首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
In fission yeast, inactivation of the Cdc25 phosphatase by checkpoint kinases participates in the signaling cascade that temporarily stops cell cycle progression after DNA damage. In human, CDC25B and C are also known to be targeted by a similar checkpoint machinery. We have examined by homologous recombination, whether CDC25B and CDC25C were able to substitute for the function of fission yeast Cdc25. We demonstrate that (i) CDC25B and C efficiently replace Cdc25 for vegetative growth, (ii) CDC25C is able to restore a functional checkpoint in response to ionizing radiation in both a Chk1- and Cds1-dependent manner, (iii) CDC25B and C are equally efficient in the response to UV irradiation, CDC25B being only dependent on Chk1, while CDC25C depends on both Chk1 and Cds1, and (iv) CDC25C is able to restore a functional DNA replication checkpoint induced by hydroxyurea in a Cds1-dependent manner. The consequences of these findings on our current view of the checkpoint cascade are discussed.  相似文献   

2.
CDC25B, one of the three members of the CDC25 dual-specificity phosphatase family, plays a critical role in the control of the cell cycle and in the checkpoint response to DNA damage. CDC25B is responsible for the initial dephosphorylation and activation of the cyclin-dependent kinases, thus initiating the train of events leading to entry into mitosis.1 The critical role played by CDC25B is illustrated by the fact that it is specifically required for checkpoint recovery2, 3 and that unscheduled accumulation of CDC25B is responsible for illegitimate entry into mitosis.3-5 Here, we report that in p53-/- colon carcinoma cells, a moderate increase in the CDC25B level is sufficient to impair the DNA damage checkpoint, to increase spontaneous mutagenesis, and to sensitize cells to ionising radiation and genotoxic agents. Using a tumour cell spheroid assay as an alternative to animal studies, we demonstrate that the level of CDC25B expression modulates growth inhibition and apoptotic death. Since CDC25B overexpression has been observed in a significant number of human cancers, including colon carcinoma, and is often associated with high grade tumours and poor prognosis1, our work suggests that the expression level of CDC25B might be a potential key parameter of the cellular response to cancer therapy.  相似文献   

3.
CDC25B is one of the three human dual-specificity phosphatases involved in the activation ofcyclin-dependent kinases at key stages of the cell division cycle. CDC25B that is responsiblefor the activation of CDK1-cyclin B1 is regulated by phosphorylation. The STK15/Aurora-Akinase locally phosphorylates CDC25B on serine 353 at the centrosome during the G2/Mtransition. Here we have investigated this phosphorylation event during the cell cycle, and inresponse to activation of the G2 DNA damage checkpoint. We show that accumulation of theS353-phosphorylated form of CDC25B at the centrosome correlates with the relocalisation ofcyclin B1 to the nucleus and the activation of CDK1 at entry into mitosis. Upon activation ofthe G2/M checkpoint by DNA damage, we demonstrate that Aurora-A is not activated andconsequently CDC25B is not phosphorylated. We show that ectopic expression of Aurora-Aresults in a bypass of the checkpoint that partially overcome by a S353A mutant of CDC25B.Finally, we show that bypass of the G2/M checkpoint by the CHK1 kinase inhibitor UCN-01results in the activation of Aurora-A and phosphorylation of CDC25B on S353. These resultsstrongly suggest that Aurora-A-mediated phosphorylation of CDC25B at the centrosome is animportant step contributing to the earliest events inducing mitosis, upstream of CDK1-cyclinB1 activation.  相似文献   

4.
To investigate the means by which a cell regulates the progression of the mitotic cell cycle, we characterized cdc44, a mutation that causes Saccharomyces cerevisiae cells to arrest before mitosis. CDC44 encodes a 96-kDa basic protein with significant homology to a human protein that binds DNA (PO-GA) and to three subunits of human replication factor C (also called activator 1). The hypothesis that Cdc44p is involved in DNA metabolism is supported by the observations that (i) levels of mitotic recombination suggest elevated rates of DNA damage in cdc44 mutants and (ii) the cell cycle arrest observed in cdc44 mutants is alleviated by the DNA damage checkpoint mutations rad9, mec1, and mec2. The predicted amino acid sequence of Cdc44p contains GTPase consensus sites, and mutations in these regions cause a conditional cell cycle arrest. Taken together, these observations suggest that the essential CDC44 gene may encode the large subunit of yeast replication factor C.  相似文献   

