首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This study was undertaken to provide further information concerning the chemical heterogeneity of heparins and the relationships between the anticoagulant activity (USP assay) and the anionic density of the heparin. A sample of commercial heparin was fractionated into 13 fractions by sequential extraction in a two-phase system of 1-butanol-aqueous NaCl containing excess hexadecylpyridinium chloride. The anionic density distribution was characterized by the fractional distribution of uronate among the fractions. The fractions were characterized by several molar ratios of constituents, molecular weight, charge density, and anticoagulant activity in recalcified sheep plasma. The heparin was broadly distributed among the last 10 fractions; the first three contained impurities which were completely separated from the heparin fractions. The heparin fractions differ systematically in anionic density but are of substantially the same molecular weight. Anticoagulant activity increased markedly with anionic density, ranging from 81 units/mg for the heparin fraction with the lowest anionic density up to a high of 243 units/mg. The relationship between anticoagulant activity and either anionic density or its square is nonlinear. However, in the latter case an initial linear relationship was observed for anticoagulant activities of less than 200 units/mg.  相似文献   

2.
Heparin is a carbohydrate anticoagulant used clinically to prevent thrombosis, however impurities can limit its efficacy. Here we report the biosynthesis of heparin-like heparan sulfate via the recombinant expression of human serglycin in human cells. The expressed serglycin was also decorated with chondroitin/dermatan sulfate chains and the relative abundance of these glycosaminoglycan chains changed under different concentrations of glucose in the culture medium. The recombinantly expressed serglycin produced with 25 mM glucose present in the culture medium was found to possess anticoagulant activity one-seventh of that of porcine unfractionated heparin, demonstrating that bioengineered human heparin-like heparan sulfate may be a safe next-generation pharmaceutical heparin.  相似文献   

3.
Glycosaminoglycans including dermatan sulphate, hyaluronan, heparan sulphate and heparin were chemically modified by O-sulphonation. By altering the reaction conditions, products having a different degree of O-sulphonation could be obtained. Glycosaminoglycan derivatives were prepared having no free hydroxyl groups, with sulphoester group/disaccharide unit ratios of 4.0 for dermatan sulphate and hyaluronan, and sulphoester and sulphamide group/disaccharide unit ratios of 4.22 and 4.88 for heparan sulphate and heparin, respectively. 1H NMR spectroscopy showed that the fully O-sulphonated hyaluronan derivative had a glucuronate residue with an altered conformation. Since glycosaminiglycans and their derivatives are often used as anticoagulant/antithrombotic agents, their anti-amidolytic activities were determined. The anti-factor IIa activity of fully O-sulphonated dermatan sulphate, hyaluronan and heparan sulphate ranged from 40 to 80 units/mg, while no anti-factor Xa activity of the fully O-sulphonated glycosaminoglycans was detected. These values are lower than those reported for low-molecular-weight heparins and are consistent with the requirement of an antithrombin III pentasaccharide binding site for anti-factor Xa activity. Interestingly, the anti-factor Xa of heparin is lost by chemical O-sulphonation.  相似文献   

4.
We determined the disaccharide composition of dermatan sulfate (DS) purified from the skin of the electric eel Electrophorus electricus. DS obtained from the electric eel was composed of non-sulfated, mono-sulfated disaccharides bearing esterified sulfate groups at positions C-4 or C-6 of N-acetyl galactosamine (GalNAc), and disulfated disaccharides bearing esterified sulfate groups at positions C-2 of the uronic acid and at position C-4 or C-6 of GalNAc. The anticoagulant, antithrombotic and bleeding effects of electric eel skin DS were compared to those of porcine DS and also to those described previously for DS purified from skin of eel, Anguilla japonica. DS from electric eel is a potent anticoagulant due to a high heparin co-factor II (HC II) activity. The electric eel DS has a higher potency to prevent thrombus formation on an experimental model and a lower bleeding effect in rats than the porcine DS. Interestingly, it was recently demonstrated that DS obtained from skin of the eel Anguilla japonica, which possesses a disaccharide composition very similar to that of electric eel skin DS described here, did not show anticoagulant activity. Thus, the anticoagulant activity of electric eel skin DS is not merely a consequence of its charge density. We speculate that the differences among the anticoagulant activities of these three DS may be related to different arrangements of the disulfated disaccharide domain for binding to HC II within their polysaccharide chains and that it may be more efficiently arranged along the carbohydrate chain in electric eel skin DS than in the two other types of DS.  相似文献   

