首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of nuclear genome duplication on the chlorophyll-protein content and photochemical activity of chloroplasts, and photosynthetic rates in leaf tissue, have been evaluated in haploid, diploid, and tetraploid individuals of the castor bean, Ricinus communis L. Analysis of this euploid series revealed that both photosystem II (2,6-dichlorophenolindophenol reduction) and photosystem I oxygen uptake (N,N,N′,N′-tetramethyl-p-phenylenediamine to methyl viologen) decrease in plastids isolated from cells with increasingly larger nuclear complement sizes. Photosynthetic O2-evolution and 14CO2-fixation rates in leaf tissue from haploid, diploid, and tetraploid individuals were also found to decrease with the increase in size of the nuclear genome. Six chlorophyll-protein complexes, in addition to a zone of detergent complexed free pigment, were resolved from sodium dodecyl sulfate-solubilized thylakoid membranes from cells of all three ploidy levels. In addition to the P700-chlorophyll a-protein complex and the light-harvesting chlorophyll a/b-protein complex, four minor complexes were revealed, two containing only chlorophyll a and two containing both chlorophyll a and b. The relative distribution of chlorophyll among the resolved chlorophyll-protein complexes and free pigment was found to be similar for all three ploidy levels.  相似文献   

2.
The organization of the electron transport components in mesophyll and bundle sheath chloroplasts of Zea mays was investigated. Grana-containing mesophyll chloroplasts (chlorophyll a to chlorophyll b ratio of about 3.0) possessed the full complement of the various electron transport components, comparable to chloroplasts from C3 plants. Agranal bundle sheath chloroplasts (Chl aChl b > 5.0) contained the full complement of photosystem (PS) I and of cytochrome (cyt) f but lacked a major portion of PS II and its associated Chl ab light-harvesting complex (LHC), and most of the cyt b559. The kinetic analysis of system I photoactivity revealed that the functional photosynthetic unit size of PS I was unchanged and identical in mesophyll and bundle sheath chloroplasts. The results suggest that PS I is contained in stroma-exposed thylakoids and that it does not receive excitation energy from the Chl ab LHC present in the grana. A stoichiometric parity between PS I and cyt f in mesophyll and bundle sheath chloroplasts indicates that biosynthetic and functional properties of cyt f and P700 are closely coordinated. Thus, it is likely that both cyt f and P700 are located in the membrane of the intergrana thylakoids only. The kinetic analysis of PS II photoactivity revealed the absence of PS IIαfrom the bundle sheath chloroplasts and helped identify the small complement of system II in bundle sheath chloroplasts as PS IIβ. The distribution of the main electron transport components in grana and stroma thylakoids is presented in a model of the higher plant chloroplast membrane system.  相似文献   

3.
Spectrophotometric and kinetic measurements were applied to yield photosystem (PS) stoichiometries and the functional antenna size of PSI, PSIIα, and PSIIβ in Zea mays chloroplasts in situ. Concentrations of PSII and PSI reaction centers were determined from the amplitude of the light-induced absorbance change at 320 and 700 nm, which reflect the photoreduction of the primary electron acceptor Q of PSII and the photooxidation of the reaction center P700 of PSI, respectively. Determination of the functional chlorophyll antenna size (N) for each photosystem was obtained from the measurement of the rate of light absorption by the respective reaction center. Under the experimental conditions employed, the rate of light absorption by each reaction center was directly proportional to the number of light-harvesting chlorophyll molecules associated with the respective photosystem. We determined NP700 = 195, Nα = 230, Nβ = 50 for the number of chlorophyll molecules in the light-harvesting antenna of PSI, PSIIα, and PSIIβ, respectively. The above values were used to estimate the PSII/PSI electron-transport capacity ratio (C) in maize chloroplasts. In mesophyll chloroplasts C > 1.4, indicating that, under green actinic excitation when Chl a and Chl b molecules absorb nearly equal amounts of excitation, PSII has a capacity to turn over electrons faster than PSI. In bundle sheath chloroplasts C < 1, suggesting that such chloroplasts are not optimally poised for linear electron transport and reductant generation.  相似文献   