5.
CDC25B is one of the three human phosphatases that are involved in the control of the activation of cyclin-dependent kinases. CDC25B participates in regulating entry into mitosis and appears to play a key role in the checkpoint response to DNA injury.CDC25B has been reported to be regulated by a number of kinases and controversial evidence suggests that it is phosphorylated by p38SAPK and/or MAPKAP Kinase-2. In this report, we clarify this issue using an approach combining mass spectrometry andthe use of specific antibodies against phosphorylated CDC25B residues. We report that MAPKAP Kinase-2 phosphorylates CDC25B on multiple sites including S169, S323, S353 and S375, while p38 phosphorylates CDC25B on S249. We show that theS323-phosphorylated form of CDC25B is detected at the centrosome during a normal cell cycle. Since most of these sites are also phosphorylated by several other kinases, our observations highlight the difficulty in characterising and understanding in vivo phosphorylation patterns.  相似文献   

6.
The when and wheres of CDC25 phosphatases   总被引:14,自引:0,他引:14  
The CDC25 phosphatases are key regulators of normal cell division and the cell's response to DNA damage. Earlier studies suggested non-overlapping roles for each isoform during a specific cell cycle phase. However, recent data suggest that multiple CDC25 isoforms cooperate to regulate each cell cycle transition. For instance, although CDC25A was initially thought to exclusively regulate the G(1)-S transition, recent data demonstrate a significant role for CDC25A in the G(2)-M transition. Further evidence demonstrates that in addition to the ATM/ATR-CHK pathway, a p38-MAPKAP pathway is also involved in controlling CDC25 activity during G(2)/M checkpoint activation. Together with the fact that CDC25 overexpression is reported in many cancers, these data highlight the significance of developing specific CDC25 inhibitors for cancer therapy.  相似文献   

7.
HeLa cells exposed to Escherichia coli cytolethal distending toxins (CDT) arrest their cell cycle at the G2/M transition. We have shown previously that in these cells the CDK1/cyclin B complex is inactive and can be reactivated in vitro using recombinant CDC25 phosphatase. Here we have investigated in vivo the effects of CDC25 on this cell cycle checkpoint. We report that overexpression of CDC25B or CDC25C overrides an established CDT-induced G2 cell cycle arrest and leads the cells to accumulate in an abnormal mitotic stage with condensed chromatin and high CDK1 activity. This effect can be counteracted by coexpression of the WEE1 kinase. In contrast, overexpression of CDC25B or C prior to CDT treatment prevents G2 arrest and allows most of the cells to progress through mitosis with only a low percentage of cells arrested in abnormal mitosis. The implications of these results on the biochemical nature of the CDT-induced cell cycle arrest are discussed.  相似文献   

8.
Proteasome-dependent degradation of human CDC25B phosphatase   总被引:2,自引:0,他引:2  
The CDC25 dual specificity phosphatase is a universal cell cycle regulator. The evolutionary conservation of this enzyme from yeast to man bears witness to its major role in the control of cyclin-dependent kinases (CDK) activity that are central regulators of the cell cycle machinery. CDC25 phosphatase both dephosphorylates and activates CDKs. Three human CDC25s have been identified. CDC25A is involved in the control of G1/S, and CDC25C at G2/M throught the activation of CDK1-cyclin B. The exact function of CDC25B however remains elusive. We have found that CDC25B is degraded by the proteasome pathway in vitro and in vivo. This degradation is dependent upon phosphorylation by the CDK1-cyclin A complex, but not by CDK1-cyclin B. Together with the observations of others made in yeast and mammals, our results suggest that CDC25B might act as a mitotic starter triggering the activation of an auto-amplification loop before being degraded.  相似文献   