5.
Glycosaminoglycans (GAGs) in pericellular and interstitial spaces help to maintain local water homeostasis and blood coagulation balance. This study explored whether dehydrating microenvironment conditions influence dermatan sulfate's (DS) anticoagulant activity. Water transfer during antithrombin activation by dermatan sulfate was measured using osmotic stress techniques. Anticoagulant activity was determined from the change in the rate of coagulation factor Xa (fXa) inhibition. Osmotic stress accelerated reaction rates, indicating water transfer from reactants to bulk. The net volume transferred, measured using osmotic probes similar in size to the reacting proteins, was approximately 2500 mol of water per mole of fXa inhibited. The reaction efficiency, V(sat)/K 1/2 (rate at saturation/concentration resulting in half-maximal rates), determined in titrations with monosulfated dermatan sulfate and disulfated dermatan sulfate (DDS), were 4x10(4) and 2x10(5) M-1 s-1 under osmotic stress and in the presence of calcium, corresponding to 34- and 81-fold increases over efficiency measured under standard conditions. These results indicate that dermatan sulfate can contribute significantly to antithrombin activation, and that in dehydrating environments and depending of ionic conditions, its anticoagulant efficiency can exceed that of heparan sulfate (HS).  相似文献   

6.
Sulfated fucans are among the most widely studied of all the sulfated polysaccharides of non-mammalian origin that exhibit biological activities in mammalian systems. Examples of these polysaccharides extracted from echinoderms have simple structures, composed of oligosaccharide repeating units within which the residues differ by specific patterns of sulfation among different species. In contrast the algal fucans may have some regular repeating structure but are clearly more heterogeneous when compared with the echinoderm fucans. The structures of the sulfated fucans from brown algae also vary from species to species. We compared the anticoagulant activity of the regular and repetitive fucans from echinoderms with that of the more heterogeneous fucans from three species of brown algae. Our results indicate that different structural features determine not only the anticoagulant potency of the sulfated fucans but also the mechanism by which they exert this activity. Thus, the branched fucans from brown algae are direct inhibitors of thrombin, whereas the linear fucans from echinoderms require the presence of antithrombin or heparin cofactor II for inhibition of thrombin, as reported for mammalian glycosaminoglycans. The linear sulfated fucans from echinoderms have an anticoagulant action resembling that of mammalian dermatan sulfate and a modest action through antithrombin. A single difference of one sulfate ester per tetrasaccharide repeating unit modifies the anticoagulant activity of the polysaccharide markedly. Possibly the spatial arrangements of sulfate esters in the repeating tetrasaccharide unit of the echinoderm fucan mimics the site in dermatan sulfate with high affinity for heparin cofactor II.  相似文献   

7.
Intact and fully O[emsp4 ]-sulfonated glycosaminoglycans (GAGs) including chondroitin sulfate, dermatan sulfate, hyaluronan, heparan sulfate and heparin were chemically de-O-sulfonated on their hexosamine C-6 position (6-O[emsp4 ]-desulfonation) using N,O[emsp4 ]-bis(trimethylsilyl) acetamide. 1H NMR spectroscopy and chemical compositional analysis showed that the chemical de-O[emsp4 ]-sulfonation at C-6 position of hexosamine residues in both intact and fully O[emsp4 ]-sulfonated GAGs was completely achieved. Since GAGs and their derivatives are often used as anticoagulant agents, their anti-amidolytic activities were determined. While most of anticoagulant activity of fully O[emsp4 ]-sulfonated GAGs (FGAGs) and heparin disappeared following chemical 6-O[emsp4 ]-desulfonation, the activity of 6-O-desulfonated fully O[emsp4 ]-sulfonated dermatan sulfate (De6FDS) remained. This observation suggests the importance of the position of O-sulfonate groups for anti-coagulant activity.  相似文献   

