首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An enriched population of early myeloid cells has been obtained from normal mouse bone marrow by injection of mice with sodium caseinate and the removal of cells with C3 (EAC) rosettes by Ficoll-Hypaque density centrifugation. This enriched population had no EAC or Fc (EA) rosettes and contained 87% early myeloid cells stained for myeloperoxidase and/or AS-D-chloroacetate esterase, 7% cells in later stages (ring forms) of myeloid differentiation and 6% unstained cells, 2% of which were small lymphocytes. After seeding in agar with the macrophage and granulocyte inducer MGI, the enriched population showed a cloning efficiency of 14% when removed from the animal and of 24% after one day in mass culture. Both the enriched and the unfractionated bone marrow cells gave the same proportion of macrophage and granulocyte colonies. The normal early myeloid cells were induced to differentiate by MGI in mass culture in liquid medium to mature granulocytes and macrophages. The sequence of granulocyte differentiation was the formation of EA and EAC rosettes followed by the synthesis and secretion of lysozyme and morphological differentiation to mature cells. D+ myeloid leukemic cells with no EA or EAC rosettes had a similar morphology to normal early myeloid cells and showed the same sequence of differentiation. The induction of EA and EAC rosettes occurred at the same time in both the normal and D+ leukemic cells, but lysozyme synthesis and the formation of mature granulocytes was induced later in the leukemic than in the normal cells. The results indicate that selection for non-rosette-forming normal early myeloid cells also selected for myeloid colony forming cells, that these normal early myeloid cells can form colonies with differentiation to macrophages and granulocytes, that normal and D+ myeloid leukemic cells have a similar sequence of differentiation and that the normal cells had a greater sensitivity for the formation of mature cells by MGI.  相似文献   

2.
Normal hematopoietic cells require the presence of a protein (MGI) in the appropriate conditioned medium (CM) for cell viability and growth and for differentiation to mature macrophages and granulocytes. Clones of myeloid leukemic cells have been established in culture (D+ clones) which require CM with this protein for differentiation, but not for cell viability and growth. It has been shown that these leukemic cells can be induced by CM to again require, like normal cells, the presence of CM for cell viability and growth. Induction of this requirement, which will be referred to as RVG, occurred before the D+ cells differentiated to mature granulocytes. Clones of myeloid leukemic cells (D? clones) that could not be induced to differentiate to mature cells, did not show the induction of RVG. The steroid hormones prednisolone and dexamethasone can induce some, but not all the changes associated with differentiation of D+ cells. Incubation with these steroids did not result in the induction of a requirement for these steroids for cell growth and viability. Studies with CM from different sources have shown, that all batches that induced RVG also induced differentiation of D+ cells and that both activities were inhibited after treating the CM with trypsin. It is suggested that the same protein (MGI) may be involved in both activities. Incubation of D+ cells with CM resulted in an increase in agglutinability by concanavalin A and this increase was maintained even in the absence of CM. This suggests, that the induction of RVG in D+ myeloid leukemic cells is associated with a change in the cell surface membrane.  相似文献   

3.
Sera from different strains of mice injected with endotoxin induced clones (D+) from a cultured line of myeloid leukemic cells to undergo normal differentiation to mature granulocytes and macrophages. Other clones (D?) derived from the same cell line were not inducible by these sera to undergo normal cell differentiation. Sera from the same strains of mice that had not been injected with endotoxin, increased the cloning efficiency of D+ and D ? clones but did not induce differentiation. Endotoxin serum induced differentiation in D+ cells at dilutions up to 1:64, but increased the cloning efficiency of these cells at dilutions up to 1:2048. The end point of the dilution of endotoxin serum that induced differentiation in D+ cells, was also the end point that induced the formation of colonies with differentiation from normal bone marrow cells. The results indicate that serum from endotoxin treated animals can serve as a good in vivo source to induce normal differentiation in D+ myeloid leukemic cells; that the progeny of a single leukemic cell was induced to undergo differentiation to both macrophages and granulocytes; that endotoxin serum contained two activities, one that increased cloning efficiency and the other that induced cell differentiation; and that the same material in endotoxin serum induced cell differentiation in normal and leukemic cells.  相似文献   

