern of organogenesis is similar to that in another saururaceous plant, Saururus cernuus. Exceptions to this unusual development, however, occur in H. cordata at the beginning of inflorescence activity when four to eight petaloid bract primordia are initiated before the initiation of floral apices in their axils. “Common” primordia also are lacking toward the cessation of inflorescence apical activity in H. cordata when primordia become bracts which may precede the initiation of an axillary floral apex. Many of these last-formed bracts are sterile. The inflorescence terminates with maturation of the meristem as an apical residuum. No terminal flowers or terminal gynoecia were found, although subterminal gynoecia or flowers in subterminal position may overtop the actual apex and obscure it. Individual flowers have a tricarpellate syncarpous gynoecium and three stamens adnate to the carpels; petals and sepals are lacking. The order of succession of organs is: two lateral stamens, median stamen, two lateral carpels, median carpel. The three carpel primordia almost immediately are elevated as part of a gynoecial ring by zonal growth of the receptacle below the attachment of the carpels. The same growth elevates the stamen bases so that they appear adnate to the carpels. The trimerous condition in Houttuynia is the result of paired or solitary initiations rather than trimerous whorls. Symmetry is bilateral and zygomorphic rather than radial. No evidence of spiral arrangement in the flower was found.  相似文献   

3.
4.
In this study, we evaluated the floral ontogeny of Swartzia dipetala, which has peculiar floral features compared with other legumes, such as an entire calyx in the floral bud, a corolla with one or two petals, a dimorphic and polyandrous androecium and a bicarpellate gynoecium. We provide new information on the function of pollen in both stamen morphs and whether both carpels of a flower are able to form fruit. Floral buds, flowers and fruits were processed for observation under light, scanning and transmission electron microscopy and for quantitative analyses. The entire calyx results from the initiation, elongation and fusion of three sepal primordia. A unique petal primordium (or rarely two) is produced on the adaxial side of a ring meristem, which is formed after the initiation of the calyx. The polyandrous and dimorphic androecium also originates from the activity of the ring meristem. It produces three larger stamen primordia on the abaxial side and numerous smaller stamen primordia on the adaxial side. These two types of stamens bear morphologically similar ripening pollen grains. However, prior to the dehiscence of thecae and presentation of pollen in the anther, only the pollen grains of the larger stamens contain amyloplasts. Two carpel primordia are initiated as distinct protuberances, alternating with the larger stamens, in a slightly inner position in the floral meristem, constituting the bicarpellate gynoecium. Both carpels are able to form fruit, although only one fruit is generally produced in a flower. The increase in gynoecium merism probably results in an increase in the surface deposition of pollen grains and consequently in the chance of pollination. This is the first study to thoroughly investigate organogenesis and the ability of the carpel to form fruit in a bicarpellate flower from a member of Fabaceae, in addition to the pollen ultrastructure in the heteromorphic stamens associated with the ‘division of labour’ sensu Darwin. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 173 , 303–320.  相似文献   

5.
The inferior ovary of Boottia cordata, Ottelia alismoides, and their hybrid is appendicular in nature, the carpels are congenitally only slightly connate, and they are unsealed. All floral organs except the sepals originate from common primordia in the female and bisexual flowers. A flat residual floral apex is pressnt. There is a vestigial superior ovary of three ontogenetically fused carpels in the male flower of Boottia cordata. The hybrid is intermediate in many characteristics and has partially fertile stamens and staminodia. The sequence of development in all flowers is acropetal. These plants appear to be related to the Butomaceae and they show evolutionary tendencies parallel to those in the Nymphaeaceae.  相似文献   