9.
Regulation of the intracellular localisation of its actors is one of the key mechanisms underlying cell cycle control. CDC25 phosphatases are activators of Cyclin-Dependent Kinases (CDK) that undergo nucleo-cytoplasmic shuttling during the cell cycle and in response to checkpoint activation. Here we report that the protein kinase PKB/Akt phosphorylates CDC25B on serine 353, resulting in a nuclear export-dependent cytoplasmic accumulation of the phosphatase. Oxidative stress activates PKB/Akt and reproduces the effect on CDC25B phosphorylation and localisation. However, inhibition of PKB/Akt activity only partially reverted the effect of oxidative stress on CDC25B localisation and mutation of serine 353 abolishes phosphorylation but only delays nuclear exclusion. These results indicate that additional mechanisms are also involved in preventing nuclear import of CDC25B. Our findings identify CDC25B as a target of PKB/Akt and provide new insight into the regulation of its localisation in response to stress-activated signalling pathways.  相似文献   

10.
Pneumocystis carinii is an opportunistic fungal pathogen phylogenetically related to the fission yeast Schizosaccharomyces pombe. P. carinii causes severe pneumonia in immunocompromised patients with AIDS and malignancies. Although the life cycle of P. carinii remains poorly characterized, morphologic studies of infected lung tissue indicate that P. carinii alternates between numerous small trophic forms and fewer large cystic forms. To understand further the molecular mechanisms that regulate progression of the cell cycle of P. carinii, we have sought to identify and characterize genes in P. carinii that are important regulators of eukaryotic cell cycle progression. In this study, we have isolated a cDNA from P. carinii that exhibits significant homology, but unique functional characteristics, to the mitotic phosphatase Cdc25 found in S. pombe. P. carinii Cdc25 was shown to rescue growth of the temperature-sensitive S. pombe cdc25-22 strain and thus provides an additional tool to investigate the unique P. carinii life cycle. Although P. carinii Cdc25 could also restore the DNA damage checkpoint in cdc25-22 cells, it was unable to restore fully the DNA replication checkpoint. The dissociation of checkpoint control at the level of Cdc25 indicates that Cdc25 may be under distinct regulatory control in mediating checkpoint signaling.  相似文献   

11.
Cell cycle checkpoints that monitor DNA damage and spindle assembly are essential for the maintenance of genetic integrity, and drugs that target these checkpoints are important chemotherapeutic agents. We have examined how cells respond to DNA damage while the spindle-assembly checkpoint is activated. Single cell electrophoresis and phosphorylation of histone H2AX indicated that several chemotherapeutic agents could induce DNA damage during mitotic block. DNA damage during mitotic block triggered CDC2 inactivation, histone H3 dephosphorylation, and chromosome decondensation. Cells did not progress into G1 but seemed to retract to a G2-like state containing 4N DNA content, with stabilized cyclin A and cyclin B1 binding to Thr14/Tyr15-phosphorylated CDC2. The loss of mitotic cells was not due to cell death because there was no discernible effect on caspase-3 activation, DNA fragmentation, or viability. Extensive DNA damage during mitotic block inactivated cyclin B1-CDC2 and prevented G1 entry when the block was removed. The mitotic DNA damage responses were independent of p53 and pRb, but they were dependent on ATM. CDC25A that accumulated during mitosis was rapidly destroyed after DNA damage in an ATM-dependent manner. Ectopic expression of CDC25A or nonphosphorylatable CDC2 effectively inhibited the dephosphorylation of histone H3 after DNA damage. Hence, although spindle disruption and DNA damage provide conflicting signals to regulate CDC2, the negative regulation by the DNA damage checkpoint could overcome the positive regulation by the spindle-assembly checkpoint.  相似文献   