8.
Dermatan sulfate is a glycosaminoglycan that selectively inhibits the action of thrombin through interaction with heparin cofactor II. Unlike heparin it does not interact with other coagulation factors and is able to inhibit thrombin associated with clots. This property has made dermatan sulfate an attractive candidate as an antithrombotic drug. Previous studies have showed that dermatan sulfate derived from porcine/bovine intestinal mucosa/skin or marine invertebrates is capable of stimulating heparin cofactor II-mediated thrombin inhibition in vitro. This biological activity is reported for the first time in this study using dermatan sulfate derived from mammalian tissues other than intestinal mucosa or skin. Ten different bovine tissues including the aorta, diaphragm, eyes, large and small intestine, esophagus, skin, tendon, tongue, and tongue skin were used to prepare dermatan sulfate-enriched fractions by anion exchange chromatography and acetone precipitation. Heparin cofactor II/dermatan sulfate-mediated thrombin inhibition measured in vitro revealed activity comparable to or higher than the commercial standard with 2-fold differences observed between some tissues. Analysis of the extracted dermatan sulfate using fluorophore-assisted carbohydrate electrophoresis revealed significant differences in the relative percentage of all the mono-sulfated disaccharides, in particular the predominant mammalian disaccharide uronic acid-->N-acetyl-D-galactosamine-4-O-sulfate, confirming previous reports regarding variations in sulfation in dermatan sulfate from different tissues. Overall, these findings demonstrate that dermatan sulfate extracted from a range of bovine tissues exhibits in vitro antithrombin activity equivalent to or higher than that observed for porcine intestinal mucosa, identifying additional sources of dermatan sulfate as potential antithrombotic agents.  相似文献   

9.
A natural low molecular weight heparin (8.5 kDa), with an anticoagulant activity of 95 IU/mg by the USP assay, was isolated from the shrimp Penaeus brasiliensis. The crustacean heparin was susceptible to both heparinase and heparitinase II from Flavobacterium heparinum forming tri- and di-sulfated disaccharides as the mammalian heparins. (13)C and (1)H NMR spectroscopy revealed that the shrimp heparin was enriched in both glucuronic and non-sulfated iduronic acid residues. The in vitro anticlotting activities in different steps of the coagulation cascade have shown that its anticoagulant action is mainly exerted through the inhibition of factor Xa and heparin cofactor II-mediated inhibition of thrombin. The shrimp heparin has also a potent in vivo antithrombotic activity comparable to the mammalian low molecular weight heparins.  相似文献   

10.
Chemically-modified heparins containing different combinations of N- and O-sulfate groups were prepared. Characterized by high field 1H- and 13C-n.m.r. spectroscopy, the polymers exhibited chemical shift variations in general accord with shielding differences expected on removal of sulfate substituents, and additional variations that probably arose from conformational changes in the polymers. Whereas the anticoagulant activity of heparins, as measured by USP, anti-Xa, and thrombin-time assays, was invariably reduced by the chemical transformations effected, the ability of heparin to bind calcium ions was found to be dependent on retention of the 2-sulfamino group, whether or not O-sulfate groups were present. The results suggest that the 2-sulfamino group is essential for maintaining a molecular conformation consistent with the ability for the L-iduronic acid residues to complex with calcium ions. Also, they show that although the anticoagulant and calcium-binding properties of heparin may be interdependent, they are not determined by the same structural entities in the polymer.  相似文献   

