首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Summary The influences of various carbohydrate sources, dried yeast (DY), and 6-benzylaminopurine (BA) were estimated on growth and development of shoot tip-derived suspension cells of phalaenopsis orchid. Among the carbohydrates tested on Doriataenopsis cultured on gelled medium, glucose at 58.4 mM gave the highest efficiency of protocorm-like body (PLB) formation. Maltose and sorbitol only induced PLB formation without callus proliferation. Sucrose induced comparable callus proliferation to glucose but without PLB formation. In contrast, fructose resulted in half the amount of callus proliferation as occurred with glucose. Lactose was an inadequate carbon source as neither PLB formation nor callus proliferation occurred. DY enhanced cell proliferation at 0.1–1gl−1 but inhibited both cell proliferation and PLB formation at 10gl−1. Low BA (0.4 μM) slightly increased callus proliferation but inhibited PLB formation. Only one treatment, sucrose and 1 gl−1 DY, yielded a small number of plants. For suspension cultures of Phalaenopsis Snow Parade and P. Wedding Promenade, PLB formation was most efficiently induced by sucrose at 29.2 mM for P. Snow Parade and 14.6 mM glucose for P. Wedding Promenade. Histological observation revealed that cells in suspension culture developed into plants through the same developmental proess as germinating seeds.  相似文献   

2.
It was found that an exo-biopolymer (M.W. 1,000,000, molar ratio of 1.5:1.7:1.2:0.6:0.9, glucose:galactose:xylose:mannose:fructose, purity 99%) purified from the liquid culture broth of Hericium erinaceus mycelium enhanced the growth of rat adrenal nerve cells. The polymer also improved the extension of the neurites of PC12 cell. Its efficacy was found to be higher than those from known nerve growth factors such as Nerve Growth Factor (NGF) and Brain-Derived Nerve Factor (BDNF). The effect of two standards has not been observed above 0.1 (mg l−1) of supplementation; however, the polymer did show the effect of cell growth and neurite extension at up to 1.0 (mg l−1) of addition. While the polymer improved both cell growth and neurite extension, NGF and BDNF did only outgrowth of the neurites. Maximum cell density and length of the neurites were observed as 1.5×105 (viable cells ml−1) and 230 μm, respectively in adding 0.8 (mg l−1) of the biopolymer for 8 days cultivation. The control growth was observed only as 1.2×105 (viable cell ml−1) of maximum cell density and 140 μm of maximum length, respectively. It was also confirmed that the polymer reacted with the nerve cells within 30 min after adding the sample, compared to 80 min in adding two other growth factors. Number of neurite-bearing cells remained relatively steady in adding the polymer even when the cell growth started to be decreased. It was interesting that the polymer effectively delayed apoptosis of PC12 cells by dramatically reducing the ratio of apoptotic cells to 20% from 50% of the control. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

3.
With the goal of developing a defined medium for the production of desiccation-tolerant blastospores of the bioinsecticidal fungus Paecilomyces fumosoroseus, we evaluated the impact of various media components such as amino acids, carbohydrates, trace metals and vitamins on hyphal growth and sporulation of P. fumosoroseus cultures and on the freeze-drying tolerance of blastospores produced under these conditions. A comparison of 13 amino acids as sole nitrogen sources showed that glutamate, aspartate, glycine and arginine supported biomass accumulations (12–16 mg ml−1) and blastospore yields (6–11 × 108 blastospores ml−1) comparable to our standard production medium which contains casamino acids as the nitrogen source. Using glutamate as the sole nitrogen source, tests with various carbohydrates showed that P. fumosoroseus grew best on glucose (18.8 mg biomass ml−1) but produced similar blastospore concentrations (7.3–11.0 × 108) when grown with glucose, glycerol, fructose or sucrose. P. fumosoroseus cultures grown in media with sodium citrate or galactose as the sole carbohydrate produced lower blastospore concentrations but more-desiccation-tolerant spores. Zinc was the only trace metal tested that was required for optimal growth and sporulation. In a defined medium with glutamate as the nitrogen source, vitamins were unnecessary for P. fumosoroseus growth or sporulation. When blastospores were freeze-dried in the absence of a suspension medium, residual glucose (>2.5% w/v) was required for enhanced spore survival. Thus, a defined medium containing basal salts, glucose, glutamate and zinc can be used to produce optimal concentrations of desiccation-tolerant blastospores of P. fumosoroseus. Received 27 October 1998/ Accepted in revised form 06 May 1999  相似文献   