6.
The flowers of mangrove Rhizophoraceae (tribe Rhizophoreae) are adapted to three different pollination mechanisms. Floral development of representative species of all four genera suggests that the ancestral flower of the tribe was unspecialized, with successively initiated whorls of separate sepals, petals, antisepalous stamens, and antipetalous stamens; at its inception, the gynoecium had a united, half-inferior ovary and separate stigmatic lobes. This developmental pattern is found in Rhizophora mangle (wind-pollinated) and Ceriops decandra (insect-pollinated). In Kandelia, all floral organs distal to the sepals are initiated simultaneously, and there has apparently been an evolutionary amplification in the number of stamens to about six times the number of petals. Explosive pollen release evolved independently in C. tagal and in Bruguiera. In the former, all stamens belong to one whorl and arise simultaneously upon a very weakly differentiated androecial ring primordium. In Bruguiera, the androecial ring is pronounced, and two whorls of stamens arise upon it; the primordia of the antisepalous whorl arise first but are closer to the center of the apex than the antipetalous stamen primordia. The antisepalous stamens bend toward and are enclosed by the petals early in development. In all genera, the inferior ovary develops by zonal growth of receptacular tissue; additional intercalary growth above the placenta occurs in Bruguiera. In general, floral specialization is accompanied by an increase in the width of the floral apex compared to the size of the primordia, increasing fusion of the stylar primordia, and decreasing prominence of the superior portion of the ovary. Apparent specializations of petal appendages for water storage, including the presence of sub-terminal hydathodes (previously unreported in any angiosperm), were found in two species in which flowers remain open during the day but were absent from two species normally pollinated at night or at dawn. Distinctive tribal characteristics that may aid in phylogenetic analysis include the mode of development of the inferior ovary; the aristate, bifid, usually fringed petals that individually enclose one or more stamens; the intrastaminal floral disc; and the initially subepidermal laticiferous cell layer in the sepals and ovary.  相似文献   

7.
Flowers of Tupidanthus show an extreme case of floral polymery among asterids. Floral development and gynoecium structure have been examined. The floral meristem has a complex folded shape. The tiny calyx is initiated as a continuous ring primordium. The corolla is initiated as a lobed ring and develops into a calyptra. All stamen primordia appear simultaneously as a single whorl. The carpels, also in a single whorl, tend to alternate with the stamens. Some Schefflera species related to Tupidanthus are also studied. The flower of Tupidanthus is interpreted as a result of fasciation. Further investigation should determine whether mutation(s) in gene(s) of the CLAVATA family are responsible for the fasciation here. The significance of Tupidanthus for understanding spatial pattern formation in flowers of Araliaceae, and both functional and developmental constraints in angiosperm flowers with a single polymerous carpel whorl are discussed.  相似文献   

8.
The flowers of Limnocharis flava (L.) Buch. are borne in an indeterminate umbel and each consists of three sepals, three yellow petals, and about 18 carpels surrounded by numerous stamens and staminodia. The androecium is centrifugally developed, and the last-formed members are staminodial; it is supplied by branching vascular systems. Carpels arise almost simultaneously, and a prominent residual floral apex remains. The carpels are partially conduplicately closed and are also primitive in possessing laminar placentation and in lacking differentiation of a style. The gynoecium is essentially apocarpous, but there are slight fusions of adjacent carpels near their ventral margins where they are attached to the receptacle. It is suggested that the Limnocharis flower is the most primitive in the family.  相似文献   

9.
Floral development in Piper was compared between four-staminate species (P. aduncum and P. marginatum) and six-staminate species (P. amalago). All Piper species have a syncarpous gynoecium composed of three or four carpels. The floral apex is initiated by a periclinal division in the subsurface layer in the axil of a bract 40-55 μm high; initiation of the bracts occurs separately and considerably earlier. The floral primordium widens and the first pair of stamens are initiated at either side. The median anterior stamen forms next, and the median posterior later. This sequence is common to all species studied. In the six-staminate P. amalago, the last two stamens form simultaneously in lateral-anterior positions. The stamens hence arise as pairs, and symmetry is bilateral or dorsiventral. The three or four carpels arise simultaneously; they are soon elevated on a gynoecial ring by growth of the receptacle below the level of attachment of the carpels to produce a syncarpous gynoecium. The floral apex lastly produces the solitary basal ovule and is used up in its formation.  相似文献   

10.
Melchior , Robert C., and John W. Hall . (U. Minnesota, Minneapolis.) A calamitean shoot apex from the Pennsylvanian of Iowa. Amer. Jour. Bot. 48(9): 811–815. Illus. 1961.—A shoot apex of a calamitean stem is described from the Des Moines Series, Middle Pennsylvanian. Internodal elongation of the 7 preserved internodes follows a sigmoid curve. A large apical cell has produced derivatives in a fashion apparently comparable to those in Equisetum arvense, except for the number of cells in the first leaf primordium ring and, possibly, the intercalary meristem. Pith meristem developed close to the apical cell. Data from internodal cell elongation of hypodermal cells of the cortex are presented which demonstrate intercalary internodal growth; no intercalary meristems are preserved and the existence of intercalary meristems which might have produced a jointed stem like that of Equisetum is only inferred.  相似文献   