11.
Heparan sulphate and dermatan sulphate have both antithrombotic and anticoagulant properties. These are, however, significantly weaker than those of a comparable amount of standard pig mucosal heparin. Antithrombotic and anticoagulant effects of glycosaminoglycans depend on their ability to catalyse the inhibition of thrombin and/or to inhibit the activation of prothrombin. Since heparan sulphate and dermatan sulphate are less sulphated than unfractionated heparin, we investigated whether the decreased sulphation contributes to the lower antithrombotic and anticoagulant activities compared with standard heparin. To do this, we compared the anticoagulant activities of heparan sulphate and dermatan sulphate with those of their derivatives resulphated in vitro. The ratio of sulphate to carboxylate in these resulphated heparan sulphate and dermatan sulphate derivatives was approximately twice that of the parent compounds and similar to that of standard heparin. Anticoagulant effects were assessed by determining (a) the catalytic effects of each glycosaminoglycan on the inhibition of thrombin added to plasma, and (b) the ability of each glycosaminoglycan to inhibit the activation of 125I-prothrombin in plasma. The least sulphated glycosaminoglycans were least able to catalyse the inhibition of thrombin added to plasma and to inhibit the activation of prothrombin. Furthermore, increasing the degree of sulphation improved the catalytic effects of glycosaminoglycans on the inhibition of thrombin by heparin cofactor II in plasma. The degree of sulphation therefore appears to be an important functional property that contributes significantly to the anticoagulant effects of the two glycosaminoglycans.  相似文献   

12.
The specificity of endothelial binding sites for heparin was investigated with heparin fractions and fragments differing in their Mr, charge density and affinity for antithrombin III, as well as with heparinoids and other anionic polyelectrolytes (polystyrene sulphonates). The affinity for endothelial cells was estimated by determining I50 values in competition experiments with 125I-heparin. We found that affinity for endothelial cells increases as a function of Mr and charge density (degree of sulphation). Binding sites are not specific receptors for heparin. Other anionic polyelectrolytes, such as pentosan polysulphates and polystyrene sulphonates, competed with heparin for binding to endothelial cells. Fractions of standard heparin with high affinity for antithrombin III also had greater affinity for endothelium. However, these two properties of heparin (affinity for antithrombin III and affinity for endothelial cells) could be dissociated. Oversulphated heparins and oversulphated low-Mr heparin fragments had lower anticoagulant activity and higher affinity for endothelial cells than did their parent compounds. Synthetic pentasaccharides, bearing the minimal sequence for binding to antithrombin III, did not bind to endothelial cells. Binding to endothelial cells involved partial neutralization of heparin. Bound heparin exhibited only 5% and 7% of antifactor IIa and antifactor Xa specific activity, respectively. In the presence of 200 nM-antithrombin III, and in the absence of free heparin, a limited fraction (approx. 30%) of bound heparin was displaced from endothelial cells during a 1 h incubation period. These data suggested that a fraction of surface-bound heparin could represent a pool of anticoagulant.  相似文献   

13.
Characteristics of the 1H-n.m.r. spectra of heparin admixed with other glycosaminoglycans are described with respect to the identification of the latter as possible contaminants of pharmaceutical heparins. Chemical shift differences are sufficiently large, particularly with the aid of resolution enhancement, to allow for the detection of dermatan sulfate, chondroitin 4- or 6-sulfate, hyaluronic acid, or heparan sulfate as a minor constituent in the presence of heparin. The acetamidomethyl resonance region (delta 1.95-2.15) is especially useful in this context, both for identification and quantitative estimation. Whereas dermatan sulfate is a common contaminant of pharmaceutical heparin preparations, in some instances comprising 10-15 percent of the polymer mixture, the other glycosaminoglycans, by contrast, were not detected in such preparations. Two-dimensional heterocorrelation and homo-correlation n.m.r. experiments have provided 1H- and 13C-chemical shift data that complete or verify (or both) previous information available for heparin, dermatan sulfate, and chondroitin 4- and 6-sulfates (chondroitins A and C).  相似文献   

14.
We analysed the distribution, structural characteristics, antithrombin-III-binding properties and anticoagulant activities of heparins and heparan sulphates isolated from the tissues of a wide range of vertebrates. Heparin has a curiously limited distribution, since it was absent from lower aquatic vertebrate species, present in only certain organs such as intestine in many higher vertebrates, and completely absent from the rabbit among mammals examined. The heparins were structurally diverse, and they exhibited a broad range of anticoagulant activities, from approx. 50% to 150% of average commercial heparins. Although there was a rough correlation between the anticoagulant potency of the starting isolate and the proportional content of material exhibiting high-affinity binding to the proteinase inhibitor antithrombin III, activities of high-affinity fractions from heparins low in activity overlapped those of low-affinity fractions from highly active heparins. Heparan sulphates, which in contrast were isolated from nearly all vertebrate organs, contained high-affinity subfractions constituting up to 5% of the starting material and possessing anticoagulant potencies of 2-30 units/mg. In consideration of the heparin data, we infer that its biological function is either species-specific or may be served by other molecular elements, and that there exists considerable diversity in the antithrombin-III-binding sequence of heparin. The more-generally distributed glycosaminoglycan heparan sulphate possesses within its variable structure a small high-affinity subfraction with low anticoagulant potency, whether isolated from aorta or other tissues. Although heparan sulphate appears to have an essential function at the cellular level, we suggest that this is probably not that of providing heparin-like antithrombotic effects on vascular surfaces.  相似文献   