4.
Summary Cells ofRhodospirillum rubrum have been immobilized in various gels and tested for photobiological hydrogen production. Agar proved to be the best immobilizing agent with respect to production rates as well as stability. Agar immobilized cells were also superior compared to liquid suspension cultures. Growth conditions of the cells prior to immobilization, e.g. cell age, light intensity or nutrient composition, were of primary importance for the activity in the later immobilized state. A reactor with agar immobilized cells has been operated successfully over 3000 h with a loss of the activity of about 60%. Mean rates for hydrogen production for immobilized cells in this work during the first 60 to 70 hours after immobilization were in the range of 18 to 34 μl H2 mg−1 d.w. h−1 and thus by a factor of up to 2 higher than liquid cultures under the same conditions. Maximal rates of hydrogen production (57 μl H2 ml−1 immobilized cell suspension) were reached in agar gel beads with cells immobilized after 70 h growth in liquid culture in the light and a cell density of 1.0 mg ml−1, 70 h after immobilization.  相似文献   

5.
In this study, the effects of inositol addition on expression of the MAL gene encoding maltase and phosphatidylinositol (PI) biosynthesis in Schizosaccharomyces pombe (a naturally inositol-requiring strain) were examined. We found that specific maltase activity was at its maximum when the concentration of added inositol reached 6 μg ml−1 in a synthetic medium containing 2.0% (w/v) glucose. When the concentration of added inositol was 1 μg ml−1 in the medium, repression of MAL gene expression occurred at glucose concentration higher than 0.2% (w/v). However, when S. pombe was cultured in the synthetic medium containing 6 μg ml−1, repression of maltase gene expression occurred only at initial glucose concentration above 1.0% (w/v). More mRNA encoding maltase was detected in the cells grown in the medium with 6 μg ml−1 inositol than in those grown in the same medium with 1 μg ml−1 inositol. These results demonstrate that higher inositol concentrations in the synthetic medium could derepress MAL gene expression in S. pombe. PI content of the yeast cells grown in the synthetic medium with 6 μg ml−1 of inositol was higher than that of the yeast cells grown in the same medium with 1 μg ml−1 of inositol. This means that PI may be involved in the derepression of MAL gene expression in S. pombe.  相似文献   

6.
Summary Response surface methodology was employed in optimizing the nutrient levels needed towards the optimal production of phosphatidylinositol-specific phospholipase C enzyme by Bacillus thuringiensis serovar. kurstaki. A 23 factorial central composite experimental design was used. The multiple regression equation, relating the enzyme activity to the nutrient medium, was used to find the optimum values of glucose, peptone and dipotassium hydrogen phosphate. The optimum values of these variables for maximal enzyme production were found to be: glucose, 6.5 g l−1; peptone, 5.38 g l−1 and dipotassium hydrogen phosphate, 6.36 g l−1 with the predicted enzyme activity of 0.96 U ml−1.  相似文献   

7.
Under optimum conditions (pH 5, 75°C, and 0.2 U purified enzyme ml−1), 4 mg ginsenoside Rd was produced from 5 mg reagent-grade ginsenoside Rb1 in 5 ml after 30 min by β-glucosidase from Thermus caldophilus GK24. Using a ginseng root extract containing 1 mg ginsenoside Rb1 ml−1 and 3.2 mg additional ginsenosides ml−1, 1.23 mg ginsenoside Rd ml−1 was produced after 18 h; the concentrations of ginsenosides Rb1, Rb2, and Rc used for ginsenoside Rd production were 0.77, 0.17, and 0.19 mg ml−1, respectively.  相似文献   