4.
The composition and structural organization of thylakoid membranes of a low chlorophyll mutant of Beta vulgaris was investigated using spectroscopic, kinetic and electrophoretic techniques. The data obtained were compared with those of a standard F1 hybrid of the same species. The mutant was depleted in chlorophyll b relative to the hybrid and it had a higher photosystem II/photosystem I reaction center (Q/P700) ratio and a smaller functional chlorophyll antenna size. Analysis of thylakoid membranes by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the mutant lacked a portion of the chlorophyll a/b light-harvesting complex but was enriched in the photosystem II reaction center chlorophyll protein complex. Comparison of functional antenna sizes and of photosystem stoichiometries determined electrophoretically were in good agreement with those determined spectroscopically. Both approaches indicated that about 30% of the total chlorophyll was associated with photosystem I and about 70% with photosystem II. A greater proportion of photosystem IIβ was detected in the mutant. The results suggest that a higher photosystem II to photosystem I ratio in the sugar beet mutant has apparently compensated for the smaller photosystem II chlorophyll light-harvesting antenna in its chloroplasts. Moreover, a lack of chlorophyll a/b light-harvesting complex correlates with the abundance of photosystem IIβ. It is proposed that a developmental relationship exists between the two types of photosystem II where photosystem IIβ is a precursor form of photosystem IIα occurring prior to the addition of the chlorophyll a/b light-harvesting complex and grana formation.  相似文献   

5.
Isolated chloroplasts from Pinus silvestris have been fractionated by a combination of digitonin and Yeda-press treatment. Different subchloroplast particles have been isolated by differential centrifugation. The spectral and photochemical properties of the different fractions have been analysed. Photosystem I was enriched in the light particles (high Chl a/Chl b ratios, low Chl/P700 ratios, high F735/F685 ratios, high photosystem I activity and enrichment of long-wavelength absorbing Chl a). The heavy fractions were enriched in photosystem II (low Chl a/Chl b ratios, high Chl/P700 ratios, low F735/F685 ratios and enrichment of short-wavelength absorbing Chl a). The molar ratio Chl/P700 was about 1.5 times greater for Pinus than for Spinacia, and Pinus had relatively less long-wavelength absorbing Chl a compared with Spinacia.  相似文献   

6.
A chlorophyll a/b protein complex has been isolated from a resolved native photosystem I complex by mildly dissociating sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The chlorophyll a/b protein contains a single polypeptide of molecular weight 20 kilodaltons, and has a chlorophyll a/b ratio of 3.5 to 4.0. The visible absorbance spectrum of the chlorophyll a/b protein complex showed a maximum at 667 nanometers in the red region and a 77 K fluorescence emission maximum at 681 nanometers. Alternatively, by treatment of the native photosystem I complex with lithium dodecyl sulfate and Triton, the chlorophyll a/b protein complex could be isolated by chromatography on Sephadex G-75. Immunological assays using antibodies to the P700-chlorophyll a-protein and the photosystem II light-harvesting chlorophyll a/b protein show no cross-reaction between the photosystem I chlorophyll a/b protein and the other two chlorophyll-containing protein complexes.  相似文献   

