首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding, internalization, processing and release of labeled cyanocobalamin (CN[57Co]Cbl) bound to human transcobalamin II (TC II) were studied in HepG2 cells, a line of hepatocytes derived from a human hepatoma. The cells bound the TC II-Cbl by specific, high affinity receptors. Within the cell, the CN-Cbl was promptly freed from TC II and the CN-Cbl converted to more active forms including adenosyl Cbl (AdoCbl) and methyl Cbl (MeCbl). Whereas free labeled Cbl was still present at 72 hours after entry, the cells also bound Cbl to an intracellular binder (ICB) presumed to represent the holo enzymes dependent on Cbl. At levels of TC II that saturated the receptors for TC II-Cbl, much of the Cbl entering the cells remained free and was converted to AdoCbl. Under these circumstances the cells released free Cbl, mostly AdoCbl. Human R type binders of Cbl, which are glycoproteins and some having a terminal galactose, were bound by the HepG2 cells. The binding was characteristic of the receptor system responsive to a terminal galactose, or asialoglycoproteins, but was inconsistent and of low affinity. Cbl bound to R binder was internalized and converted to coenzyme forms of Cbl, but the process was much less effective than when the Cbl entered via the TC II receptor system. It was concluded that the receptors for R-Cbl were unlikely to contribute to the physiologic transport of Cbl in man, but may function in some yet unknown way.  相似文献   

2.
Radioligand and immunoenzymatic techniques were used to characterize the receptor binding properties of apolipoprotein B-containing lipoprotein produced by HepG2 cell line (H-LpB). It was found that compared to plasma low-density lipoprotein (LDL), the interaction of H-LpB nonseparated from conditioned medium with normal fibroblasts was 6-8-times lower and only slightly exceeded the nonspecific binding of LDL modified by malondialdehyde, while the uptake of the indicated lipoproteins by LDL receptor-negative strain of fibroblasts were identical. The uptake of H-LpB by normal fibroblasts increased 1.5-2-times after isolation from the culture medium by immunoaffinity chromatography. The effect of isolation could be explained by the finding that apolipoprotein E-containing lipoprotein secreted by HepG2 cells effectively competed for the binding with LDL-receptors. The obtained results suggest that H-LpB produced by HepG2 cells is poorly recognized by the LDL-receptors.  相似文献   

3.
The binding and metabolism of [3H]vitamin A-containing chylomicron (CM) remnants by the human hepatoma cell line HepG2 were studied. Mesenteric lymph chylomicrons were collected from [3H]retinol-fed rats and incubated with lipoprotein lipase to obtain CM remnants. At 4 degrees C, specific CM remnant binding was inhibited by an excess of unlabeled CM remnants. Specific binding predominated at low concentrations and approached saturation while total binding continued to increase over an extensive concentration range (0.45-32 microgram triglyceride/ml). CM remnant uptake at 37 degrees C was greater than that of CM and at least 70 times more efficient than the pinocytosis of sucrose. CM remnant binding increased with the extent of lipolysis. Addition of human apolipoprotein E enhanced both CM remnant and CM binding. After internalization, HepG2 cells hydrolyzed CM remnant-[3H]retinyl esters, and radiolabeled metabolites accumulated. As a function of the concentration of [3H]retinoid initially bound to cells, retinol and retinyl esters accumulated as the major cell-associated metabolites. In contrast, retinol was the major metabolite in the medium only at low retinoid concentrations; other more polar metabolites accumulated at higher concentrations (greater than 110 pmol retinoid/mg cell protein). The accumulation in the medium of labeled metabolites derived from CM remnant-retinoid was reduced when cells were preincubated in unlabeled retinol-supplemented media. The specific activity of retinol in the medium indicated that CM remnant-vitamin A had mixed with the cellular store prior to its secretion as retinol. These results indicate that HepG2 cells internalize CM remnants in part by specific binding sites, and that the metabolism of CM remnant-retinoids by the HepG2 cell involves retinyl ester hydrolysis and the secretion of retinol and other more polar metabolites. These processes were regulated in part by the concentration of retinoid delivered by the CM remnant and by the initial retinoid content of the cell.  相似文献   