8.
In this paper, we would like to show unexpected morphogenic potential of cell suspensions derived from seedling explants of Gentiana kurroo (Royle). Suspension cultures were established with the use of embryogenic callus derived from seedling explants (root, hypocotyl and cotyledons). Proembryogenic mass proliferated in liquid MS medium supplemented with 0.5 mg l−1 2,4-D and 1.0 mg l−1 Kin. The highest growth coefficient was achieved for root derived cell suspensions. The microscopic analysis showed differences in aggregate structure depending on their size. To assess the embryogenic capability of the particular culture, 100 mg of cell aggregates was implanted on MS agar medium supplemented with Kin (0.0–2.0 mg l−1), GA3 (0.0–2.0 mg l−1) and AS (80.0 mg l−1). The highest number of somatic embryos was obtained for cotyledon-derived cell suspension on GA3-free medium, but the best morphological quality of embryos was observed in the presence of 0.5–1.0 mg l−1 Kin, 0.5 mg l−1 GA3 and 80.0 mg l−1 AS. The morphogenic competence of cultures also depended on the size of the aggregate fraction and was lower when size of aggregates decreased. Flow cytometry analysis reveled luck of uniformity of regenerants derived from hypocotyl suspension and 100% of uniformity for cotyledon suspension.  相似文献   

9.
Animal cells can be cultured both in basal media supplemented with fetal bovine serum (FBS) and in serum-free media. In this work, the supplementation of Grace’s medium with a set of nutrients to reduce FBS requirements in Spodoptera frugiperda (Sf9) cell culture was evaluated, aiming the production of Anticarsia gemmatalis nucleopolyhedrovirus (AgMNPV) at a cost lower than those for the production using Sf900 II medium. In Grace’s medium supplemented with glucose, Pluronic F68 (PF68) and yeast extract (YE), the effects of FBS and milk whey ultrafiltrate (MWU) on cell concentration and viability during midexponential and stationary growth phase were evaluated. In spite of the fact that FBS presented higher statistical effects than MWU on all dependent variables in the first cell passage studies, after cell adaptation, AgMNPV polyhedra production was comparable to that in Sf900 II. Batch cultivation in Grace’s medium with 2.7 g l−1 glucose, 8 g l−1 YE and 0.1% (w/v) PF68 supplemented with 1% (w/v) MWU and 3% (v/v) FBS increased viable cell concentration to about 5-fold (4.7×106 cells ml−1) when compared to Grace’s containing 10% (v/v) FBS (9.5×105 cells ml−1). AgMNPV polyhedra (PIBs) production was around 3-fold higher in the MWU supplemented medium (1.6×107 PIBs ml−1) than in Grace’s medium with 10% FBS (0.6×107 PIBs ml−1). This study therefore shows a promising achievement to significantly reduce FBS concentration in Sf9 insect cell media, keeping high productivity in terms of cell concentration and final virus production at a cost almost 50% lower than that observed for Sf900 II medium. C.A. Pereira is recipient of a CNPq fellowship.  相似文献   

10.
In the present study an efficient somatic embryogenesis method has been developed in Catharanthus roseus. Friable embryogenic callus was induced from hypocotyl of in vitro germinated seeds on Murashige and Skoog basal nutrient media supplemented with various auxins particularly 2,4-D (1.0 mg l−1). However, only NAA (1.0 mg l−1) produced somatic embryos in cultures. Embryo proliferation was even high on the same medium added with BAP. Cotyledonary somatic embryo germinated and converted into plantlets in BAP (0.5 mg l−1) added medium following a treatment with gibberellic acid (1.0 mg l−1) for maturation. Carbon sources and concentrations had a marked influence on maturation process. Plantlet conversion was better achieved when embryos were matured on 3% fructose or 3–6% maltose. The result discussed in this paper indicates that somatic embryos were produced in numbers and converted plantlets can be used as raw material, genetic modification to embryo precursor cell may improve alkaloid yield further.  相似文献   

11.
High-density cultures of Pycnoporus cinnabarinus were tested with a view to optimisation of ferulic acid bioconversion into vanillin. The dry weight was increased fourfold by using glucose, fructose or a mixture of glucose and phospholipids as carbon source instead of maltose, the carbon source previously used. 5 mmol l−1 vanillin, i.e. 760 mg l−1, was produced over 15 days with glucose-phospholipid medium. In contrast, formation of vanillin was lower using glucose or fructose compared to the maltose control. A bioreactor (2 l) with a glucose-phospholipid medium gave a molar yield of vanillin of 61% (4 mmol l−1). An alternative strategy was to grow the fungus on a glucose or fructose medium for 3 days, then switch to maltose during the bioconversion phase: this method allowed 3.3 mmol l−1 vanillin to be obtained in 10 days. Many by-products such as methoxyhydroquinone and vanillyl alcohol were also produced. Received: 19 February 1999 / Received revision: 4 June 1999 / Accepted: 4 June 1999  相似文献   