7.
In algae, light-harvesting complexes contain specific chlorophylls (Chls) and keto-carotenoids; Chl a, Chl c, and fucoxanthin (Fx) in diatoms and brown algae; Chl a, Chl c, and peridinin in photosynthetic dinoflagellates; and Chl a, Chl b, and siphonaxanthin in green algae. The Fx–Chl a/c-protein (FCP) complex from the diatom Chaetoceros gracilis contains Chl c1, Chl c2, and the keto-carotenoid, Fx, as antenna pigments, in addition to Chl a. In the present study, we investigated energy transfer in the FCP complex associated with photosystem II (FCPII) of C. gracilis. For these investigations, we analyzed time-resolved fluorescence spectra, fluorescence rise and decay curves, and time-resolved fluorescence anisotropy data. Chl a exhibited different energy forms with fluorescence peaks ranging from 677 nm to 688 nm. Fx transferred excitation energy to lower-energy Chl a with a time constant of 300 fs. Chl c transferred excitation energy to Chl a with time constants of 500–600 fs (intra-complex transfer), 600–700 fs (intra-complex transfer), and 4–6 ps (inter-complex transfer). The latter process made a greater contribution to total Chl c-to-Chl a transfer in intact cells of C. gracilis than in the isolated FCPII complexes. The lower-energy Chl a received excitation energy from Fx and transferred the energy to higher-energy Chl a. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

8.
Soybean plants (Glycine max [L.] Merr. cv Clark) carrying nuclear and cytoplasmic “stay-green” mutations, which affect senescence, were examined. Normally, the levels of chlorophyll (Chl) a and b decline during seedfill and the Chl a/b ratio decreases during late pod development in cv Clark. Plants homozygous for both the d1 and d2 recessive alleles, at two different nuclear loci, respectively, retained most (64%) of their Chl a and b and exhibited no change in their Chl a/b ratio. Combination of G (a dominant nuclear allele in a third locus causing only the seed coat to stay green during senescence) with d1d2 further inhibited the loss of Chl in the leaf. Whereas the thylakoid proteins seem to be degraded in normal Clark leaves during late pod development, they were not substantially diminished in d1d2 and Gd1d2 leaves. In plants carrying a cytoplasmic mutation, cytG, Chl declined in parallel with normal cv Clark; however, the cytG leaves had a much higher level of Chl b, and somewhat more Chl a, remaining at abscission, enough to color the leaves green. In cytG, most thylakoid proteins were degraded, but the Chl a/b-binding polypeptides of the light-harvesting complex in photosystem II (LHCII), and their associated Chl a and b molecules, were not. Thus, the combination of d1 and d2 causes broad preservation of the thylakoid proteins, whereas cytG appears to selectively preserve LHCII. The cytG mutation may be useful in elucidating the sequence of events involved in the degradation of LHCII proteins and their associated pigments during senescence.  相似文献   

9.
Lines of winter hexaploid Triticale and their F1 and F2 hybrids differing in morphological structure, pigment contents, photosynthetic productivity, and grain crops were studied. F1 hybrids received by crossing of Triticale lines contrasting in pigment contents showed in some cases a heterosis effect for chlorophyll (Chl) content per unit leaf area. Variation analysis demonstrated a polygenic control of Triticale pigment contents, and different rate of increase in F2 generation. We found maternal type of heritability of Chl b content and Chl content in light-harvesting complex of photosystem 2.  相似文献   

10.
Terry N 《Plant physiology》1983,71(4):855-860
Using iron stress to reduce the total amount of light-harvesting and electron transport components per unit leaf area, the influence of light-harvesting and electron transport capacity on photosynthesis in sugar beet (Beta vulgaris L. cv F58-554H1) leaves was explored by monitoring net CO2 exchange rate (P) in relation to changes in the content of Chl.

In most light/CO2 environments, and especially those with high light (≥1000 microeinsteins photosynthetically active radiation per square meter per second) and high CO2 (≥300 microliters CO2 per liter air), P per area was positively correlated with changes in Chl (a + b) content (used here as an index of the total amount of light-harvesting and electron transport components). This positive correlation of P per area with Chl per area was obtained not only with Fe-deficient plants, but also over the normal range of variation in Chl contents found in healthy, Fe-sufficient plants. For example, light-saturated P per area at an ambient CO2 concentration close to normal atmospheric levels (300 microliters CO2 per liter air) increased by 36% with increase in Chl over the normal range, i.e. from 40 to 65 micrograms Chl per square centimeter. Iron deficiency-mediated changes in Chl content did not affect dark respiration rate or the CO2 compensation point. The results suggest that P per area of sugar beet may be colimited by light-harvesting and electron transport capacity (per leaf area) even when CO2 is limiting photosynthesis as occurs under field conditions.

