首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The meiotic behavior of a special maize trisome was quantitatively observed at pachytene, metaphase I, anaphase I, prophase II, metaphase II and anaphase II. The data obtained are consistent with (but do not prove) the model that sister chromatid cohesiveness at anaphase I may be established during pachytene synapsis of the chromosome regions involved. The data suggest, however, that the normal prophase II maintenance of dyad integrity by cohesiveness of sister chromatid centromere regions does not depend upon prior synapsis of these regions, although monads separated from each other on the anaphase I spindle may be delivered to the same prophase II daughter nucleus. — The strands which some of the time connect sister chromatids which are separating equationally at anaphase I show a positive Feulgen staining reaction.  相似文献   

2.
Kinetochores and chromatid cores of meiotic chromosomes of the grasshopper species Arcyptera fusca and Eyprepocnemis plorans were differentially silver stained to analyse the possible involvement of both structures in chromatid cohesiveness and meiotic chromosome segregation. Special attention was paid to the behaviour of these structures in the univalent sex chromosome, and in B univalents with different orientations during the first meiotic division. It was observed that while sister chromatid of univalents are associated at metaphase I, chromatid cores are individualised independently of their orientation. We think that cohesive proteins on the inner surface of sister chromatids, and not the chromatid cores, are involved in the chromatid cohesiveness that maintains associated sister chromatids of bivalents and univalents until anaphase I. At anaphase I sister chromatids of amphitelically oriented B univalents or spontaneous autosomal univalents separate but do not reach the poles because they remain connected at the centromere by a long strand which can be visualized by silver staining, that joins stretched sister kinetochores. This strand is normally observed between sister kinetochores of half-bivalents at metaphase II and early anaphase II. We suggest that certain centromere proteins that form the silver-stainable strand assure chromosome integrity until metaphase II. These cohesive centromere proteins would be released or modified during anaphase II to allow normal chromatid segregation. Failure of this process during the first meiotic division could lead to the lagging of amphitelically oriented univalents. Based on our results we propose a model of meiotic chromosome segregation. During mitosis the cohesive proteins located at the centromere and chromosome arms are released during the same cellular division. During meiosis those proteins must be sequentially inactivated, i.e. those situated on the inner surface of the chromatids must be eliminated during the first meiotic division while those located at the centromere must be released during the second meiotic division.by D.P. Bazett-Jones  相似文献   

3.
The mechanism of sister chromatid cohesion   总被引:15,自引:0,他引:15  
Each of our cells inherit their genetic information in the form of chromosomes from a mother cell. In order that we obtain the full genetic complement, cells need to ensure that replicated chromosomes are accurately split and distributed during cell division. Mistakes in this process lead to aneuploidies, cells with supernumerous or missing chromosomes. Most aneuploid human embryos are not viable, and if they are, they develop severe birth defects. Aneuploidies later in human life are frequently found associated with the development of malignant cancer. DNA replication during S-phase is linked to segregation of the sister copies in mitosis by sister chromatid cohesion. A chromosomal protein complex, cohesin, holds replicated sister DNA strands together after their synthesis. This allows pairs of replication products to be recognised by the spindle apparatus in mitosis for segregation into opposite direction. At anaphase onset, cohesin is destroyed by a site-specific protease, separase. Here I review what we have learned about the molecular mechanism of sister chromatid cohesion. Cohesin forms a large proteinaceous ring that may hold sister chromatids by encircling and topological trapping. To understand how cohesin links newly synthesised replication products, biochemical assays to study the enzymology of cohesin will be required.  相似文献   