12.
The effects of three organic compounds were tested on one of the most used marine micro-algae in the aquaculture of molluscs and crustaceans, Tetraselmis suecica. Studies were made in axenic conditions with yeast extract, peptone and glucose added to the culture medium, each alone, in combinations of two or all together. Medium without any organic compound was used for the control. Cultures containing yeast extract grew best, reaching maximum cell density of 3.79 × 106 and 3.84 × 106 cells ml−1. The organic carbon source affected the biochemical composition. The components most affected were the carbohydrates, with values between 6.5 pg cell−1 in control cultures and 48.5 pg cell−1 in glucose cultures. Protein content ranged between 27.5 pg cell−1 in control cultures and 88.6 pg cell−1 in yeast + glucose + peptone cultures. The lipid content changed little. Maximum protein yields were reached in cultures with yeast + glucose and with yeast - glucose - peptone, with values of 24.6 and 28.2 mg 1−1 d−1, respectively. These values are 22 and 25 times those in control cultures. A maximum carbohydrate yield of 7.9 mg carbohydrate per litre per day was obtained in yeast + glucose + peptone cultures, 27 times that in the control cultures. The maximum lipid yield was obtained with yeast + glucose + peptone and yeast + glucose. Maximum energy values were 308 kcal 1 in yeast extract - glucose - peptone cultures and 279 kcal 1−1 in yeast extract + glucose cultures. Gross energy values in control cultures were 24.5 kcal 1−1, but peptone cultures presented the minimum energy value, 22 kcal 1−1. The yeast extract: glucose ratio in the culture medium was optimized. A ratio 2:1 produced the best yields in cells, protein, carbohydrate and gross energy.  相似文献   

13.
The smooth skate, Malacoraja senta, and thorny skate, Amblyraja radiata, are two commercially exploited batoids found within the Gulf of Maine. During the past five years, we conducted a large study to accurately describe important biological life history parameters previously lacking for these species. As part of that project, the current study reports our findings on the hormonal profiles associated with the reproductive cycles of M. senta and A. radiata. Blood samples were obtained from mature M. senta and A. radiata of both sexes from all months of the year, and plasma testosterone (T), estradiol (E2) and progesterone (P4) concentrations were determined using radioimmunoassay (RIA). In female M. senta and A. radiata, monthly T concentrations ranged from 4,522 pg ml−1 to 1,373 pg ml−1 and 31,940 pg ml−1 to 14,428 pg ml−1, E2 concentrations from 831 pg ml−1 to 60 pg ml−1 and 8,515 pg ml−1 to 2,902 pg ml−1, and P4 concentrations from 3,027 pg ml−1 to 20 pg ml−1 and 3,264 pg ml−1 to 331 pg ml−1, respectively. No statistical differences were detected between any months for any hormone. Estradiol concentrations were not correlated with ovary weight, shell gland weight, or diameter of the largest follicles in either species. Monthly T concentrations in male M. senta and A. radiata ranged from 23,146 to 12,660 pg ml−1 and from 57,500pg ml−1 to 24,737 pg ml−1, while E2 concentrations ranged from 7.5 pg ml−1 to undetectable and 103 to 30 pg ml−1, respectively. No statistical differences were observed between months for either steroid. Testosterone concentrations were weakly correlated with testes weight and percent of stage VI spermatocysts in A. radiata, however, no correlation was detected between T and stage VI spermatocysts in M. senta. Collectively, these data support the previous conclusion that M. senta and A. radiata of both sexes are capable of reproducing year round in the western Gulf of Maine.  相似文献   

