首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
The effect of sulphide on the growth of several species of salt-marsh plants was investigated. Relative growth rates were significantly reduced in two upper-marsh species, Festuca rubra and Atriplex patula, and in the lower-marsh species Puccinellia maritima. However the growth of Salicornia europaea, a species frequently associated with sulphide-containing sediments, was unaffected. In a separate experiment the wide ranging halophyte Aster tripolium, also appeared to be tolerant of sulphide at a concentration frequently encountered in salt marshes. Sulphide pretreatment inhibited the activity of two metallo-enzymes, polyphenol oxidase and external phosphatase, in plants from the upper marsh, but had no effect on enzymes from P. maritima or S. europaea. The rate of respiration by root tissue was significantly reduced in all of the species investigated but whereas the uptake of 86rubidium was markedly inhibited in the other three species, uptake by S. europaea showed a significant stimulation. Similarly, whereas sulphide-grown plants of F. rubra, A. patula and P. maritima had a considerably reduced tissue iron content, the total iron concentration in S. europaea tissues was comparable to that of the controls. When the sulphide-tolerant species A. tripolium was grown in sulphide-containing media there was no significant effect on the tissue concentration of any of the elements investigated. These results are discussed in relation to possible mechanisms of sulphide toxicity and resistance.  相似文献   

8.
Left ventricular hypertrophy (LVH) is characterized by increased myocardium thickness due to increased oxidative stress and downregulation of cystathione γ lyase (CSE) endothelial nitric oxide synthase (eNOS). Upregulation of CSE by hydrogen sulphide (H2S) and ENOS by L-arginine can arrest the progression of LVH individually. The present study explored the combined treatment of H2S and NO in the progression of LVH, and demonstrated that the response is due to H2S, NO or formation of either new molecule in physiological, pathological, and pharmacological in vivo settings of LVH. Exogenous administration H2S+NO in LVH significantly reduced (all p < 0.05) systolic blood pressure (SBP) and mean arterial pressure (MAP), LV index, heart index and oxidative stress when compared to the LVH group. There was downregulation of CSE mRNA and eNOS in the heart, and exogenous administration of H2S+NO groups upregulated eNOS MRNA while CSE MRNA remained downregulated in the hearts of the LVH group. Similar trends were observed with concentrations of H2S and NO in the plasma and tissue. It can be concluded that combined treatment of LVH with H2S and NO significantly ameliorate the progression of LVH by attenuating systemic hemodynamic and physical indices, and by decreasing oxidative stress. Molecular expression data in the myocardium of LVH depicts that combined treatment upregulated eNOS/NO while it downregulated CSE/H2S pathways in in vivo settings, and it is always eNOS/NO pathways which play a major role.  相似文献   

9.
Endothelial cell dysfunction is one of the main reasons for type II diabetes vascular complications. Hydrogen sulphide (H2S) has antioxidative effect, but its regulation on mitochondrial dynamics and mitophagy in aortic endothelial cells under hyperglycaemia and hyperlipidaemia is unclear. Rat aortic endothelial cells (RAECs) were treated with 40 mM glucose and 200 μM palmitate to imitate endothelium under hyperglycaemia and hyperlipidaemia, and 100 μM NaHS was used as an exogenous H2S donor. Firstly, we demonstrated that high glucose and palmitate decreased H2S production and CSE expression in RAECs. Then, the antioxidative effect of H2S was proved in RAECs under high glucose and palmitate to reduce mitochondrial ROS level. We also showed that exogenous H2S inhibited mitochondrial apoptosis in RAECs under high glucose and palmitate. Using Mito Tracker and transmission electron microscopy assay, we revealed that exogenous H2S decreased mitochondrial fragments and significantly reduced the expression of p‐Drp‐1/Drp‐1 and Fis1 compared to high‐glucose and high‐palmitate group, whereas it increased mitophagy by transmission electron microscopy assay. We demonstrated that exogenous H2S facilitated Parkin recruited by PINK1 by immunoprecipitation and immunostaining assays and then ubiquitylated mitofusin 2 (Mfn2), which illuminated the mechanism of exogenous H2S on mitophagy. Parkin siRNA suppressed the expression of Mfn2, Nix and LC3B, which revealed that it eliminated mitophagy. In summary, exogenous H2S could protect RAECs against apoptosis under high glucose and palmitate by suppressing oxidative stress, decreasing mitochondrial fragments and promoting mitophagy. Based on these results, we proposed a new mechanism of H2S on protecting endothelium, which might provide a new strategy for type II diabetes vascular complication.  相似文献   