4.
Comment on: Maradeo ME, Cell Cycle 2010; 9:4370–8.  相似文献   

5.
The regulation of sister chromatid cohesion   总被引:1,自引:0,他引:1  
  相似文献   

6.
Linking sister chromatid cohesion and apoptosis: role of Rad21   总被引:7,自引:0,他引:7       下载免费PDF全文
Rad21 is one of the major cohesin subunits that holds sister chromatids together until anaphase, when proteolytic cleavage by separase, a caspase-like enzyme, allows chromosomal separation. We show that cleavage of human Rad21 (hRad21) also occurs during apoptosis induced by diverse stimuli. Induction of apoptosis in multiple human cell lines results in the early (4 h after insult) generation of 64- and 60-kDa carboxy-terminal hRad21 cleavage products. We biochemically mapped an apoptotic cleavage site at residue Asp-279 (D(279)) of hRad21. This apoptotic cleavage site is distinct from previously described mitotic cleavage sites. hRad21 is a nuclear protein; however, the cleaved 64-kDa carboxy-terminal product is translocated to the cytoplasm early in apoptosis before chromatin condensation and nuclear fragmentation. Overexpression of the 64-kDa cleavage product results in apoptosis in Molt4, MCF-7, and 293T cells, as determined by TUNEL (terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling) and Annexin V staining, assaying of caspase-3 activity, and examination of nuclear morphology. Given the role of hRad21 in chromosome cohesion, the cleaved C-terminal product and its translocation to the cytoplasm may act as a nuclear signal for apoptosis. In summary, we show that cleavage of a cohesion protein and translocation of the C-terminal cleavage product to the cytoplasm are early events in the apoptotic pathway and cause amplification of the cell death signal in a positive-feedback manner.  相似文献   

7.
The making and breaking of sister chromatid cohesion   总被引:8,自引:0,他引:8  
Cohen-Fix O 《Cell》2001,106(2):137-140
  相似文献   

8.
9.
An in vivo system for differentially stained sister chromatids by incorporating 5' Bromo 2' deoxyuridine at two consecutive round of DNA replication has been developed in C. punctatus. The base line developed frequency of sister chromatid exchanges (SCEs) was found to be 0.038 SCE/chromosome. This low baseline frequency of SCEs could be useful in detecting genotoxicity of pollutants in aquatic medium.  相似文献   

10.
The experiments described were directed toward understanding relationships between mouse satellite DNA, sister chromatid pairing, and centromere function. Electron microscopy of a large mouse L929 marker chromosome shows that each of its multiple constrictions is coincident with a site of sister chromatid contact and the presence of mouse satellite DNA. However, only one of these sites, the central one, possesses kinetochores. This observation suggests either that satellite DNA alone is not sufficient for kinetochore formation or that when one kinetochore forms, other potential sites are suppressed. In the second set of experiments, we show that highly extended chromosomes from Hoechst 33258-treated cells (Hilwig, I., and A. Gropp, 1973, Exp. Cell Res., 81:474-477) lack kinetochores. Kinetochores are not seen in Miller spreads of these chromosomes, and at least one kinetochore antigen is not associated with these chromosomes when they were subjected to immunofluorescent analysis using anti-kinetochore scleroderma serum. These data suggest that kinetochore formation at centromeric heterochromatin may require a higher order chromatin structure which is altered by Hoechst binding. Finally, when metaphase chromosomes are subjected to digestion by restriction enzymes that degrade the bulk of mouse satellite DNA, contact between sister chromatids appears to be disrupted. Electron microscopy of digested chromosomes shows that there is a significant loss of heterochromatin between the sister chromatids at paired sites. In addition, fluorescence microscopy using anti-kinetochore serum reveals a greater inter-kinetochore distance than in controls or chromosomes digested with enzymes that spare satellite. We conclude that the presence of mouse satellite DNA in these regions is necessary for maintenance of contact between the sister chromatids of mouse mitotic chromosomes.  相似文献   

11.
12.
The chromosomal passenger complex protein INCENP is required in mitosis for chromosome condensation, spindle attachment and function, and cytokinesis. Here, we show that INCENP has an essential function in the specialized behavior of centromeres in meiosis. Mutations affecting Drosophila incenp profoundly affect chromosome segregation in both meiosis I and II, due, at least in part, to premature sister chromatid separation in meiosis I. INCENP binds to the cohesion protector protein MEI-S332, which is also an excellent in vitro substrate for Aurora B kinase. A MEI-S332 mutant that is only poorly phosphorylated by Aurora B is defective in localization to centromeres. These results implicate the chromosomal passenger complex in directly regulating MEI-S332 localization and, therefore, the control of sister chromatid cohesion in meiosis.  相似文献   