15.
The minimum concentrations of heparin, dermatan sulfate, hirudin, and D-Phe-Pro-ArgCH2Cl required to delay the onset of prothrombin activation in contact-activated plasma also prolong the lag phases associated with both factor X and factor V activation. Heparin and dermatan sulfate prolong the lag phases associated with the activation of the three proteins by catalyzing the inhibition of endogenously generated thrombin. Thrombin usually activates factor V and factor VIII during coagulation. The smallest fragment of heparin able to catalyze thrombin inhibition by antithrombin III is an octadecasaccharide with high affinity for antithrombin III. In contrast, a dermatan sulfate hexasaccharide with high affinity for heparin cofactor II can catalyze thrombin inhibition by heparin cofactor II. A highly sulfated bis(lactobionic acid amide), LW10082 (Mr 2288), which catalyzes thrombin inhibition by heparin cofactor II and has both antithrombotic and anticoagulant activities, has been synthesized. In this study, we determined how the minimum concentration of LW10082 required to delay the onset of intrinsic prothrombin activation achieved this effect. We demonstrate that, like heparin and dermatan sulfate, LW10082 delays the onset of intrinsic prothrombin activation by prolonging the lag phase associated with both factor X and factor V activation. In addition, LW10082 is approximately 25% as effective as heparin and 10 times as effective as dermatan sulfate in its ability to delay the onset of prothrombin activation. The strong anticoagulant action of LW10082 is consistent with previous reports which show that the degree of sulfation is an important parameter for the catalytic effectiveness of sulfated polysaccharides on thrombin inhibition.  相似文献   

16.
We investigated the mechanisms of anticoagulant activity mediated by sulfated galactans. The anticoagulant activity of sulfated polysaccharides is achieved mainly through potentiation of plasma cofactors, which are the natural inhibitors of coagulation proteases. Our results indicated the following. 1) Structural requirements for the interaction of sulfated galactans with coagulation inhibitors and their target proteases are not merely a consequence of their charge density. 2) The structural basis of this interaction is complex because it involves naturally heterogeneous polysaccharides but depends on the distribution of sulfate groups and on monosaccharide composition. 3) Sulfated galactans require significantly longer chains than heparin to achieve anticoagulant activity. 4) Possibly, it is the bulk structure of the sulfated galactan, and not a specific minor component as in heparin, that determines its interaction with antithrombin. 5) Sulfated galactans of approximately 15 to approximately 45 kDa bind to antithrombin but are unable to link the plasma inhibitor and thrombin. This last effect requires a molecular size above 45 kDa. 6) Sulfated galactan and heparin bind to different sites on antithrombin. 7) Sulfated galactans are less effective than heparin at promoting antithrombin conformational activation. Overall, these observations indicate that a different mechanism predominates over the conformational activation of antithrombin in ensuring the antithrombin-mediated anticoagulant activity of the sulfated galactans. Possibly, sulfated galactan connects antithrombin and thrombin, holding the protease in an inactive form. The conformational activation of antithrombin and the consequent formation of a covalent complex with thrombin appear to be less important for the anticoagulant activity of sulfated galactan than for heparin. Our results demonstrate that the paradigm of heparin-antithrombin interaction cannot be extended to other sulfated polysaccharides. Each type of polysaccharide may form a particular complex with the plasma inhibitor and the target protease.  相似文献   