10.
11.
12.
Sulphide intrusion in eelgrass (Zostera marina L.)   总被引:3,自引:0,他引:3  
Sudden events of seagrass die‐off have been suggested to be induced by invasion of the phytotoxin sulphide under environmental stress generating low oxygen supply in seagrass tissues. Laboratory experiments were conducted with eelgrass (Zostera marina L.) to measure intra‐plant changes in oxygen and sulphide by means of microelectrodes at different oxygen concentrations in the water column. The objectives were to examine whether sulphide intrusion into seagrass tissues can be induced, to determine the role of plant oxygen status for sulphide intrusion and to determine how fast internal sulphide pools are depleted after internal oxygen supplies have been restored. Under conditions with oxygen partial pressures (pO2) above 7.4 kPa (> 35% of air saturation) within eelgrass rhizomes or meristematic tissues no intrusion of sulphide occurred in spite of high sediment concentrations of gaseous sulphide (> 1000 µm ). Lack of sulphide intrusion at high internal pO2 suggested that oxygen release from the roots ensured complete re‐oxidation of sulphide in the rhizosphere. Under oxygen stress, however, the experiments clearly demonstrated intrusion of sulphide in eelgrass rhizomes and meristematic tissues. Rates of sulphide intrusion were controlled by internal pO2, which in turn was controlled by water column oxygen concentrations. Maximum internal sulphide content reached 325 µm which by far exceeded the 1–10 µm known to inhibit mitochondrial activity in eukaryotic cells. Sulphide and low levels of oxygen could coexist in the eelgrass tissues reflecting fast internal transport of sulphide and slow rates of sulphide re‐oxidation. Upon re‐establishment of high internal oxygen concentrations the depletion of the sulphide pool was slow (half‐life = 20–30 min) indicating, that sulphide re‐oxidation within the eelgrass tissue was not bacterially or enzymatically facilitated but occurred by simple chemical oxidation. The results of this study are consistent with the proposed detrimental role of sulphide intrusion in events of sudden seagrass die‐off.  相似文献   

13.
Pioneering marine benthic invertebrates are capable of locating and colonizing newly created and recently disturbed mud bottoms within a few days. The results of this study demonstrate that sulphides — naturally occurring products of anaerobic organic matter decomposition — promote the larval settlement of the pioneering polychaeteCapitella sp I in both laboratory and semi-natural conditions.Settlement was enhanced both in sediments enriched with sulphides and in sulphidec, sediment-free conditions when compared with controls. A sulphide concentration ranging between 0.1 mM and 1.0 mM elicited optimal settlement with subsequent metamorphosis and survival of the settled worms.This is the first time a geochemically-mediated larval settlement response has been demonstrated.  相似文献   

14.
Experiments were designed to evaluate the corrosion-related consequences of storing/transporting fatty acid methyl ester (FAME) alternative diesel fuel in contact with natural seawater. Coastal Key West, FL (KW), and Persian Gulf (PG) seawaters, representing an oligotrophic and a more organic- and inorganic mineral-rich environment, respectively, were used in 60 day incubations with unprotected carbon steel. The original microflora of the two seawaters were similar with respect to major taxonomic groups but with markedly different species. After exposure to FAME diesel, the microflora of the waters changed substantially, with Clostridiales (Firmicutes) becoming dominant in both. Despite low numbers of sulphate-reducing bacteria in the original waters and after FAME diesel exposure, sulphide levels and corrosion increased markedly due to microbial sulphide production. Corrosion morphology was in the form of isolated pits surrounded by an intact, passive surface with the deepest pits associated with the fuel/seawater interface in the KW exposure. In the presence of FAME diesel, the highest corrosion rates measured by linear polarization occurred in the KW exposure correlating with significantly higher concentrations of sulphur and chlorine (presumed sulphide and chloride, respectively) in the corrosion products.  相似文献   

15.
16.