11.
Five taxa representing the three tribes of the Cactaceae have similar patterns of stamen and carpel initiation but display differences in early receptacle development. The first ring of stamens and the carpels arise simultaneously from subsurface layers. The bases of carpels are congenitally connate. Additional stamens are initiated centrifugally. The shape of the floral meristem within the ring created by the first stamens varies. In Pereskia corrugata it remains broadly convex; in Opuntia engelmannii it forms a depression with a small convex central region; in Epiphyllum strictum it forms a broad shallow depression; in Echinocereus reichenbachii var. albispinus it develops a deep depression; and in Mammillaria compressa it develops a depression prior to stamen and carpel initiation. Changes in receptacle shape result from cessation of apical growth and activation of an intercalary ring meristem. These two processes occur earlier in ontogeny in the more advanced of these five taxa.  相似文献   

12.
The development of the bisexual flower of Lophotocarpus calycinus and of the unisexual flowers of Sagittaria latifolia has been observed. In all eases floral organs arise in acropetal succession. In L. calycinus, after initiation of the perianth, the first whorl of stamens to form consists of six stamens and is ordinarily followed by two alternating whorls of six stamens each. The very numerous carpels arc initiated spirally. In the male flower of S. latifolia the androecium develops in spiral order. A few rudimentary carpels appear near the floral apex after initiation of the stamens. There are no staminodia. The female flower has a similar developmental pattern to that of Lophotocarpus except that a prominent residual floral apex is left bare of carpels. The vascular system in all flowers is semiopen, with vascular bundles passing to the floral organs in a pattern unrelated to the relative positions of those organs. The androecia of these two taxa are similar to those of some Butomaceae and relationships based on ontogeny and morphology are suggested. The gynoecia are meristically less specialized but morphologically more specialized than the gynoecia of Butomaceae.  相似文献   

13.
We studied the inflorescence, and in particular ontogeny and development of the florets in Senecio vernalis as a representative member of Asteraceae, using epi-illumination microscopy. Initiation and subsequent development of florets on the highly convex inflorescence apex occur acropetally, except for pistillate ray florets, which show a lag in initiation. Receptacular bracts derive from the receptacular surface after development of all florets. The order of whorl initiation in both disc and ray florets include corolla, androecium and finally the pappus, together with the gynoecium. Development of corolla lobes from a ring meristem occurs in bidirectional order starting from the lateral side, whereas stamens incept unidirectionally from the abaxial side. Concurrently with the inception of two median carpel primordia, a ring meristem develops at the base of the corolla from which pappus bristles differentiate in later stages. Pistillate ray florets show significant differences from perfect disc florets as reflected by the zygomorphic shape of the floral apex and a shift of floral merosity from pentamery to tetramery. Loss of stamens in ray florets occurs due to abortion of primordia after initiation.  相似文献   

14.
Floral morphology ofBrasenia schreberi Gmel. andCabomba caroliniana A. Gray was observed chiefly from an anatomical point of view. The receptacle ofB. schreberi is rather flat and a vascular plexus is observable in the mature flower. The vasculature in this plexus is so complex taht it is not easy to trace its structure in detail. by observation on small buds, it can be seen that the receptacular vasculature consists of a girdling bundle in the basal area and usually nine receptacular strands from which traces to the petals and stamens branch off. The vasculature in the receptacle is reconstructed and diagramatically shown as though split longitudinally and spread out in one plane. Floral vasculature inCabomba caroliniana is simpler, and is probably related to the smaller number of stamens and carpels. It also has a girdling bundle at the bottom of receptacle and this vasculature is suggested to be derived by simplification from aBrasenia-type vasculature. Evidence from floral anatomy suggests that these two genera are closely related. InNymphaea, a vascular plexus in the receptacle is also observed (Moseley, 1961; Ito 1983). The plexus ofBrasenia andNymphaea are not the same in their construction. Nevertheless, their fundamental floral vasculature is comparable and it is preferable to place them in the same family or same order.  相似文献   