4.
We have previously identified an in vivo interaction between circulating PNAhi lymphoid cells and the hepatic asialoglycoprotein receptor, which results in a protracted liver sequestration of these cells. An in vitro frozen section binding assay was developed to study the interaction of PNAhi cells with the receptor in more detail. This assay confirmed that the sequestration of PNAhi lymphoid cells by the liver was mediated by the asialoglycoprotein receptor, as binding was inhibitable by coincubation with galactose, asialoglycoproteins, chelation of divalent cations, or a specific anti-asialoglycoprotein receptor antiserum. This frozen section binding assay was utilized to demonstrate the existence of a bone marrow asialoglycoprotein receptor which was found to be capable of binding to PNAhi lymphocytes or asialoglycoproteins bound to synthetic substrates. We further established that the bone marrow receptor differed both functionally and antigenically from its hepatic analogue.  相似文献   

5.
The mechanism for the assembly of HDL with cellular lipid by ABCA1 and helical apolipoprotein was investigated in hepatocytes. Both HepG2 cells and mouse primary culture hepatocytes produced HDL with apolipoprotein A-I (apoA-I) whether endogenously synthesized or exogenously provided. Probucol, an ABCA1 inactivator, inhibited these reactions, as well as the reversible binding of apoA-I to HepG2. Primary cultured hepatocytes of ABCA1-deficient mice also lacked HDL production regardless of the presence of exogenous apoA-I. HepG2 cells secreted apoA-I into the medium even when ABCA1 was inactivated by probucol, but it was all in a free form as HDL production was inhibited. When a lipid-free apoA-I-specific monoclonal antibody, 725-1E2, was present in the culture medium, production of HDL was suppressed, whether with endogenous or exogenously added apoA-I, and the antibody did not influence HDL already produced by HepG2 cells. We conclude that the main mechanism for HDL assembly by endogenous apoA-I in HepG2 cells is an autocrine-like reaction in which apoA-I is secreted and then interacts with cellular ABCA1 to generate HDL.  相似文献   

6.
7.
An ecotropic virus was chemically modified in order to determine whether its target cell specificity could be altered. We hypothesized that chemical coupling of galactose residues to a virus might permit specific infection of hepatocytes mediated by asialoglycoprotein receptors unique to these cells. To test this hypothesis, we took advantage of the fact that: 1) artificial asialoglycoproteins can be created by chemical coupling of lactose to proteins; and 2) viruses that are ecotropic have a narrow species specificity. An ecotropic, rodent-specific, replication-defective murine leukemia virus containing the gene for beta-galactosidase was chemically modified with lactose to contain 5.9 mumol of lactose per mg of viral RNA. Modified and unmodified viruses were incubated for 5 days with HepG2, a human hepatoma line that possesses asialoglycoprotein receptors, and SK Hep1, a human cell line that does not. As expected from the ecotropism, unmodified virus did not produce beta-galactosidase activity in either cell type. Modified virus did not produce beta-galactosidase activity in SK Hep1 cells. However, modified virus did produce beta-galactosidase activity, 71.2 units/mg of cell protein, in the human receptor (+) HepG2 cells. Interestingly, modification of the virus also resulted in decreased enzyme activity in previously susceptible host rodent cells. Competition with modified virus by an excess of an asialoglycoprotein completely prevented development of enzymatic activity in HepG2 cells. Histochemical treatment of cells with 5-bromo-4-chloro-3-indoyl beta-D-galactoside to detect in situ beta-galactosidase activity demonstrated that only HepG2 cells treated with modified virus were positive and that 36% of these cells were stained after 5 days. These data indicate that chemical modification of a virus can result in a redirection of the infectivity of the virus toward hepatocyte-derived cells mediated by the presence of asialoglycoprotein receptors.  相似文献   