Sulphate-rich wastewaters can be generated due to (i) use of saline water as secondary-quality water for sanitation in urban environments (e.g. toilet flushing), (ii) discharge of industrial effluents, (iii) sea and brackish water infiltration into the sewage and (iv) use of chemicals, which contain sulphate, in drinking water production. In the presence of an electron donor and absence of oxygen or nitrate, sulphate can be reduced to sulphide. Sulphide can inhibit microbial processes in biological wastewater treatment systems. The objective of the present study was to assess the effects of sulphide concentration on the anaerobic and aerobic physiology of polyphosphate-accumulating organisms (PAOs). For this purpose, a PAO culture, dominated by Candidatus Accumulibacter phosphatis clade I (PAO I), was enriched in a sequencing batch reactor (SBR) fed with acetate and propionate. To assess the direct inhibition effects and their reversibility, a series of batch activity tests were conducted during and after the exposure of a PAO I culture to different sulphide concentrations. Sulphide affected each physiological process of PAO I in a different manner. At 189 mg TS-S/L, volatile fatty acid uptake was 55% slower and the phosphate release due to anaerobic maintenance increased from 8 to 18 mg PO4-P/g VSS/h. Up to 8 mg H2S-S/L, the decrease in aerobic phosphorus uptake rate was reversible (Ic60). At higher concentrations of sulphide, potassium (>16 mg H2S-S/L) and phosphate (>36 mg H2S-S/L) were released under aerobic conditions. Ammonia uptake, an indicator of microbial growth, was not observed at any sulphide concentration. This study provides new insights into the potential failure of enhanced biological phosphorus removal sewage plants receiving sulphate- or sulphide-rich wastewaters when sulphide concentrations exceed 8 mg H2S-S/L, as PAO I could be potentially inhibited.

  相似文献   

17.
Experiments were designed to evaluate the corrosion-related consequences of storing/transporting fatty acid methyl ester (FAME) alternative diesel fuel in contact with natural seawater. Coastal Key West, FL (KW), and Persian Gulf (PG) seawaters, representing an oligotrophic and a more organic- and inorganic mineral-rich environment, respectively, were used in 60?day incubations with unprotected carbon steel. The original microflora of the two seawaters were similar with respect to major taxonomic groups but with markedly different species. After exposure to FAME diesel, the microflora of the waters changed substantially, with Clostridiales (Firmicutes) becoming dominant in both. Despite low numbers of sulphate-reducing bacteria in the original waters and after FAME diesel exposure, sulphide levels and corrosion increased markedly due to microbial sulphide production. Corrosion morphology was in the form of isolated pits surrounded by an intact, passive surface with the deepest pits associated with the fuel/seawater interface in the KW exposure. In the presence of FAME diesel, the highest corrosion rates measured by linear polarization occurred in the KW exposure correlating with significantly higher concentrations of sulphur and chlorine (presumed sulphide and chloride, respectively) in the corrosion products.  相似文献   

18.
Hydrogen bonding     
  相似文献   

19.
20.
Studies of sulphate reduction and rates of sulphide formation were made in the bottom sediments of the alpine lakes Lago Maggiore and Lago Lugano. The stock of sulphide sulphur was found to be 500–1500 mg/l. The rate of sulphate reduction was 1–10 mg S/l/day. Total numbers of bacteria in sediments varied from 0,5 to 5.109 cells/cm3 of wet mud. Chemical analyses of the carbon, nitrogen and phosphorus were also made. The possible influence of pollution on the sulphur cycle in these lakes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号