15.
In Tetracentron sinense of the basal eudicot family Trochodendraceae, the flower primordium, together with the much retarded floral subtending bract primordium appear to form a common primordium. The four tepals and the four stamens are initiated in four distinct alternating pairs, the first tepal pair is in transverse position. The four carpels arise in a whorl and alternate with the stamens. This developmental pattern supports the interpretation of the flower as dimerous in the perianth and androecium, but tetramerous in the gynoecium. There is a relatively long temporal gap between the initiation of the stamens and the carpels. The carpel primordia are then squeezed into the narrow gaps between the four stamens. In contrast to Trochodendron, the residual floral apex after carpel formation is inconspicuous. In their distinct developmental dimery including four tepals and four stamens, flowers of Tetracentron are reminiscent of other, related basal eudicots, such as Buxaceae and Proteaceae.  相似文献   

16.
Zippelia begoniaefolia Bl., a monotypic species having characteristics of both Piperaceae and Saururaceae, has racemes of about 20 small flowers lacking a perianth, each with six free stamens and a four-carpellate syncarpous gynoecium. The inflorescence apical meristem initiates bracts acropetally and helically, each of which subtends a later initiated single floral apex; there are no “common” primordia. The six stamens are initiated as two lateral pairs and two solitary successive primordia, the latter two opposite in median sagittal positions. Four carpel primordia are initiated as a lateral pair and two successively initiated in the median sagittal plane. This order of organ inception is unique among Piperaceae and Saururaceae. Intercalary growth below carpellary attachment raises them up on a common cylindrical base that becomes the syncarpous ovary, covered with unique glochidiate hairs and containing a single basal ovule. The free portions of the carpels become the reflexed papillate stigmas. The floral vascular system has a single bundle at base that branches to supply the bract and flower traces. The floral vasculature is similar but not identical to that of Saururus (Saururaceae) and some Piper species (Piperaceae). Plesiomorphic character states of Zippelia that are shared with Saururus include hypogyny, free stamens, cleft stigma, and a similar floral groundplan. Synapomorphies, derived shared character states that unite Zippelia with Piperaceae, include syncarpy, solitary ovule, basal placentation, fused ventral carpellary bundles, and a double vascular cylinder in the stem. Cladistic analysis aligns Zippelia with Piperaceae because they share apomorphies, and because Zippelia shares only plesiomorphies with Saururus.  相似文献   

17.
Female flower and fruit anatomy, including vasculature, are studied for the first time in Tetroncium (Juncaginaceae: Alismatales). Other members of Juncaginaceae (and the relatively close Maundiaceae) possess a peculiar type of gynoecium with pronounced carpel fusion via the floral centre. Their carpels are supplied by individual vascular traces and can be interpreted either as synascidiate (if viewed as horizontally inserted) or free and plicate (if viewed as obliquely inserted on an elongated receptacle). In Tetroncium, the gynoecium is tetracarpellate and clearly has a well‐developed synascidiate zone with septa formed by united flanks of adjacent carpels. The gynoecium of Tetroncium is supplied by a common ring of vascular tissue that splits into dorsal and heterocarpellary ventral (synventral) bundles, a condition that can be expected in a typical syncarpous gynoecium. The fruit is indehiscent and contains one or two seeds. The syncarpy of Tetroncium is of functional significance for fruit formation, as it allows the thin septa to be distorted, thus providing more space for the developing seed(s). The occurrence of typical syncarpy in Tetroncium provides further evidence for the highly homoplastic evolution of gynoecium characters in the early‐divergent monocot order Alismatales. Either the similarity between gynoecia of Maundiaceae and Triglochin (Juncaginaceae) is due to parallel evolution or the syncarpy of Tetroncium should be viewed as secondarily derived. In the latter scenario, fusion via the floral centre is probably a synapomorphy of core Alismatales (Helobiae) and more typical syncarpy evolved independently in several lineages, such as Scheuchzeria, Tetroncium and Butomus/Hydrocharitaceae. In total, Tetroncium differs from other Juncaginaceae in 13 structural characters, including ensiform leaves that are similar to those of Tofieldiaceae. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 179 , 712–724.  相似文献   