8.
The occurrence and the novel function of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) in the extracellular space were studied. The extracellular GAPDH with the same molecular mass as the intracellular GAPDH was detected in the conditioned medium of mammalian cultured cell lines such as COS-7, HEK293, MCF-7, HepG2, PC-12, and Neuro-2a cells. Western blot analysis represented the occurrence of GAPDH, but not alpha-tubulin (an intracellular marker protein), in the conditioned medium of COS-7 cells. Furthermore, GAPDH was found in rat serum. These results indicate that GAPDH was secreted outside of the cells. Addition of GAPDH to the cultured medium of COS-7, HEK293, and HepG2 cells allowed cells to undergo morphological changes. In COS-7 cells, the extracellular GAPDH inhibited cell spreading without influencing the cell growth. Western blot and immunofluorescent microscopy analyses revealed that the extracellular GAPDH bound to COS-7 cells in time- and dose-dependent manners. However, a mutant substituting Ser for Cys at position 151 of GAPDH resulted in no binding to the cells, no decreased cell-spreading efficiency and no cell morphological changes. These results indicate that the Cys151 was involved in the binding of GAPDH to cells and the GAPDH-inhibited cell spreading.  相似文献   

9.
10.
To determine the role of high-density lipoprotein (HDL) as an acceptor of lipolytic surface remnants of very low density lipoprotein (VLDL) in the metabolism of VLDL core remnants, we examined the effect of HDL levels in the VLDL lipolysis mixture on 1) the morphology and the apoCs to E ratio in VLDL core remnants and 2) the metabolic properties of VLDL core remnants in human hepatoma cell line HepG2 and human hepatocytes in the primary culture. Normolipidemic VLDL was lipolyzed in vitro by purified bovine milk lipoprotein lipase (LpL) in a lipolysis mixture containing a physiologic level of VLDL and albumin (30 mg VLDL-cholesterol (CH)/dl and 6% albumin) in the absence and presence of either a low HDL level (VLDL-CH:HDL-CH = 3:1) or a high HDL level (VLDL-CH:HDL-CH = 1:4). Lipolysis of VLDL in either the absence or presence of HDL resulted in the hydrolysis of >85% of VLDL-triglycerides (TG) and the conversion of VLDL into smaller and denser particles. In the absence of HDL, heterogeneous spherical particles with numerous surface vesicular materials were produced. In the presence of low or high HDL, spherical particles containing some or no detectable vesicular surface components were produced. The apoCs to apoE ratios, as determined by densitometric scanning of the SDS polyacrylamide gradient gel, were 2.89 in control VLDL and 2.27, 0.91, and 0.22 in VLDL core remnants produced in the absence and in the presence of low and high HDL levels, respectively. In vitro lipolysis of VLDL markedly increased binding to HepG2 cells at 4 degrees C and internalization and degradation by human hepatocytes in primary culture at 37 degrees C. However, the HDL-mediated decrease in the apoCs to apoE ratio had a minimal effect on binding, internalization, and degradation of VLDL core remnants by HepG2 cells and human hepatocytes in primary culture. In order to determine whether HepG2 bound VLDL and VLDL core remnants are deficient in apoCs, (125)I-labeled VLDL and VLDL core remnants were added to HepG2 culture medium at 4 degrees C. The bound particles were released by heparin, and the levels of (125)I-labeled apoCs and apoE, relative to apoB, in the released particles were examined. When compared with those initially added to culture medium, the VLDL and VLDL core remnants released from HepG2 cells had a markedly increased (113%) level of apoE and a reduced (30-39%), but not absent, level of apoCs. We conclude that apoCs, as a minimum structural and/or functional component of VLDL and VLDL core remnants, may not have an inhibitory effect on the binding of VLDL or VLDL core remnants to hepatic apoE receptors.  相似文献   