4.
D+ but not D- myeloid leukemic cells can be induced by the appropriate conditioned medium or by serum from endotoxin treated mice, to undergo cell migration in agar, cell attachment to the surface of a Petri dish and differentiation to mature macrophages and granulocytes. Inhibition of cell multiplication by cytosine arabinoside, hydroxyurea, mitomycin C, thymidine, 5-bromodeoxyuridine, 5-iododeoxyuridine, 5-fluorodeoxyuridine or actinomycin D, but not by vinblastine or cycloheximide, induced cell migration, cell attachment to the Petri dish and the formation of macrophages in D+ cells. There was no induction of cell migration or formation of macrophages and a much lower induction of cell attachment in D- cells. The induction of these changes in D+ cells required protein synthesis and the inhibitors showed the same toxicity for D+ and D- cells. The results indicate, that the inhibitors induced specific surface membrane changes in D+ but not in D- cells.  相似文献   

5.
G Symonds  L Sachs 《The EMBO journal》1982,1(11):1343-1346
Growth and differentiation of normal myeloid haematopoietic cells are regulated by a family of macrophage- and granulocyte-inducing (MGI) proteins. Some of these proteins (MGI-1) induce cell growth and others (MGI-2) induce cell differentiation. Addition of MGI-1 to normal myeloid cells induces growth and also induces the endogenous production of MGI-2. This induction of differentiation-inducing protein by growth-inducing protein then ensures the coupling between growth and differentiation found in normal cells. There are myeloid leukemic cells that constitutively produce their own MGI-1, but the cells do not differentiate in culture medium containing horse or calf serum. By removing serum from the medium, or in medium with mouse or rat serum, these leukemic cells are induced to differentiate to mature cells, which like normal mature cells, then no longer multiply. Leukemic cells with constitutive production of MGI-1 continuously cultured in serum-free medium with transferrin were also induced to differentiate by removing transferrin. This induction of differentiation was in all these cases associated with the endogenous production of MGI-2 by the cells. The results indicate that changes in specific constituents of the culture medium can result in autoinduction of differentiation in these leukemic cells due to restoration of the induction of MGI-2 by MGI-1, which then restores the normal coupling of growth and differentiation.  相似文献   

6.
H Eisen 《Blood cells》1978,4(1-2):177-188
Friend virus-transformed murine erythroleukemic cells (FL cells) have been used as an in vitro model for the study of the expression of the genetic program involved in the final stages of erythroid differentiation. Treatment of the FL cells with chemical inducers such as dimethylsulfoxide results in their differentiation from 'pro-erythroblasts' to orthochromatic normoblasts and the appearance of several erythroid markers including hemoglobin, enzymes of the heme pathway, heme, glycophorin, and spectrin. These markers appear in an ordered sequence, suggesting that two genetic programs are involved in the erythroid differentiation of the cells. Preliminary studies with erythropoietin-stimulated fetal liver cultures in vitro suggest that the same is true for normal erythroid differentiation.  相似文献   

7.
There are clones of myeloid leukemic cells that can be induced to differentiate by the normal differentiation-inducing protein MGI to form Fc and C3 rosettes, mature macrophages and granulocytes. One of these clones (MGI+DMSO+) was also inducible by dimethylsulfoxide (DMSO) for C3 but not Fc rosettes, and for mature macrophages but not for mature granulocytes. Other clones (MGI+DMSO-) were inducible by MGI but not DMSO and a third type of clone (MGI-DMSO-) was not inducible by either compound. Clones that differed in their inducibility by DMSO showed a similar inhibition of cell multiplication by DMSO. The results indicate, that some stages of differentiation can be induced by DMSO in an appropriate clone of myeloid leukemic cells and that there are different cellular sites for induction by DMSO and MGI.  相似文献   