13.
Induction of differentially stained sister chromatids at G2/M and determination of baseline sister chromatid exchanges (SCEs) in ascites form of mouse sarcoma 180 cell line have been done by in vivo incorporation of 5-bromodeoxyuridine (BrdU) for two consecutive DNA replication cycles. The baseline SCE frequency is 6.24 at log phase of tumour growth.  相似文献   

14.
Sister chromatid cohesion ensures the faithful segregation of chromosomes in mitosis and in both meiotic divisions. Meiosis-specific components of the cohesin complex, including the recently described SMC1 isoform SMC1 beta, were suggested to be required for meiotic sister chromatid cohesion and DNA recombination. Here we show that SMC1 beta-deficient mice of both sexes are sterile. Male meiosis is blocked in pachytene; female meiosis is highly error-prone but continues until metaphase II. Prophase axial elements (AEs) are markedly shortened, chromatin extends further from the AEs, chromosome synapsis is incomplete, and sister chromatid cohesion in chromosome arms and at centromeres is lost prematurely. In addition, crossover-associated recombination foci are absent or reduced, and meiosis-specific perinuclear telomere arrangements are impaired. Thus, SMC1 beta has a key role in meiotic cohesion, the assembly of AEs, synapsis, recombination, and chromosome movements.  相似文献   

15.
Summary A detailed procedure is described for a rapid detection of phosphoglucomutase-2 (=phosphopentomutase; PGM-2) on Cellogel following electrophoresis of extracts of human red blood cells and other tissues, including cultured fibroblasts and various types of primate-rodent somatic hybrid cells.The present study indicated that there is only one locus for phosphopentomutase in man. The data from a selected panel of 20 independent clones of man-mouse somatic cell hybrids, investigated for the presence of human chromosomes and for the presence or absence of human PGM-2 favored the assignment of the human PGM-2 locus to chromosome 4.  相似文献   

16.
To study viral effects on sister chromatid exchange (SCE), human diploid fibroblasts were infected with herpes simplex virus (HSV) of type-1 and type-2. Both types of virus produced remarkable chromosomal aberrations in the early phases of the infection, but neither of them caused an increase in the SCE frequency over the uninfected control level. Analysis of the breakpoints of chromatid deletions with respect to their association with SCE revealed that the chromatid deletions induced by HSV arose independently of the sites of SCE. It is probable that the genesis of virus-induced chromosomal aberrations is unrelated to the molecular processes that function in SCE formation.  相似文献   

17.
Summary Log-linear models are fitted to sister chromatid exchange (SCE) scores in order to test the significance of the differences in SCE scores observed between individuals or between experimental treatments. The analysis is performed at the level of chromosome groups. In each single test all measurements from all chromosome groups, both from the control and from the experimental sets, are utilized. By proceeding in this way full use is made of all the available information on the SCE scores at the level of chromosome groups and the shortcomings of the classical Student-t and chi-square tests are avoided.This work was supported by a grant Geconcerteerde Acties from the Belgian Government.  相似文献   

18.
19.
Recombinational DNA repair and sister chromatid exchanges   总被引:2,自引:0,他引:2  
We show that a recombinational repair mechanism for DNA lesions can be expected to produce exactly the types of exceptions to the usually observed semiconservative segregation of newly synthetized DNA that have been reported in the literature. This removes the obstacles their occurrence appearance to present to the interpretation that the eukaryote chromosome is mononeme, containing but a single DNA double helix prior to replication. We further note that such a recombinational repair system would generate single sister chromatid exchange (SCE) events but not twin SCE events. This, along with other factors, complicates the interpretation of single: twin ratios in terms of any particular model of eukaryote chromosome structure.  相似文献   

20.
The induction of virus synthesis and sister chromatid exchange (SCE) formation was investigated in several mammalian cell lines. Ultraviolet light co-induced the production of virus and SCEs in Simian virus 40 (SV40) transformed hamster cells. Post-irradiation treatment with caffeine enhanced virus induction, though it caused a smaller, less consistent elevation of SCE formation. Co-induction of oncovirus synthesis and SCEs was also observed in three murine cell lines exposed to increasing concentrations of 5-bromodeoxyuridine. These and previous data demonstrate a correlation between the induction of virus synthesis and SCE formation in rodent cells exposed to several agents, although inter-agent variation in the correlation may reflect differences between the two processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号