11.
目的: 探讨Cereblon(CRBN)对沙利度胺抑制人肺癌A549细胞及人肝癌HepG2细胞分泌VEGF/bFGF的影响。方法: 采用慢病毒介导的短发夹RNA(shRNA)干扰技术建立稳定敲低CRBN的A549细胞系(A549CRBN)及HepG2细胞系(HepG2CRBN)并通过实时定量PCR(Real-time PCR)和蛋白质印记(Western blot)实验验证。将A549细胞分为阴性对照组(A549luciferase)、CRBN低表达组(A549CRBN);HepG2细胞分为阴性对照组(HepG2luciferase)、CRBN低表达组(HepG2CRBN),以上细胞按照 3×105 cells/well接种到6孔板中,放入37℃,5%CO2的培养箱中培养24 h,分别加入1 ml含100 μmol/L沙利度胺(thalidomide组)和1 ml 1‰ DMSO(control组)的培养液,继续培养24 h再行后续实验,每组设计3个复孔。MTS法检测沙利度胺对细胞增殖的影响;Real-time PCR检测VEGF、bFGF、c-jun mRNA表达,ELISA法检测VEGF、bFGF蛋白表达。结果: 与对照组比较,沙利度胺在浓度为1、10、50、100 μmol/L 时对A549 及HepG2细胞的增殖能力无显著影响(P>0.05)。与A549CRBN或HepG2CRBN组比较,A549luciferase及HepG2luciferase组分泌的VEGF及bFGF均显著降低(P<0.05)。与A549luciferase或HepG2luciferase细胞的对照组比较,沙利度胺可抑制A549luciferase和HepG2luciferase细胞的VEGF和bFGF的表达(P<0.05),而对A549CRBN和HepG2CRBN细胞中VEGF和bFGF的表达无显著抑制作用;与HepG2luciferase细胞的对照组比较,沙利度胺可抑制HepG2luciferase细胞的c-Jun表达(P<0.01),而对HepG2CRBN细胞的c-Jun表达无显著抑制作用。结论: 沙利度胺对A549和HepG2细胞VEGF和bFGF表达的抑制作用可能是通过CRBN介导的,而c-Jun可能是抑制作用的关键转录因子之一。  相似文献   

12.
Treatment of HepG2 cells in lipoprotein-deficient media with 4,4,10 beta-trimethyl-trans-decal-3 beta-ol (TMD) abolished the incorporation of [3H]acetate into cholesterol with concomitant accumulation of squalene 2,3(S)-oxide and squalene 2,3(S):22(S),23-dioxide, indicating a specific inhibition of oxidosqualene cyclase. The activity of 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase was affected in a biphasic manner, being inhibited by 30% at low concentrations of TMD and stimulated by 30% at concentrations that completely shut down oxidosqualene cyclase. Treatment with TMD (greater than 20 micrograms/ml) doubled the specific binding and internalization of low density lipoproteins (LDL) and also enhanced their degradation to a degree comparable to that produced by lovastatin, a well-known inhibitor of HMG-CoA reductase. The enhanced binding of LDL to HepG2 cells appeared to occur as a result of an increase in the number of binding sites with no change in their binding affinity for the lipoprotein. At concentrations that completely inhibited cholesterol biosynthesis, TMD did not affect the ability of LDL-derived cholesterol to stimulate cholesterol esterification by seven- to tenfold or to stimulate bile acid secretion to a lesser degree. However, TMD treatment inhibited overall bile acid secretion by 75-85%. The compound had no inhibitory effect on the rates of secretion of either apolipoprotein B or of cholesterol by HepG2 cells into the culture medium. These data demonstrate that a specific inhibition of the sterol branch of isoprenoid biosynthetic pathway in hepatic cells by TMD is sufficient to induce the expression of LDL receptors and that the cholesterol delivered by LDL is available for normal metabolic purposes of the cell.  相似文献   