12.
The circadian clock drives endogenous oscillations of cellular and physiological processes with a periodicity of approximately 24 h. Progression of the cell division cycle (CDC) has been found to be coupled to the circadian clock, and it has been postulated that gating of the CDC by the circadian cycle may have evolved to protect DNA from the mutagenic effects of ultraviolet light. When grown under nutrient-limiting conditions in a chemostat, prototrophic strains of budding yeast, Saccharomyces cerevisiae, adopt a robust metabolic cycle of ultradian dimensions that temporally compartmentalizes essential cellular events. The CDC is gated by this yeast metabolic cycle (YMC), with DNA replication strictly segregated away from the oxidative phase when cells are actively respiring. Mutants impaired in such gating allow DNA replication to take place during the respiratory phase of the YMC and have been found to suffer significantly elevated rates of spontaneous mutation. Analogous to the circadian cycle, the YMC also employs the conserved DNA checkpoint kinase Rad53/Chk2 to facilitate coupling with the CDC. These studies highlight an evolutionarily conserved mechanism that seems to confine cell division to particular temporal windows to prevent DNA damage. We hypothesize that DNA damage itself might constitute a “zeitgeber”, or time giver, for both the circadian cycle and the metabolic cycle. We discuss these findings in the context of a unifying theme underlying the circadian and metabolic cycles, and explore the relevance of cell cycle gating to human diseases including cancer.  相似文献   

13.
Inhibition of cyclin-dependent kinases (CDKs) by Thr14/Tyr15 phosphorylation is critical for normal cell cycle progression and is a converging event for several cell cycle checkpoints. In this study, we compared the relative contribution of inhibitory phosphorylation for cyclin A/B1-CDC2 and cyclin A/E-CDK2 complexes. We found that inhibitory phosphorylation plays a major role in the regulation of CDC2 but only a minor role for CDK2 during the unperturbed cell cycle of HeLa cells. The relative importance of inhibitory phosphorylation of CDC2 and CDK2 may reflect their distinct cellular functions. Despite this, expression of nonphosphorylation mutants of both CDC2 and CDK2 triggered unscheduled histone H3 phosphorylation early in the cell cycle and was cytotoxic. DNA damage by a radiomimetic drug or replication block by hydroxyurea stimulated a buildup of cyclin B1 but was accompanied by an increase of inhibitory phosphorylation of CDC2. After DNA damage and replication block, all cyclin-CDK pairs that control S phase and mitosis were to different degrees inhibited by phosphorylation. Ectopic expression of nonphosphorylated CDC2 stimulated DNA replication, histone H3 phosphorylation, and cell division even after DNA damage. Similarly, a nonphosphorylation mutant of CDK2, but not CDK4, disrupted the G2 DNA damage checkpoint. Finally, CDC25A, CDC25B, a dominant-negative CHK1, but not CDC25C or a dominant-negative WEE1, stimulated histone H3 phosphorylation after DNA damage. These data suggest differential contributions for the various regulators of Thr14/Tyr15 phosphorylation in normal cell cycle and during the DNA damage checkpoint.  相似文献   

14.
The CDC25B phosphatase regulates the activation of CDK1-Cyclin B at the onset of mitosis, being a key target of the checkpoint pathways activated by cellular stress and DNA damage. Previous work has reported that checkpoint activation induces the sequestration of CDC25B in the cytoplasm. Here we show that in response to UV irradiation, the levels of CDC25B protein can be downregulated independently of classical checkpoints pathways such as p53, ATM/ATR and p38 MAPK. We also show that translational repression mediated by eIF2α phosphorylation regulates CDC25B expression levels. Taken together, our results illustrate a new mechanism of CDC25B regulation in response to stress.  相似文献   

15.
Current evidence suggests that CDC25A is not only a major regulator of both G1/S and G2/M transition during unperturbed cell cycle progression, but also a critical checkpoint mediator. While CDC25A is overexpressed in a variety of human cancers, a key question remainedunanswered whether such overexpression of this CDK-activating phosphatase was a mechanism or consequence of accelerated proliferation and other malignant phenotypes. Recent studies onthe tumor suppressive roles of checkpoint proteins suggest that overriding checkpoint response leads normal or pre-cancerous cells to genomic instability and cumulative malignant changes. Here we provide our views on the role of CDC25A in cancer development and genomic stability, discussing insights from our recent studies on Cdc25A knockout mice and MMTV-CDC25A transgenic mice.  相似文献   

16.
CDC25 phosphatases play key roles in cell proliferation by activating cell cycle-specific cyclin-dependent kinases (CDKs). We identified four new splice variants in the amino-terminal regulatory region of human cdc25C and one in cdc25A. All variants except one retain an intact catalytic domain. Alternative splicing results in loss of phosphorylation sites for kinases like CDK and the calcium/calmodulin-dependent kinase II (CaMKII), which influence CDC25 activity and compartmental localization. In NT2 teratocarcinoma cells, induced for nerve cell differentiation, the smaller sized variant of cdc25C was upregulated. At the protein level both phosphorylation state and isoform distribution differed between cell lines and cell cycle phases.  相似文献   

