首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In mammalian cells, newly synthesized DNA repair patches are highly sensitive to digestion by staphylococcal nuclease (SN), but with time, they acquire approximately the same nuclease resistance as the DNA in bulk chromatin. We refer to the process which restores native SN sensitivity to repaired DNA as chromatin rearrangement. We find that during repair of ultraviolet damage in human fibroblasts, repair patch synthesis and ligation occur at approximately the same rate, with ligation delayed by about 4 min, but that chromatin rearrangement is only 75% as rapid. Thus, repair-incorporated nucleotides can exist in at least three distinct states: unligated/unrearranged, ligated/unrearranged, and ligated/rearranged. Inhibition of repair patch synthesis by aphidicolin or hydroxyurea results in inhibition of both patch ligation and chromatin rearrangement, confirming that repair patch completion and/or ligation are prerequisites for rearrangement. We also analyze the kinetics of SN digestion of repair-incorporated nucleotides at various extents of rearrangement and find the data to be consistent with the existence of two or more forms of unrearranged repair patch which have different sensitivities to digestion by SN. These data indicate that the chromatin rearrangement which restores native SN sensitivity to repaired DNA is a multistep process. The multiple forms of unrearranged chromatin with different SN sensitivities may include the unligated/unrearranged and ligated/unrearranged states. If so, the differences in SN sensitivity must arise from differences in chromatin structure, because SN does not differentiate between ligated and unligated repair patches in naked DNA.  相似文献   

2.
DNA damage in chromatin comes in many forms, including single base lesions that induce base excision repair (BER). We and others have shown that the structural location of DNA lesions within nucleosomes greatly influences their accessibility to repair enzymes. Indeed, a difference in the location of uracil as small as one-half turn of the DNA backbone on the histone surface can result in a 10-fold difference in the time course of its removal in vitro. In addition, the cell has evolved several interdependent processes capable of enhancing the accessibility of excision repair enzymes to DNA lesions in nucleosomes, including post-translational modification of histones, ATP-dependent chromatin remodeling and interchange of histone variants in nucleosomes. In this review, we focus on different factors that affect accessibility of BER enzymes to nucleosomal DNA.  相似文献   

3.
4.
The chromatin of human cells undergoes structural rearrangements during excision repair of ultraviolet damage in DNA that were detected by transient relaxation of DNA supercoiling and increased staphylococcal nuclease digestibility of repaired sites. Inhibition of polymerization and/or ligation of repaired regions with inhibitors of DNA polymerase alpha (cytosine arabinoside and aphidicolin) resulted in the accumulation of single-strand breaks, delayed reconstruction of DNA supercoiling, and maintenance of the staphylococcal nuclease digestibility. These observations suggest that reconstruction of the native chromatin state requires completion of repaired regions with covalent ligation into the DNA strands. Although previous claims have been made that a late stage associated with ligation of repaired regions may be defective in cells from patients with Cockayne syndrome, complete reconstruction of the native chromatin occurred in cells from three unrelated patients after ultraviolet irradiation. No abnormality in repair was therefore detected in Cockayne syndrome cells. The hypersensitivity of cell survival and semiconservative DNA replication to damage by ultraviolet light in this human disorder must therefore be regarded as features of a primary defect in DNA metabolism unrelated to DNA repair.  相似文献   

5.
DNA damage recognition during nucleotide excision repair in mammalian cells   总被引:13,自引:0,他引:13  
Wood RD 《Biochimie》1999,81(1-2):39-44
For the bulk of mammalian DNA, the core protein factors needed for damage recognition and incision during nucleotide excision repair (NER) are the XPA protein, the heterotrimeric RPA protein, the 6 to 9-subunit TFIIH, the XPC-hHR23B complex, the XPG nuclease, and the ERCC1-XPF nuclease. With varying efficiencies, NER can repair a very wide range of DNA adducts, from bulky helical distortions to subtle modifications on sugar residues. Several of the NER factors have an affinity for damaged DNA. The strongest binding factor appears to be XPC-hHR23B but preferential binding to damage is also a property of XPA, RPA, and components of TFIIH. It appears that in order to be repaired by NER, an adduct in DNA must have two features: it must create a helical distortion, and there must be a change in DNA chemistry. Initial recognition of the distortion is the most likely function for XPC-hHR23B and perhaps XPA and RPA, whereas TFIIH is well-suited to locate the damaged DNA strand by locating altered DNA chemistry that blocks translocation of the XPB and XPD components.  相似文献   