13.
HepG2, hepatocellular carcinoma cells, are used in drug toxicity studies and have also been explored for bioartificial livers. For these applications, the cells are under variable levels of nutrients and hormones, the effects of which on metabolism are poorly understood. In this study, HepG2‐C3A cells were cultured under varying levels of glucose (high, low, and glucose‐free) and insulin (without and with physiological levels of insulin) for 5 days. Cell growth was found to be comparable between high and low glucose media and lowest for glucose‐free medium. Several features of central metabolism were affected profoundly by the medium glucose levels. Glucose consumption was greater for low glucose medium compared to high glucose medium, consistent with known glucose feedback regulation mechanisms. Urea productivity was highest in glucose‐free medium. Further, it was seen that lactate acted as an alternative carbon source in the absence of glucose, whereas it acted as a sink for the high and low glucose media. Using a metabolic network flexibility analysis (MNFA) framework with stoichiometric and thermodynamic constraints, intracellular fluxes under varying levels of glucose and insulin were evaluated. The analysis indicates that urea production in HepG2‐C3A cells arises via the arginase II pathway rather than from ammonia detoxification. Further, involvement of the putrescine metabolism with glutamine metabolism caused higher urea production in glucose‐free medium consistent with higher glutamine uptake. MNFA indicated that in high and low glucose media, glycolysis, glutaminolysis, and oxidative phosphorylation were the main sources of energy (NADH, NADPH, and ATP). In the glucose‐free medium, due to very low glycolytic flux, higher malate to pyruvate glutaminolytic flux and TCA cycle contributed more significantly to energy metabolism. The presence of insulin lowered glycerol uptake and corresponding fluxes involved in lipid metabolism for all glucose levels but otherwise exerted negligible effect on metabolism. HepG2‐C3A cells thus show distinct differences from primary hepatocytes in terms of energy metabolism and urea production. This knowledge can be used to design media supplements and metabolically engineer cells to restore necessary hepatic functions to HepG2‐C3A cells for a range of applications. Biotechnol. Bioeng. 2010;107: 347–356. © 2010 Wiley Periodicals, Inc.  相似文献   

14.
A stable essential fatty acid-deficient cell type, known as HepG2-EFD, was derived from the lipoprotein-producing human hepatoma cell line HepG2. These cells are particularly useful for quantitative studies involving essential fatty acids (n-6 and n-3 fatty acids) in secreted lipoproteins. Radiolabeled essential fatty acids can be delivered to these cells without altering the specific activity of the fatty acids, since the deficient cells contain no endogenous essential fatty acids. Using these cells, radioactivity data (dpm) from metabolic studies can be converted directly to mass, and masses as low as a few pmoles can be accurately measured. HepG2-EFD cell cultures were established by growing HepG2 cells in medium containing delipidated serum. After 10 days of growth in delipidated medium, HepG2 cells were completely depleted of all essential fatty acids. Compensatory increases in nonessential fatty acids (n-9 and n-7 fatty acids) including 20:3n-9 (the Mead acid), which is the hallmark fatty acid of essential fatty acid deficiency, were also observed in HepG2-EFD cells. Despite the lack of exogenous fatty acids in the medium and the lack of essential fatty acids in the cells, export of very low density lipoprotein (VLDL)-associated apolipoprotein B by HepG2-EFD was the same as observed for parent HepG2 cells. However, the activity of beta-oxidation of fatty acids in HepG2-EFD cells was much lower than in the parent cell line.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
3-BrPA (3-bromopyruvate) is an alkylating agent with anti-tumoral activity on hepatocellular carcinoma. This compound inhibits cellular ATP production owing to its action on glycolysis and oxidative phosphorylation; however, the specific metabolic steps and mechanisms of 3-BrPA action in human hepatocellular carcinomas, particularly its effects on mitochondrial energetics, are poorly understood. In the present study it was found that incubation of HepG2 cells with a low concentration of 3-BrPA for a short period (150 microM for 30 min) significantly affected both glycolysis and mitochondrial respiratory functions. The activity of mitochondrial hexokinase was not inhibited by 150 microM 3-BrPA, but this concentration caused more than 70% inhibition of GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and 3-phosphoglycerate kinase activities. Additionally, 3-BrPA treatment significantly impaired lactate production by HepG2 cells, even when glucose was withdrawn from the incubation medium. Oxygen consumption of HepG2 cells supported by either pyruvate/malate or succinate was inhibited when cells were pre-incubated with 3-BrPA in glucose-free medium. On the other hand, when cells were pre-incubated in glucose-supplemented medium, oxygen consumption was affected only when succinate was used as the oxidizable substrate. An increase in oligomycin-independent respiration was observed in HepG2 cells treated with 3-BrPA only when incubated in glucose-supplemented medium, indicating that 3-BrPA induces mitochondrial proton leakage as well as blocking the electron transport system. The activity of succinate dehydrogenase was inhibited by 70% by 3-BrPA treatment. These results suggest that the combined action of 3-BrPA on succinate dehydrogenase and on glycolysis, inhibiting steps downstream of the phosphorylation of glucose, play an important role in HepG2 cell death.  相似文献   