14.
Artemisinin production by hairy roots of Artemisia annua L. was increased 6-fold to 1.8 μg mg−1 dry wt over 6 days by adding 150 mg chitosan l−1. The increase was dose-dependent. Similar treatment of hairy roots with methyl jasmonate (0.2 mM) or yeast extract (2 mg ml−1) increased artemisinin production to 1.5 and 0.9 μg mg−1 dry wt, respectively.  相似文献   

15.
The strain of Trichoderma reesei Rut C-30 was subjected to mutation after treatment with N-methyl-N′-nitro-N-nitrosoguanidine (NG) for 6 h followed by UV irradiation for 15 min. Successive mutants showed enhanced cellulase production, clear hydrolysis zone and rapid growth on Avicel-containing plate. Particularly, the mutant NU-6 showed approximately two-fold increases in activity of both FPA and CMCase in shake flask culture when grown on basal medium containing peptone (1%) and wheat bran (1%). The enzyme production was further optimized using eight different media. When a mixture of lactose and yeast cream was used as cellulase inducer, the mutant NU-6 yielded the highest enzyme and cell production with a FPase activity of 6.2 U ml−1, a CMCase activity of 54.2 U ml−1, a β-glucosidase activity of 0.39 U ml−1, and a fungal biomass of 12.6 mg ml−1. It deserved noting that the mutant NU-6 also secreted large amounts of xylanases (291.3 U ml−1). These results suggested that NU-6 should be an attractive producer for both cellulose and xylanase production.  相似文献   

16.
Summary The effect of fructose as a substitute for glucose in cell culture media was investigated in human skin fibroblast and liver cell cultures. Cells were grown for between 2 and 10 days in identical flasks in four different media, containing 5.5, mmol·1−1 and 27.5 mmol·I−1 glucose and fructose, respectively. In the presence of fructose, cell growth was stimulated, but less in liver cells than fibroblasts. At Day 6, increases were observed in [3H]thymidine incorporation, protein levels, and amino acid consumption, and a reduction was noted in ATP levels. In media containing 5.5, mmol·1−1 glucose or fructose, consumption of fructose was four times lower than that of glucose at Day 3 and did not rise until Day 6. In fructose media, the lactate production was very low (four to five times less than that of glucose) and the pH values were always higher. Some findings were different for the fibroblasts and liver cells, owing to the specific characteristics of these two cell types in culture; this applied especially to the effects of glucose and fructose concentrations of 27.5 mmol·1−1. Several possible explanation for the stimulation of cell growth in fructose medium were discussed. This work was supported by grants for the Institut National de la Santé et de la Recherche Médicale (ATP 82-79-114) and the Unité d'Enseignement et de Recherche, Le Kremlin-Bicêtre, Université Paris-Sud (C. R. 848).  相似文献   

17.
An endophytic Xylaria sp., having broad antimicrobial activity, was isolated and characterized from Ginkgo biloba L. From the culture extracts of this fungus, a bioactive compound P3 was isolated by bioactivity-guided fractionation and identified as 7-amino-4-methylcoumarin by nuclear magnetic resonance, infrared, and mass spectrometry spectral data. The compound showed strong antibacterial and antifungal activities in vitro against Staphylococcus aureus [minimal inhibitory concentrations (MIC) 16 μg·ml−1], Escherichia coli (MIC, 10 μg·ml−1), Salmonella typhia (MIC, 20 μg·ml−1), Salmonella typhimurium (MIC, 15 μg·ml−1), Salmonella enteritidis (MIC, 8.5 μg·ml−1), Aeromonas hydrophila (MIC, 4 μg·ml−1), Yersinia sp. (MIC, 12.5 μg·ml−1), Vibrio anguillarum (MIC, 25 μg·ml−1), Shigella sp. (MIC, 6.3 μg·ml−1), Vibrio parahaemolyticus (MIC, 12.5 μg·ml−1), Candida albicans (MIC, 15 μg·ml−1), Penicillium expansum (MIC, 40 μg·ml−1), and Aspergillus niger (MIC, 25 μg·ml−1). This is the first report of 7-amino-4-methylcoumarin in fungus and of the antimicrobial activity of this metabolite. The obtained results provide promising baseline information for the potential use of this unusual endophytic fungus and its components in the control of food spoilage and food-borne diseases.  相似文献   