6.
Mutations to streptomycin resistance induced by ultraviolet light in Escherichia coli can lose their susceptibility to photoreversing light during excision repair and in the absence of chromosomal replication and protein synthesis, i.e., under conditions where SOS induction cannot occur. Using fusions of lac with sulA and umuC we have shown that after excision of UV damage in the presence of chloramphenicol there is a persisting, relatively stable signal capable of inducing SOS genes when protein sysnthesis is subsequently permitted. The persisting signal is formed roughly in proportion to the square of the UV dose and is about 30% photoreversible. It is suggested that the persisting SOS-inducing signal comprises a UV photoproduct (the target lesion) opposite a gap in the opposing DNA strand, and is formed by excision of one (the ancillary lesion) of a pair of closely opposed photoproducts. Calculations suggest that as few as two or three such configurations in a cell can lead to induction a sulA when protein synthesis is permitted. It is not clear whether these configurations can directly induce the SOS system because of their region of single-stranded DNA or whether the ultimate SOS-inducing signal is a more extensive single-stranded region formed when such configurations encounter a replication fork. Photoproduct/gap configurations have been previously suggested to be potentially mutagenic. UV-induced mutations to streptomycin resistance are mostly at A:T sites and are not photoreversible in fully SOS-induced bacteria in the absence of excision repair, indicating that they are not targeted at cyclobutane-type pyrimidine dimers. In SOS-induced excision-proficient bacteria there is about 39% photoreversibility which is rapidly lost after UV. This photoreversibility is attributed to many ancillary lesions being cyclobutane-type pyrimidine dimers which are excised leading to the exposure of target lesions on the opposing strand which, at these particular sites, are mostly non-photoreversible photoproducts.  相似文献   

7.
8.
9.
We have exposed confluent normal human fibroblasts to ultraviolet (UV) fluences of 5, 14, or 40 J/m2 and monitored the specific activity of post-UV repair synthesis in chromatin with [3H]thymidine pulses. We have shown that under conditions where no semiconservative deoxyribonucleic acid (DNA) synthesis is detectable, the specific activity of repair label in micrococcal nuclease resistant (core particle) DNA is about one-fifth that in bulk DNA at all three UV fluences. On the other hand, the distribution of thymine-containing pyrimidine dimers in bulk and nuclease-resistant regions measured either immediately after irradiation or at later times showed no significant differences; preferential labeling of linker (nuclease-sensitive) DNA during repair synthesis is thus apparently not due to a predominance of UV-induced photoproducts in linker relative to core particle DNA in the nucleosome. Pulse and pulse--chase experiments at 14 or 40 J/m2 with normal human or repair-deficient xeroderma pigmentosum (XP) cells showed that at most 30% of repair label in all these cells shifts from nuclease-sensitive (linker) DNA to nuclease-resistant (core particle) DNA.  相似文献   

10.
Genomic DNA is constantly assaulted by both endogenous and exogenous damaging agents. The resulting DNA damage, if left unrepaired, can interfere with DNA replication and be converted into mutations. Genomic DNA is packaged into a highly compact yet dynamic chromatin structure, in order to fit into the limited space available in the nucleus of eukaryotic cells. This hierarchical chromatin organization serves as both the target of DNA damaging agents and the context for DNA repair enzymes. Biochemical studies have suggested that both the formation and repair of DNA damage are significantly modulated by chromatin. Our understanding of the impact of chromatin on damage and repair has been significantly enhanced by recent studies. We focus on the nucleosome, the primary building block of chromatin, and discuss how the intrinsic structural properties of nucleosomes, and their associated epigenetic modifications, affect damage formation and DNA repair, as well as subsequent mutagenesis in cancer.  相似文献   