16.
Bilitranslocase is a carrier protein localized at the basolateral domain of the hepatocyte plasma membrane. It transports various organic anions, including bromosulfophthalein and anthocyanins. Functional studies in subcellular fractions enriched in plasma membrane revealed a high-affinity binding site for bilirubin, associated with bilitranslocase. The aim of this work was to test whether the liver uptake of bilirubin depends on the activity of bilitranslocase. To this purpose, an assay of bilirubin uptake into HepG2 cell cultures was set up. The transport assay medium contained bilirubin at a concentration of approximately 50 nm in the absence of albumin. To analyse the relative changes in bilirubin concentration in the medium throughout the uptake experiment, a highly sensitive thermal lens spectrometry method was used. The mechanism of bilirubin uptake into HepG2 cells was investigated by using inhibitors such as anti-sequence bilitranslocase antibodies, the protein-modifying reagent phenylmethanesulfonyl fluoride and diverse organic anions, including nicotinic acid, taurocholate and digoxin. To validate the assay further, both bromosulfophthalein and indocyanine green uptake in HepG2 cells was also characterized. The results obtained show that bilitranslocase is a carrier with specificity for both bilirubin and bromosulfophthalein, but not for indocyanine green.  相似文献   

17.
Direct ferritin immunoelectron microscopy was applied to visualize the distribution of the hepatocyte cell surface of the asialoglycoprotein receptor which is responsible for the rapid clearance of serum glycoproteins and lysosomal catabolism. For this purpose, rabbit antibody against the purified hepatic binding protein specific for asialoglycoproteins was prepared and coupled to ferritin by glutaraldehyde. The specific antibody conjugates were incubated with the hepatocytes, which were isolated from rat liver homogenate after fixation by glutaraldehyde perfusion. These cells preserved well the original polygonal shape and polarity, and it was easy to identify the sinusoidal, lateral, and bile canalicular faces. The surface density of the ferritin particles bound to the sinusoidal face was about four times higher than that of particles bound to the lateral face, while the bile canalicular face was hardly labeled and almost at the control level. Using the surface area of hepatocyte measured by morphometrical analyses, it was estimated that approximately 90% of bound ferritin particles were at the sinusoidal face, approximately 10% at the lateral face, and approximately 1% at the bile canalicular face. Nonhepatic cells such as endothelial and Kupffer cells had no receptor specific for asialoglycoproteins.  相似文献   

18.
Tumor angiogenesis is a complicated process based upon a sequence of interactions between tumor and vessel endothelial cells. Tumor conditioned medium has been widely used to stimulate endothelial cells in vitro angiogenesis. This work was aimed to investigate the effects of gold nanoparticles (GNPs) on angiogenesis in hepatic carcinoma-conditioned endothelial cells. Human umbilical vein endothelial cells (HUVECs) were cultured with conditioned medium (CM) from the human hepatocarcinoma cell line HepG2 (HepG2-CM), and then treated with different concentrations of GNPs. The effects of GNPs on the viability, migration and active VEGF level of HUVECs were investigated by MTT assay, wound healing assay and transwell chamber assay, and ELISA assay, respectively. The data showed that GNPs significantly inhibited HUVECs proliferation and migration induced by HepG2-CM, and also reduced the levels of active VEGF in the co-culture system. Then, the alterations in morphology and ultrastructure of HUVECs detected by atomic force microscopy (AFM) showed that there appeared obvious pseudopodia, larger membrane particle sizes and much rougher surface in HUVECs after HepG2-CM treatment, which were all reversed after GNPs treatment. Changes in cytoskeleton of HUVECs determined by immunocytochemistry demonstrated that GNPs treatment remarkably inhibited the activation effect of HepG2-CM on HUVECs, which was associated with the disruption of actin filaments induced by GNPs. This study indicates that GNPs can significantly inhibit HepG2-CM activated endothelial cell proliferation and migration through down-regulation of VEGF activity and disruption of cell morphology, revealing the potential applications of GNPs as antiangiogenic agent for the treatment of hepatic carcinoma.  相似文献   