  相似文献   

11.
To compare chloroplast development in a normally grown plant with etiochloroplast development, green maize plants (Zea mays), grown under a diurnal light regime (16-hour day) were harvested 7 days after sowing and chloroplast biogenesis within the leaf tissue was examined. Determination of total chlorophyll content, ratio of chlorophyll a to chlorophyll b, and O2-evolving capacity were made for intact leaf tissue. Plastids at different stages of development were isolated and the electron-transporting capacities of photosystem I and photosystem II measured. Light saturation curves were produced for O2-evolving capacity of intact leaf tissue and for photosystem I and photosystem II activities of isolated plastids. Structural studies were also made on the developing plastids. The results indicate that the light-harvesting apparatus becomes increasingly efficient during plastid development due to an increase in the photosynthetic unit size. Photosystem I development is completed before that of photosystem II. Increases in O2-evolving capacity during plastid development can be correlated with increased thylakoid fusion. The pattern of photosynthetic membrane development in the light-grown maize plastids is similar to that found in greening etiochloroplasts.  相似文献   

12.
Occurrence of excitonic interactions in light-harvesting complex II (LHC II) was investigated by nonlinear polarization spectroscopy in the frequency domain (NLPF) at room temperature. NLPF spectra were obtained upon probing in the chlorophyll (Chl) a/b Soret region and pumping in the Qy region. The lowest energy Chl a absorbing at 678 nm is strongly excitonically coupled to Chl b.  相似文献   

13.
The functional role of a chlorophyll ab complex associated with Photosystem I (PS I) has been studied. The rate constant for P-700 photooxidation, KP-700, which under light-limiting conditions is directly proportional to the size of the functional light-harvesting antenna, has been measured in two PS I preparations, one of which contains the chlorophyll ab complex and the other lacking the complex. KP-700 for the former preparation is half of that of the preparation which has the chlorophyll ab complex present. This difference reflects a decrease in the functional light-harvesting antenna in the PS I complex devoid of the chlorophyll ab complex. Experiments involving reconstitution of the chlorophyll ab complex with the antenna-depleted PS I preparation indicate a substantial recovery of the KP-700 rate. These results demonstrate that the chlorophyll ab complex functions as a light-harvesting antenna in PS I.  相似文献   

14.
Kutík  J.  Holá  D.  Vičánková  A.  Šmídová  M.  Kočová  M.  Körnerová  M.  Kubínová  L. 《Photosynthetica》2001,39(4):497-506
Differences in ultrastructural parameters of mesophyll cell (MC) chloroplasts, contents of photosynthetic pigments, and photochemical activities of isolated MC chloroplasts were studied in the basal, middle, and apical part of mature or senescing leaf blade of two maize genotypes. A distinct heterogeneity of leaf blade was observed both for structural and functional characteristics of chloroplasts. In both mature and senescing leaves the shape of MC chloroplasts changed from flat one in basal part of leaf to nearly spherical one in leaf apex. The volume density of granal thylakoids decreased from leaf base to apex in both types of leaves examined, while the amount of intergranal thylakoids increased in mature leaves but decreased in senescing leaves. The most striking heterogeneity was found for the quantity of plastoglobuli, which strongly increased with the increasing distance from leaf base. The differences in chloroplast ultrastructure were accompanied by differences in other photosynthetic characteristics. The Hill reaction activity and activity of photosystem 1 of isolated MC chloroplasts decreased from leaf base to apex in mature leaves. Apical part of senescing leaf blade was characterised by low contents of chlorophyll (Chl) a and Chl b, whereas in mature leaves, the content of Chls as well as the content of total carotenoids (Car) slightly increased from basal to apical leaf part. This was reflected also in the ratio Chl (a+b)/total Car; the ratio of Chl a/b did not significantly differ between individual parts of leaf blade. Both genotypes examined differed in the character of developmental gradient observed along whole length of leaf blade.  相似文献   