18.
Polyhydroxyalkanoates (PHAs), intracellular carbon and energy reserve compounds in many bacteria, have been used extensively in biodegradable plastics. PHA formation is influenced by nutrient limitations and growth conditions. To characterize the PHA accumulation in a new denitrifying phosphorus-removing bacterium Brachymonas sp. P12, batch experiments were conducted in which the electron acceptor (oxygen or nitrate) was varied and different concentrations of carbon (acetate), nitrogen (NH4Cl), and phosphorus (KH2PO4) were used. Polyhydroxybutyrate (PHB) was the dominant product during PHA formation when acetate was the sole carbon source. The PHB content of aerobically growing cells increased from 431 to 636 mg PHB g−1 biomass, but the PHB concentration of an anoxic culture decreased (−218 mg PHB g−1 biomass), when PHB was utilized simultaneously with acetate as an electron donor for anoxic denitrification. The specific PHB production rate of the carbon-limited batch, 158.2 mg PHB g−1 biomass h−1, was much greater than that of batches with normal or excess carbon. The effects of phosphorus and nitrogen concentrations on PHB accumulation were clearly less than the effect of carbon concentration. According to the correlation between the specific PHB production rate and the specific cell growth rate, PHB accumulation by Brachymonas sp. P12 is enhanced by nutrient limitation, is growth-associated, and provides additional energy for the biosynthesis of non-PHB cell constituents to increase the cell growth rate beyond the usual level.  相似文献   

19.
The effect of osmotic stress on cell growth and phenylethanoid glycosides (PeGs) biosynthesis was investigated in cell suspension cultures of Cistanche deserticola Y. C. Ma, a desert medicinal plant grown in west region of China. Various initial sucrose concentrations significantly affected cell growth and PeGs biosynthesis in the suspension cultures, and the highest dry weight and PeGs accumulation reached 15.9 g l−1-DW and 20.7 mg g−1-DW respectively at the initial osmotic stress of 300 mOsm kg−1 where the sucrose concentration was 175.3 mM. Stoichiometric analysis with different combinations of sucrose and non-metabolic sugar (mannitol) or non-sugar osmotic agents (PEG and NaCl) revealed that osmotic stress itself was an important factor for enhancing PeGs biosynthesis in cell suspension cultures of C. deserticola. The maximum PeGs contents of 26.9 and 23.8 mg g−1-DW were obtained after 21 days at the combinations of 87.6 mM sucrose with 164.7 mM mannitol (303 mOsm kg−1) or 20 mM PEG respectively, which was higher than that of C. deserticola cell cultures grown under an initial sucrose concentration of 175.3 mM after 30 days. The stimulated PeGs accumulation in the cell suspension cultures was correlated to the increase of phenylalanine ammonium lyase (PAL) activity induced by osmotic stress.  相似文献   

20.
Candida cylindracea NRRL Y-17506 was grown to produce extracellular lipase from oleic acid as a carbon source. Through flask cultures, it was found that the optimum initial oleic acid concentration for cell growth was 20 g l−1. However, high initial concentrations of oleic acid up to 50 g l−1 were not inhibitory. The highest extracellular lipase activity obtained in flask culture was 3.0 U ml−1 after 48 h with 5 g l−1 of initial oleic acid concentration. Fed-batch cultures (intermittent and stepwise feeding) were carried out to improve cell concentration and lipase activity. For the intermittent feeding fed-batch culture, the final cell concentration was 52 g l−1 and the extracellular lipase activity was 6.3 U ml−1 at 138.5 h. Stepwise feeding fed-batch cultures were carried out to simulate an exponential feeding and to investigate the effects of specific growth rate (0.02, 0.04 and 0.08 h−1) on cell growth and lipase production. The highest final cell concentration obtained was 90 g l−1 when the set point of specific growth rate (μset) was 0.02 h−1. High specific growth rate (0.04 and 0.08 h−1) decreased extracellular lipase production in the later part of fed-batch cultures due to build-up of the oleic acid oversupplied. The highest extracellular lipase activity was 23.7 U ml−1 when μset was 0.02 h−1, while the highest lipase productivity was 0.31 U ml−1 h−1 at μset of 0.08 h−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号