19.
The liver is the organ that responds to nutritional disturbances including magnesium deficiency. The present study evaluated cellular responses to magnesium deficiency using model cells of the liver, namely, HepG2 cells as hepatocytes, RAW264.7 cells as Kupffer cells and human umbilical vein endothelial cells (HUVECs) as vascular endothelial cells; we examined effects of culture with magnesium deficient medium on cell responses in individual types of cells as well as interactive responses among cells. Metabolomic analyses indicated that magnesium deficiency differentially affected the cellular content of metabolites among HepG2 cells, RAW264.7 cells and HUVECs. The cellular content of the metabolites in HepG2 cells and HUVECs was also affected by the conditioned medium from RAW264.7 cells cultured with the magnesium-deficient media. The changes in HUVECs partly resembled those of the livers of magnesium-deficient rats previously described. RNA-seq analyses indicated that magnesium deficiency modulated the expression levels of molecules related to the ubiquitin-proteasome pathway and oxidative stress/antioxidant response in HepG2 cells and RAW264.7 cells, respectively. Furthermore, when HUVECs were co-cultured with RAW264.7 cells, lipopolysaccharide-induced expression of interleukin (IL)-1β and IL-6 was enhanced by magnesium deficiency, depending on the presence of RAW264.7 cells. The present study reveals that magnesium deficiency affects cellular metabolism in HepG2 liver cells, RAW264.7 macrophages and HUVECs, and that the modulation of cellular responses to extracellular magnesium deficiency in HUVECs depends on the presence of RAW264.7 cells. The complex responses in individual cells and through cell interactions partly explain the regulatory reaction to magnesium deficiency in the liver.  相似文献   

20.
The binding to HepG2 cells of very low density lipoproteins (VLDL) and their remnants (IDL) was alternatively, in the past, attributed to the low density lipoprotein receptor (LDLr) or to an apoE-specific receptor. In order to resolve this issue, we have compared the binding of those lipoproteins labelled with iodine-125 to normal and LDLr deficient HepG2 cells. Those deficient cells were obtained by a constitutive antisense strategy and their LDLr level is 14% the level of normal HepG2 cells. By saturation curve analysis, we show that VLDL and IDL bind to high and low affinity sites on cells. The low affinity binding was eliminated by conducting the assay in presence of a 200-fold excess of HDL3 respective to the concentrations of 125I-labelled VLDL and IDL. For 125I-VLDL high affinity binding to normal HepG2 cells, we found a dissociation constant (Kd) of 21.2 +/- 3.7 micrograms prot./ml (S.E., N = 5) and a maximal binding capacity (Bmax) of 0.0312 +/- 0.0063 microgram prot./mg cell prot, while we have measured a Kd of 5.3 +/- 0.8 and a Bmax of 0.0081 +/- 0.0014 with LDLr deficient cells. This indicates that LDLr is responsible for 74% of VLDL binding to HepG2 cells and that the non-LDLr high affinity receptor has a higher affinity for VLDL than LDLr. A 53% loss of 125I-IDL binding capacity was measured with LDLr deficient cells compared with normal cells (Bmax: 0.028 +/- 0.005 versus 0.059 +/- 0.006), while no significant statistical difference was found between affinities. The study shows that the LDLr is almost the only contributor in VLDL binding, while it shares IDL binding capacity with another high affinity receptor. The physiological importance of LDLr is confirmed by an almost equivalent loss of IDL and VLDL degradation in LDLr deficient cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号