8.
B Hoffman-Liebermann  L Sachs 《Cell》1978,14(4):825-834
The regulation of cytoplasmic proteins in mutants of mouse myeloid leukemic cells, differing in their competence to be induced to differentiate by the normal macrophage- and granulocyte-inducing protein (MGI) and the steroid inducer dexamethasone, was analyzed using SDS-polyacrylamide gel electrophoresis of 35S-methionine-labeled proteins. Before induction, no consistent differences in the pattern of cytoplasmic proteins were found between clones with different capabilities to differentiate.Four MGI+D+ clones, which are induced by MGI for Fc and C3 rosettes, the synthesis and secretion of lysozyme, and the formation of mature macrophages and granulocytes, all showed the same nine prominent changes in cytoplasmic proteins after induction. Five of these changes were either an increase or a decrease in proteins present in uninduced cells; four proteins appeared to be newly synthesized. One of the proteins that increased after induction was identified as actin. The pattern of cytoplasmic proteins from MGI-induced MGI+D+ clones more closely resembled that of normal peritoneal macrophages and granulocytes than the pattern of the uninduced clones. The relationship of these protein changes to cell differentiation was further substantiated by the finding that MGI+D? cells, which can be induced by MGI for Fc and C3 rosettes and lysozyme, but not for mature cells, showed only four cytoplasmic protein changes which were quantitatively less than those found for MGI+D+ clones. An MGI?D? clone which was not inducible for any differentiation-associated properties by MGI showed no alteration in protein synthesis. Thus in all the clones studied, there was a correlation between the number and extent of protein changes and the degree of MGI-induced differentiation.In MGI+D+ clones, some of the differentiation-associated properties induced by MGI can be induced by the steroid hormone dexamethasone. Of the nine protein changes induced by MGI, six were also induced by dexamethasone, and no changes were induced by dexamethasone which were not also induced by MGI. These results, which were also shown by two-dimensional polyacrylamide gel electrophoresis, indicate that in cells which can respond to both MGI and dexamethasone, the proteins induced by dexamethasone were a subset of those induced by MGI.  相似文献   

9.
Regulation of gene expression during myeloid cell differentiation has been analyzed using clones of myeloid leukemic cells that differ in their competence to be induced to differentiate by the normal macrophage- and granulocyte-inducing protein MGI. Changes in the relative rate of synthesis for specific proteins were compared to changes in the relative amounts of corresponding translatable poly(A)+ mRNAs, assayed in the reticulocyte cell-free translation system, using two-dimensional gel electrophoresis. Of the 217 proteins which changed during MGI-induced differentiation of normally differentiating MGI+D+ leukemic cells, 136 could be identified as products of cell-free translation. Eighty-four percent of the 70 decreases in synthesis, most of which occurred early during differentiation, were not accompanied by a parallel decrease in the amount of translatable mRNA, but were accompanied by a parallel shift of the corresponding mRNAs from the polysomal to the monosomal and free mRNA fractions. These results indicate that most of the early decreases in the synthesis of proteins were translationally regulated. In contrast, 81% of the proteins which increased in synthesis and 71% of the proteins that were induced de novo were regulated at the level of mRNA production. Experiments with differentiation defective mutants have shown that they were blocked both at the level of mRNA production and mRNA translation. The data with these mutants have suggested that there were different subsets of translationally regulated proteins which were separately regulated. The translational blocks for several proteins in these mutant clones have also made it possible to identify additional translational sites of regulation for protein changes that were controlled at the level of mRNA production during normal differentiation. The results indicate that translational regulation may predominantly have a different function in cell differentiation than regulation by mRNA production, and that differentiation-defective mutants can be blocked at either level.  相似文献   

10.
11.
A homogeneous population of undifferentiated myeloid blast cells was purified from human fetal liver by rosette sedimentation of erythroblasts and macrophages, after coating these cells with monoclonal antibodies, followed by a cell elutriation step. The undifferentiated blast cells were maintained in culture, in a serum-free medium containing 1 mg l-1 inositol, by the presence of a high concentration of interleukin-3 (100 U ml-1). This allowed equilibrium labelling of cells with [2-3H]myo-inositol and analysis of the concentrations of inositol metabolites. The myeloid blast cells contained high concentrations of an unidentified inositol metabolite, possibly sn-glycero-3-phospho-1-inositol (GroPIns, 22 microM), inositol monophosphate (InsP, 16 microM), an unidentified inositol bisphosphate (InsP2, 9.4 microM), inositol pentakisphosphate (InsP5, 37 microM) and inositol hexakisphosphate (InsP6, 31 microM). These high concentrations are similar to those reported in the promyeloid cell line, HL60. Treatment of the blast cells with 10 nM phorbol myristate acetate (PMA) resulted in rapid differentiation of 48% of the cells towards monocytes. Notable changes in the levels of inositol metabolites included an increase in the putative GroPIns peak (to 73 microM) and decreases in the concentrations of InsP4 (from 4 microM to 1 microM) and InsP5 (to 21 microM). These changes in response to PMA, with the exception of the rise in the putative GroPIns, are similar to those reported in HL60 cells undergoing monocyte differentiation. These observations suggest that the abundant inositol polyphosphates may have an as yet unknown role in myeloid differentiation.  相似文献   