11.
Mutations to streptomycin resistance induced by ultraviolet light in Escherichia coli can lose their susceptibility to photoreversing light during excision repair and in the absence of chromosomal replication and protein synthesis, i.e., under conditions where SOS induction cannot occur. Using fusions of lac with sulA and umuC we have shown that after excision of UV damage in the presence of chloramphenicol there is a persisting, relatively stable signal capable of inducing SOS genes when protein sysnthesis is subsequently permitted. The persisting signal is formed roughly in proportion to the square of the UV dose and is about 30% photoreversible. It is suggested that the persisting SOS-inducing signal comprises a UV photoproduct (the target lesion) opposite a gap in the opposing DNA strand, and is formed by excision of one (the ancillary lesion) of a pair of closely opposed photoproducts. Calculations suggest that as few as two or three such configurations in a cell can lead to induction a sulA when protein synthesis is permitted. It is not clear whether these configurations can directly induce the SOS system because of their region of single-stranded DNA or whether the ultimate SOS-inducing signal is a more extensive single-stranded region formed when such configurations encounter a replication fork. Photoproduct/gap configurations have been previously suggested to be potentially mutagenic. UV-induced mutations to streptomycin resistance are mostly at A:T sites and are not photoreversible in fully SOS-induced bacteria in the absence of excision repair, indicating that they are not targeted at cyclobutane-type pyrimidine dimers. In SOS-induced excision-proficient bacteria there is about 39% photoreversibility which is rapidly lost after UV. This photoreversibility is attributed to many ancillary lesions being cyclobutane-type pyrimidine dimers which are excised leading to the exposure of target lesions on the opposing strand which, at these particular sites, are mostly non-photoreversible photoproducts.  相似文献   

12.
Ultraviolet radiation causes lesions in bacterial DNA which are repaired by several enzyme systems. Wide variations in the efficiency of repair for differentE. Coli strains are inadequately explained by a simple presence or absence of one or more repair systems. It is proposed that a major factor in the variations is the sensitivity of the repair systems themselves to ultraviolet induced interactions between proteins and the repair enzyme cistrons. An analytic approach is applied to pre-existing data to establish the numbers of thymine and cytosine bases in the repair cistrons, lending support to the model. The findings imply that bacteria will become sensitive to UV upon inhibition of one of four amino acids.  相似文献   

13.
14.
We have used 8-methoxypsoralen to probe the chromatin structure of mammalian cells in situ while they repair pyrimidine dimers or bulky lesions in DNA. We observed that excision repair of these DNA lesions is accompanied by periodic alterations of chromatin organization. In parallel, fluctuations of the rates of repair patch synthesis accompanied these structural changes. Taking advantage of the accessibility of free DNA domains for psoralen intercalation, we have developed a technique to quantitatively isolate the micrococcal nuclease-sensitive, free DNA fraction of native bulk chromatin. We have determined the location of newly synthesized repair patches relative to free DNA domains as a function of repair time. Extensive rearrangements of repair patches from these domains into micrococcal nuclease-resistant DNA were observed. Our results indicate that periodic changes of chromatin organization associated with rearrangement of repair patches accompany the process of excision repair in mammalian cells.  相似文献   

15.
Adimoolam S  Ford JM 《DNA Repair》2003,2(9):947-954
  相似文献   

16.
17.
Chromatin degradation and cell death were observed after 6-7 h incubation of mouse thymus lymphocytes with 1-beta-D-arabinofuranosylcytosine and hydroxyurea. The time dynamics of both processes was similar. In this case, just as after gamma-irradiation, nucleosomes and their oligomeres were the products of degradation. Puromycin and cycloheximide prevented the toxic action of DNA synthesis inhibitors on thymocytes. It is suggested that the accretion of unrepaired DNA damages to some critical level triggers the process of the internucleosome degradation of chromatin, i.e. implements the program of lymphocyte death.  相似文献   

18.
19.
20.
Oxidative damage to DNA in mammalian chromatin.   总被引:18,自引:0,他引:18  
M Dizdaroglu 《Mutation research》1992,275(3-6):331-342
Efforts have been made to characterize and measure DNA modifications produced in mammalian chromatin in vitro and in vivo by a variety of free radical-producing systems. Methodologies incorporating the technique of gas chromatography/mass spectrometry have been used for this purpose. A number of products from all four DNA bases and several DNA-protein cross-links in isolated chromatin have been identified and quantitated. Product formation has been shown to depend on the free radical-producing system and the presence or absence of oxygen. A similar pattern of DNA modifications has also been observed in chromatin of cultured mammalian cells treated with ionizing radiation or H2O2 and in chromatin of organs of animals treated with carcinogenic metal salts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号