17.
The role of different glycosaminoglycan species from the vessel walls as physiological antithrombotic agents remains controversial. To further investigate this aspect we extracted glycosaminoglycans from human thoracic aorta and saphenous vein. The different species were highly purified and their anticoagulant and antithrombotic activities tested by in vitro and in vivo assays. We observed that dermatan sulfate is the major anticoagulant and antithrombotic among the vessel wall glycosaminoglycans while the bulk of heparan sulfate is a poorly sulfated glycosaminoglycan, devoid of anticoagulant and antithrombotic activities. Minor amounts of particular a heparan sulfate (< 5% of the total arterial glycosaminoglycans) with high anticoagulant activity were also observed, as assessed by its retention on an antithrombin-affinity column. Possibly, this anticoagulant heparan sulfate originates from the endothelial cells and may exert a significant physiological role due to its location in the interface between the vessel wall and the blood. In view of these results we discuss a possible balance between the two glycosaminoglycan-dependent anticoagulant pathways present in the vascular wall. One is based on antithrombin activation by the heparan sulfate expressed by the endothelial cells. The other, which may assume special relevance after vascular endothelial injury, is based on heparin cofactor II activation by the dermatan sulfate proteoglycans synthesized by cells from the subendothelial layer.  相似文献   

18.
M E Silva 《Biochimie》1979,61(4):543-547
Human blood platelets are able to degrade heparin from different tissues and species. The main degradation product is an oligosaccharide. Low molecular weight components such as inorganic sulfate or monosaccharides, i.e. products released by exoenzymes are not detected. The in vitro degradation of heparin by the crude enzyme is observed at pHs below 6.5 with an optimum temperature around 37 degrees C. The presence of sulfate in the substrate structure is shown to be essential for the enzyme activity. Since the oligosaccharides formed have only 10 per cent of the anticoagulant activity of the heparins tested, it is conceivable that the platelet enzyme may play an important role in the inactivation of some of the biological properties of heparin.  相似文献   

19.
Glycosaminoglycans were isolated from the eel skin (Anguilla japonica) by actinase and endonuclease digestions, followed by a beta-elimination reaction and DEAE-Sephacel chromatography. Dermatan sulfate was the major glycosaminoglycan in the eel skin with 88% of the total uronic acid. The content of the IdoA2Salpha1-->4GalNAc4S sequence in eel skin, which shows anticoagulant activity through binding to heparin cofactor II, was two times higher than that of dermatan sulfate from porcine skin. The anti-IIa activity of eel skin dermatan sulfate was determined to be 2.4 units/mg, whereas dermatan sulfate from porcine skin shows 23.2 units/mg. The average molecular weight of dermatan sulfate was determined by gel chromatography on a TSKgel G3000SWXL column as 14 kDa. Based on 1H NMR spectroscopy, the presence of 3-sulfated and/or 2,3-sulfated IdoA residues was suggested. The reason why highly sulfated dermatan sulfate does not show anticoagulant activity is discussed. In addition to dermatan sulfate, the eel skin contained a small amount of keratan sulfate, which was identified by keratanase treatment.  相似文献   

20.
Contaminated heparin was associated with adverse reactions by activating the contact system. Chemically oversulfated/modified glycosaminoglycans (GAGs) consisting of heparan sulfate, dermatan sulfate, and chondroitin sulfate have been identified as heparin contaminants. Current studies demonstrated that each component of oversulfated GAGs was comparable with oversulfated chondroitin sulfate in activating the contact system. By testing a series of unrelated negatively charged compounds, we found that the contact system recognized negative charges rather than specific chemical structures. We further tested how oversulfated GAGs and contaminated heparins affect different cell signaling pathways. Our data showed that chemically oversulfated GAGs and contaminated heparin had higher activity than the parent compounds and authentic heparin, indicative of sulfation-dominant and GAG sequence-dependent activities in BaF cell-based models of fibroblast growth factor/fibroblast growth factor receptor, glial cell line-derived neurotrophic factor/c-Ret, and hepatocyte growth factor/c-Met signaling. In summary, these data indicate that contaminated heparins intended for blood anticoagulation not only activated the contact system but also modified different GAG-dependent cell signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号