12.
Induction of differentiation in one type of clone of mouse myeloid leukemic cells by mouse or human interleukin 6 (IL-6) and in another type of clone by mouse granulocyte-macrophage colony-stimulating factor (GM-CSF) was found to be associated with induction of IL-6 and GM-CSF mRNA and protein. The results indicated that IL-6 and GM-CSF could positively autoregulate their own gene expression during myeloid cell differentiation. It is suggested that this autoregulation may serve to enhance and prolong the signal induced by these proteins in cells transiently exposed to IL-6 or GM-CSF.  相似文献   

13.
The mouse myeloid leukemia cell line (M1) is known to differentiate in vitro into macrophages and granulocytes upon treatment with various inducers including mouse ascitic fluid. Changes of cell surface proteins during differentiation of M1 cells were analyzed by the lactoperoxidase-catalyzed radioiodination method and SDS-polyacrylamide slab gel electrophoresis. Treatment of the cells with ascitic fluid changed the electrophoretic pattern of the iodinated proteins, the prominent change being the appearance of a new protein with a molecular weight of 180 000 (P180). Iodinated P180 was also detected in normal macrophages in granulocytes, which are similar to differentiated M1 cells. This protein was metabolically labeled with L-[14C]fucose, increasing with the period of the treatment. P180 was not expressed on ascitic fluid-treatment of a resistant clone of M1 cells that could not be induced to differentiate. These results indicate that P180 is a glycoprotein that is exposed on the outer surface of differentiated M1 cells, and that its expression is associated with differentiation of the cells. P180 was solubilized from 125I-labeled macrophages with detergents bound to concanavalin A-Sepharose. This suggests that P180 is one of the receptors for concanavalin A. Therefore, P180 may contribute partly to the increases in agglutinability by concanavalin A and in the number of concanavalin A binding sites on the surface of M1 cells, which are known to be associated with differentiation of M1 cells.  相似文献   

14.
15.
Summmary Electric characteristics of internodalChara australis cells, from which the tonoplast had been removed by vacuolar perfusion with media containing EGTA, were studied in relation to intracellular concentrations of ATP and Mg2+ using the ordinary microelectrode method and the open-vacuole method developed by Tazawa, Kikuyama and Nakagawa (1975.Plant Cell Physiol. 16:611). The concentration of ATP was decreased by introducing hexokinase and glucose into the cell and that of Mg2+ by introducing EDTA or CyDTA. The membrane potential decrease and the membrane resistance increase were both significant when the ATP or Mg2+ concentration was decreased. An ATP-dependent membrane potential was also found in other species of Characeae,Nitella axillaris andN. pulchella. Excitability of the membrane was also completely lost by reducing the ATP or Mg2+ concentration. Both membrane potential and excitability were recovered by introducing ATP or Mg2+ into ATP- or Mg2+-depleted cells.The time course of membrane potential recovery was followed by the open-vacuole method. Recovery began as soon as intracellular perfusion with medium containing ATP and Mg2+ was started. Reversible transition of the membrane potential between polarized and pepolarized levels by controlling the intracellular concentration of ATP or Mg2+ could be repeated many times by the open-vacuole method, when the excitability was suppressed by addition of Pb2+ to the external medium.The ineffectiveness of an ATP analog, AMP-PNP, and the synergism of ATP and Mg2+ in maintaining the membrane potential and excitability strongly suggest that ATP act via its hydrolysis by Mg2+-activated ATPase. The passive nature of the membrane, as judged from responses of the membrane potential to changes of the external K+ concentration, was not altered by lowering the ATP concentration in the cell. The mechanism of membrane potential generation dependent on ATP is discussed on the basic of an electrogenic ion pump. Involvement of the membrane potential generated by the ion pump in the action potential is also discussed.  相似文献   