15.
Seedlings of eight forest maple (Acer L.) species were grown outdoors through a full season under two irradiation treatments: (a) “gap edge” with a photosynthetic photon flux density of 30 μmol m-2 s-1 and a red:far-red ratio of 0.55, and (b) “gap centre” with 400 μmol m-2 s-1 and a red:far-red ratio of 1.12. Area-based leaf nitrogen concentration was greater in gap centre-grown seedlings, whereas, except for A. saccharum, area-based chlorophyll (Chl) (a+b) was higher in gap edge-grown plants. There was also a significantly lower Chl a/b ratio in gap edge-grown plants. Maximum photosynthetic rate (P max ) was 60 % higher in the gap-centre treatment. These results are consistent with the functional expectation that shade-acclimated plants will increase their radiant-energy harvesting capacity as a result of limited photon input while gap-acclimated plants will operate more efficiently under bright irradiance by increasing their carboxylation capacity. This inverse relationship between the capacity of the light-harvesting component and the carboxylation component is, however, only partially supported by Chl fluorescence measurements of intact leaves. Compared to gap centre-grown plants, the lower total fluorescence quenching in gap edge-grown plants indicated a lower carboxylation capacity that was in accord with the observed P max . However, edge-grown seedlings did not show the expected improvement in light-harvesting efficiency and reduction in electron transport of photosystem 2 inferred from their marginally greater t1/2 and lower Fv/Fm, respectively. Hence while maples acclimated to different irradiation levels by adjusting leaf N and Chl contents, they showed limited acclimation potential at the photosystem level. Variations in the leaf traits examined had only minor effect on low irradiance photosynthesis and sunfleck utilization. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

16.
The marine chlorophyte Dunaliella tertiolecta Butcher responds to a one-step transition from a high growth irradiance level (700 micromoles quanta per square meter per second) to a low growth irradiance level (70 micromoles quanta per square meter per second) by increasing the total amount of light-harvesting chlorophyll (Chl) a/b binding protein associated with photosystem II (LHC II), and by modifying the relative abundance of individual LHC II apoproteins. When high light-adapted cells were incubated with gabaculine, which inhibits Chl synthesis, and transferred to low light, the LHC II apoproteins were still synthesized and the 35S-labeled LHC II apoproteins remained stable after a 24 hour chase. These results suggest that Chl synthesis is not required for stability of the LHC II apoproteins in this alga. However, when the control cells are transferred from high light to low light, the amount of the four LHC II apoproteins per cell increases, whereas it does not in the presence of gabaculine. These results suggest that Chl synthesis is required for a photoadaptive increase in the cellular level of LHC II.  相似文献   

17.
It has been proposed that Fe stress may be used in the study of limiting factors in photosynthesis as an experimental means of varying photochemical capacity in vivo (Plant Physiol 1980 65: 114-120). In this paper the effect of Fe stress on photosynthetic unit number, size, and composition was investigated by measuring P700, cytochrome (Cyt) f, chlorophyll (Chl) a, and Chl b in sugar beet leaves. The results show that when Fe stress reduced Chl per unit area by 80% (from 60 to 12 micrograms per square centimeter), it decreased the number of P700 molecules per unit area by 88% and Cyt f per unit area by 86%; over the same range the Chl to P700 ratio increased by 37% but there was no significant change in the Chl to Cyt f ratio. These data suggest that Fe stress decreases photochemical capacity and Chl per unit area by diminishing the number of photosynthetic units per unit leaf area.  相似文献   