18.
The inflorescence of Downingia bacigalupii (Campanulaceae; Lobelioideae) is an indeterminate spike. Axillary flowers have a long, linear, inferior ovary with parietal placentation, a pentamerous synsepalous calyx, zygomorphic sympetalous corolla, syngenesious stamens, and a bicarpellate, syncarpous gynoecium. On the basis of floral vascular anatomy the inferior ovary is interpreted as appendicular, representing adnation of outer floral whorls to the gynoecium. Floral ontogeny shows that sepals are initiated in an adaxial to abaxial sequence rather than the 2/5 phyllotaxis reported for other members of Lobelioideae. Growth of the common bases of sepal lobes forms a floral cup and initiation of the following floral whorls occurs along the inner margins of the cup. Continued basal growth of the cup-shaped bud results in the formation of the elongated inferior ovary. Earlier evidence for the interpretation of a cup-shaped receptacle during development of epigynous flowers is reexamined and it is concluded that the concave floral bud of D. bacigalupii can also be interpreted as common growth of connate floral whorls, supporting interpretations based on vascular anatomy. Comparison of floral development between Downingia bacigalupii and Pereskia aculeata (Cactaceae) reveals ontogenetic differences between flowers with appendicular and receptacular cups.  相似文献   

19.
In order to assess the validity of various interpretations of tubular leaves of angiosperms, a histogenetic study of the ontogeny of adult leaves of Darlingtonia californica was undertaken. The adult leaf of Darlingtonia is characterized by a sheathing leaf base, an elongate ascidium, an overarching hood, and two “fishtail” appendages which arise near the leaf apex. A keellike growth, with two rows of alternate vascular bundles, traverses the tube from base to mouth. Ontogenetic studies show that the primordium arises by a monopodial rather than a sympodial mode of growth as previously reported. After the formation of a small, erect primordium, a restricted adaxial meristem is initiated that expands both adaxially and upwards. This “querzone” serves, in effect, to congenitally combine the two primordial margins during its extension. Growth and maturation of the subjacent portions cause tubular elongation in the leaf. Primordial apical divisions are later replaced by more general intercalary growth with acropetal and centrifugal maturation. The hood and fishtails are established early in ontogeny by adaxial growth of the primordial apex and subsequent activation of juxtaposed localized meristems. Comparative morphology has established that the epiascidiate leaf is a foliar appendage that undergoes certain specific morphogenetic modifications. It has a structural relationship to ensiform appendages of Acacia and Acorus as well as to peltate foliar organs. The early ontogeny of Darlingtonia leaves is considered to be homologous with other epiascidiate foliar organs, including some supposedly primitive carpels.  相似文献   

20.
The ontogeny of the flower and fruit of Illicium floridanum Ellis, the Star Anise, was investigated. Each of 5 or 6 bracts in each mixed terminal bud subtends either a vegetative or floral bud. The solitary flowers occur in terminal or axillary positions. Each flower has 3–6 subtending bracteoles arranged in a clockwise helix. The flowers in our material have 24–28 tepals, 30–39 stamens, and usually 13 (rarely 19) uniovulate carpels. Tepals and stamens are initiated in a low-pitched helix; carpels later appear whorled, but arise successively at different levels on the apical flanks. The floral apex is high-convex in outline with a tunica-corpus configuration; it increases in height and width throughout initiation of the floral appendages. Tepals, stamens, and carpels are initiated by one to several periclinal divisions in the subsurface layers low on the apical flanks, augmented by cell divisions in the outer layers of the corpus. The carpel develops as a conduplicate structure with appressed, connivent margins. Procambium development of floral appendages is acropetal and continuous. Bracteoles, tepals, stamens and carpels are each supplied by 1 trace; the carpellary trace splits into a dorsal and an ascending ventral sympodium. The latter bifurcates to form 2 ventral bundles. The ovular bundle diverges from the ventral sympodium. Ovule initiation occurs in a median axillary position to the carpel, an unusual type of ovule initiation. The fruit vasculature is greatly amplified as the receptacle and follicles enlarge. After carpel initiation an apical residuum persists which is not vascularized; a plate meristem develops over its surface to produce a papillate structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号