16.
The hydrolysis of ATP and AMP by enzymes located on the external side of the plasma membrane (ecto-ATPase and ecto-AMPase) was studied in mouse myeloid leukemic cells, normal early myeloid cells, and normal mature granulocytes and macrophages. Nine clones of myeloid leukemic cells were used belonging to three groups that differ in their ability to be induced to differentiate by the differentiation-inducing protein MGI. These three groups consisted of MGI+D+ that can be induced to undergo complete differentiation, MGI+D- that can be induced to partially differentiate and MGI-D- with no induction of differentiation. The ecto-ATPase activity of normal early myeloid cells was similar to that of normal mature granulocytes and macrophages and higher than that of any of the leukemic cells. Among the leukemic cells, the MGI-D- cells had the highest level of ecto-ATPase activity. The behaviour of ecto-AMPase differed from that of ecto-ATPase. Some MGI-D- clones had a higher ecto-AMPase activity than normal cells and MGI+D- and MGI+D+ cells showed no detectable activity. Neither the ecto-ATP-ase nor ecto-AMPase activities changed after induction of differentiation in normal early myeloid or MGI+D+ leukemic cells. The results indicate that the myeloid leukemic cells had a decreased ability to hydrolyse external ATP, that there can be an independent regulation of ecto-ATPase and ecto-AMPase and that neither of these enzyme activities changed during differentiation.  相似文献   

17.
Friend erythroleukemic cells (FLC) can be induced to differentiate in vitro by addition of dimethylsulfoxide (DMSO). We have studied the kinetics of induction by measuring cell volume, volume coefficient of variation and cell doubling time. Two distinct volume changes (early and late) are observed after the addition of the inducing agent. The early change occurs after ten hours and consist of a 10-20% decrease in volume compared to an untreated control population. This shift persists for two days and its magnitude is proportional to both the concentration of DMSO and the number of differentiated cells seen on day 5. FLC lines which induce weakly or not all with DMSO exhibit a reduced or absent early volume shift. Inclusion of a local anaesthetic in the culture prevents the appearance of differentiated cells and also counteracts the early volume shift. The exact time of the early volume change is a function of cell growth rate and appears to be cell cycle related. Synchronized cell populations exposed to DMSO during G2 and S phase undergo one round of mitosis before expression of the volume change whereas cells in G2-M express the change only after a second mitosis. A later, more gradual decrease in volume is observed in those cultures which begin to produce hemoglobin. It occurs after approximately five doubling times and coincides with the first appearance of hemoglobin-containing cells. Volume distribution parameters indicate that only a proportion of the population becomes smaller in size.  相似文献   

18.
When grown in medium containing 5 mM potassium and 140 mM sodium, HL-60, a human promyelocytic cell line, maintained a steady-state intracellular K+ concentration of 145 mmol/L cells and a steady-state intracellular Na+ concentration of 30 mmol/L cells. Nearly 90% of the unidirectional 42K+ influx could be inhibited by the cardiac glycoside ouabain with a Ki of 5 X 10(-8) M. This ouabain-sensitive component of influx rose as a saturating function of the extracellular K+ concentration with a K1/2 of 0.85 mM. The component of 42K+ influx resistant to ouabain inhibition was a linear function of the extracellular K+ concentration and was insensitive to inhibition by the diuretic furosemide. Unidirectional K+ efflux followed first order kinetics with a half-time of 55 min. Addition of 1.5% dimethyl sulfoxide (DMSO) to a culture of HL-60 cells allowed two population doublings followed by the cessation of growth without an impairment of cell viability. Beginning 2 to 3 days after DMSO addition, the cells underwent a dramatic reduction in volume (from 925 microns 3 to 500 microns 3) and began to take on the morphological features of mature granulocytes. Throughout this process of differentiation there was no change in the intracellular sodium or potassium concentration. However, immediately following the addition of DMSO to a culture of cells, there began an immediate, coordinated reduction in bidirectional K+ flux. The initial rate of the ouabain-sensitive component of K+ influx fell with a half-time of 11 h to a final rate, at 6 days induction, equal to one ninth that of the uninduced control, and over the same period, the rate constant for K+ efflux fell with a half-time of 14 h to a final value one fourth that of the uninduced control. The rapidity with which these flux changes occur raises the possibility that they play some role in the control of subsequent events in the process of differentiation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号