18.
The effects of chilling in the light (4 days at 5°C and 100-200 micromoles of photons per square meter per second) on the distribution of chlorophyll (Chl) protein complexes between appressed and nonappressed thylakoid regions of pumpkin (Cucurbita pepo L.) chloroplasts were studied and compared with the changes occurring during in vitro heat treatment (5 minutes at 40°C) of isolated thylakoids. Both treatments induced an increase (18 and 65%, respectively) in the relative amount of the antenna Chl a protein complexes (CP47 + CP43) of photosystem II (PSII) in stroma lamellae vesicles. Freeze-fracture replicas of light-chilled material revealed an increase in the particle density on the exoplasmic fracture face of unstacked membrane regions. These two treatments differed markedly, however, in respect to comigration of the light-harvesting Chl a/b protein complex (LHCII) of PSII. The LHCII/PSII ratio in stroma lamellae vesicles remained fairly constant during chilling in the light, whereas it dropped during the heat treatment. Moreover, it was a minor light-harvesting Chl a/b protein complex of PSII, CP29, that increased most in stroma lamellae vesicles during light-chilling. Changes in the organization of LHCII during chilling were suggested by a shift to particles of smaller sizes on the protoplasmic fracture face of stacked membrane regions and a decrease in the amount of trans3-hexadecenoic acid in the phosphatidyldiacylglycerol fraction.  相似文献   

19.
The absorption (640–710 nm) and fluorescence emission (670–710 nm) spectra (77 K) of wild-type and Chl b-less, mutant, barley chloroplasts grown under either day or intermittent light were analysed by a RESOL curve-fitting program. The usual four major forms of Chl a at 662, 670, 678 and 684 nm were evident in all of the absorption spectra and three major components at 686, 693 and 704 nm in the emission spectra. A broad Chl a component band at 651 nm most likely exists in all chlorophyll spectra in vivo. The results show that the mutant lacks not only Chl b, but also the Chl a molecules which are bound to the light-harvesting, Chl a/b, protein complex of normal plants. It also appears that the absorption spectrum of this antenna complex is not modified appreciably by its isolation from thylakoid membranes.Abbreviations Chl chlorophyll - DL daylight - ImL intermittent light - WT wildtype - LHC light-harvesting Chl a/b protein complex - S.E. standard error of the mean DBP-CIW No. 763.  相似文献   

20.
The chlorophyll b-containing alga Mantoniella squamata was analyzed with respect to its capacity to balance the energy distribution from the light-harvesting antenna to photosystem I or photosystem II. It was shown, that this alga is unable to alter the absorption cross section of the two photosystems in terms of short-time regulations (state transitions). The energy absorbed by the LHC, which contains 60% of total photosynthetic pigments, is transferred to both photosystems without any preference. The stoichiometry of the two photosystems is found to be extremely unequal and variable during light adaptation. In high light, the molar ratio of P-680 per P-700 is found to be two, whereas under low light conditions this ratio accounts to nearly four. This very unbalanced stoichiometry of the reaction centers gives some new insights into the concept of the photosynthetic unit as well as in the importance of the regulation of the energy distribution. It is assumed that the high concentration of photosystem II can be understood as a mechanism to prevent the overexcitation of photosystem I. In addition, the changes im membrane protein pattern are not accompanied by variations in the ratio of appressed to nonappressed membranes as probed by ultrastructural analysis. It is suggested that the thylakoids are organized like a homogenous pigment bed. The lack of state transitions can be interpreted as a consequence of this unusual membrane morphology.Abbreviations Chl chlorophyll - CPa chlorophyll a-protein of PSII - CPl P-700 chlorophyll a-protein - CPD Chlorophyll packing density index - cyt f cytochrome f - FP free pigments - LHC light-harvesting complex - Pmax light saturated photosynthetic rates per chlorophyll - n number of experiments - PQ plastoquinone - PS photosystem - PSU photosynthetic unit - QE non-photochemical quenching - QQ photochemical quenching  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号