17.
The bacterial cytolethal distending toxin (CDT) triggers a G2/M cell cycle arrest in eukaryotic cells by inhibiting the CDC25C phosphatase-dependent CDK1 dephosphorylation and activation. We report that upon CDT treatment CDC25C is fully sequestered in the cytoplasmic compartment, an effect that is reminiscent of DNA damage-dependent checkpoint activation. We show that the checkpoint kinase CHK2, an upstream regulator of CDC25C, is phosphorylated and activated after CDT treatment. In contrast to what is observed with other DNA damaging agents, we demonstrate that the activation of CHK2 can only take place during S-phase. Use of wortmannin and caffeine suggests that this effect is not dependent on ATM but rather on another as yet unidentified PI3 kinase family member. These results confirm that the CDT is therefore responsible for specific genomic injuries that block cell proliferation by activating a cell cycle checkpoint.  相似文献   

18.
Various cell cycle regulators control and coordinate the process of cell cycle. Because of the crucial involvement of CDC2, Cyclin B1, Cdc25c, and p21 in cell cycle regulation, the present study was aimed to investigate the possibility that selenium (Se)-induced oxidative stress mediated alterations in Cdc25c and p21 may cause modulations in the CDC2/Cyclin B1 complex responsible for G2/M phase checkpoint during meiosis I of spermatogenesis. To create different Se status-deficient, adequate and excess Se, male Balb/c mice were fed yeast based Se deficient diet (group I) and deficient diet supplemented with Se as sodium selenite at 0.2 and 1 ppm Se (group II and III) for a period of 8 weeks. After completion of the diet feeding schedule, a significant decrease in the Se and glutathione peroxidase levels were observed in the Se deficient group (I), whereas Se excess group (III) demonstrated an increase in Se levels. Increased levels of lipid peroxidation (LPO) were seen in both group I and group III when compared to group II, thus indicating oxidative stressed conditions. The mRNA and protein expression of CDC2, Cyclin B1, and Cdc25c were found to be significantly decreased in groups I and III. However, the expression of p21, a kinase inhibitor, was found to be elevated in Se deficient and Se excess fed groups. A statistically significant decrease in the CDC2 kinase activity was also seen in the Se deficient and excess groups. These findings suggest that under the influence of Se-induced oxidative stress, the down regulation of CDC2/Cyclin B1 complex is mediated through changes in Cdc25c and p21 leading to the cell cycle arrest and thus providing new dimensions to the molecular mechanisms underlying male infertility.  相似文献   

19.
The cell division cycle 25 (CDC25) phosphatases regulate key transitions between cell-cycle phases during normal cell division, and in the case of DNA damage, they are key targets of the checkpoint machinery that ensure genetic stability. Little is known about the mechanisms underlying dysregulation and downstream targets of CDC25. To understand these mechanisms, we silenced the CDC25A gene in breast cancer cell line MDA-MB-231 and studied downstream targets of CDC25A gene. MDA-MB-231 breast cancer cells were transfected and silenced by CDC25A small interfering RNA. Total messenger RNA (mRNA) was extracted and analyzed by quantitative real-time polymerase chain reaction. CDC25A phosphatase level was visualized by Western blot analysis and was analyzed by 2D electrophoresis and LC-ESI-MS/MS. After CDC25A silencing, cell proliferation reduced, and the expression of 12 proteins changed. These proteins are involved in cell-cycle regulation, programmed cell death, cell differentiation, regulation of gene expression, mRNA editing, protein folding, and cell signaling pathways. Five of these proteins, including ribosomal protein lateral stalk subunit P0, growth factor receptor bound protein 2, pyruvate kinase muscle 2, eukaryotic translation elongation factor 2, and calpain small subunit 1 increase the activity of cyclin D1. Our results suggest that CDC25A controls the cell proliferation and tumorigenesis by a change in expression of proteins involved in cyclin D1 regulation and G1/S transition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号