首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite being a major component of the pseudorabies virus tegument, VP22 is not required for PRV replication, virulence, or neuroinvasion (T. del Rio, H. C. Werner, and L. W. Enquist, J. Virol. 76:774-782, 2002). In the absence of VP22, tegument assembly compensates in a limited fashion with increased incorporation of cellular actin. Infection of epithelial cell lines expressing fluorescent actin fusion proteins resulted in the incorporation of filamentous and nonfilamentous actin into individual virions that were predominately light, noninfectious particles. We conclude that cellular actin is incorporated in the tegument of wild-type virions and is part of a compensation mechanism for VP22-null virions.  相似文献   

2.
Transport of capsids in cells is critical to alphaherpesvirus infection and pathogenesis; however, viral factors required for transport have yet to be identified. Here we provide a detailed examination of capsid dynamics during the egress phase of infection in Vero cells infected with pseudorabies virus. We demonstrate that the VP1/2 tegument protein is required for processive microtubule-based transport of capsids in the cytoplasm. A second tegument protein that binds to VP1/2, UL37, was necessary for wild-type transport but was not essential for this process. Both proteins were also required for efficient nuclear egress of capsids to the cytoplasm.  相似文献   

3.
We have shown previously (Lomniczi et al., J. Virol. 52:198-205, 1984) that the Bartha vaccine strain of pseudorabies virus has a deletion in the short unique (Us) region of its genome--a deletion that is related to the absence of virus virulence. This strain is, however, also defective in other genes involved in virulence. We show here that virulence can be restored by marker rescue of the Bartha strain to which an intact Us has been restored (but not to the parental Bartha strain) by sequences derived from approximate map units 0.460 and 0.505 of the wild-type virus genome. No difference in the ability to grow in cell culture was observed between parental Bartha, Bartha 43/25a (Bartha to which an intact Us has been restored), or the doubly rescued Bartha strains. However, only the doubly rescued Bartha strain was virulent for both chickens and pigs and replicated to high titers when inoculated directly into the brains of chickens. The sequences that could restore virulence to the Bartha 43/25a strain encode four genes, all of which are involved in processes leading to the assembly of nucleocapsids. Since these sequences rescue virulence, it appears that a function that plays a role in nucleocapsid assembly is defective in the Bartha strain and that this defect contributes to the lack of virulence of this virus.  相似文献   

4.
Herpes simplex virus type 1 (HSV-1) induces microtubule reorganization beginning at approximately 9 h postinfection (hpi), and this correlates with the nuclear localization of the tegument protein VP22. Thus, the active retention of this major virion component by cytoskeletal structures may function to regulate its subcellular localization (A. Kotsakis, L. E. Pomeranz, A. Blouin, and J. A. Blaho, J. Virol. 75:8697-8711, 2001). The goal of this study was to determine whether the subcellular localization patterns of other HSV-1 tegument proteins are similar to that observed with VP22. To address this, we performed a series of indirect immunofluorescence analyses using synchronously infected cells. We observed that tegument proteins VP13/14, vhs, and VP16 localized to the nucleus as early as 5 hpi and were concentrated in nuclei by 9 hpi, which differed from that seen with VP22. Microtubule reorganization was delayed during infection with HSV-1(RF177), a recombinant virus that does not produce full-length VP22. These infected cells did not begin to lose microtubule-organizing centers until 13 hpi. Repair of the unique long 49 (UL49) locus in HSV-1(RF177) yielded HSV-1(RF177R). Microtubule reorganization in HSV-1(RF177R)-infected cells occurred with the same kinetics as HSV-1(F). Acetylated tubulin remained unchanged during infection with either HSV-1(F) or HSV-1(RF177). Thus, while alpha-tubulin reorganized during infection, acetylated tubulin was stable, and the absence of full-length VP22 did not affect this stability. Our findings indicate that the nuclear localizations of tegument proteins VP13/14, VP16, and vhs do not appear to require HSV-1-induced microtubule reorganization. We conclude that full-length VP22 is needed for optimal microtubule reorganization during infection. This implies that VP22 mainly functions to reorganize microtubules later, rather than earlier, in infection. That acetylated tubulin does not undergo restructuring during VP22-dependent, virus-induced microtubule reorganization suggests that it plays a role in stabilizing the infected cells. Our results emphasize that VP22 likely plays a key role in cellular cytopathology during HSV-1 infection.  相似文献   

5.
The Us2 gene is conserved among alphaherpesviruses, but its function is not known. We demonstrate here that the pseudorabies virus (PRV) Us2 protein is synthesized early after infection and localizes to cytoplasmic vesicles and to the plasma membrane, despite the lack of a recognizable signal sequence or membrane-spanning domain. Us2 protein is also packaged as part of the tegument of mature virions. The Us2 carboxy-terminal four amino acids comprise a CAAX motif, a well-characterized signal for protein prenylation. Treatment of infected cells with lovastatin, a drug that disrupts protein prenylation, changed the relative electrophoretic mobility of Us2 in sodium dodecyl sulfate-polyacrylamide gels. In addition, lovastatin treatment caused a dramatic relocalization of Us2 to cytoplasmic punctate structures associated with microtubules, which appeared to concentrate over the microtubule organizing center. When the CAAX motif was changed to GAAX and the mutant protein was synthesized from an expression plasmid, it concentrated in punctate cytoplasmic structures reminiscent of Us2 localization in infected cells treated with lovastatin. We suggest that prenylation of PRV Us2 protein is required for proper membrane association. Curiously, the Us2 protein isolated from purified virions does not appear to be prenylated. This is the first report to describe the prenylation of an alphaherpesvirus protein.  相似文献   

6.
The products of the UL16 and UL21 genes represent tegument proteins which are conserved throughout the mammalian herpesviruses. To identify and functionally characterize the respective proteins in the alphaherpesvirus pseudorabies virus, monospecific antisera against bacterially expressed fusion proteins were generated. In immunoblots the UL16 antiserum detected a ca. 40-kDa protein in infected cells and purified virion preparations, whereas the anti-UL21 serum recognized a protein of approximately 60 kDa. Interestingly, in immunoprecipitations using either antiserum, both proteins were coprecipitated, demonstrating the formation of a physical complex. To investigate protein function, viruses lacking either UL16, UL21, or both were constructed. Mutant viruses could be propagated on noncomplementing cells, indicating that these proteins, either alone or in combination, are not required for viral replication in cell culture. However, plaque sizes and viral titers were reduced. Electron microscopy showed only slight alterations in cytoplasmic virion morphogenesis, whereas intranuclear maturation stages were not affected. Similar results were obtained with a triple mutant simultaneously lacking the three conserved tegument proteins UL11, UL16, and UL21. In summary, our results uncover a novel interaction between conserved herpesvirus tegument proteins that increases the complexity of the intricate network of protein-protein interactions involved in herpesvirus morphogenesis.  相似文献   

7.
Herpesvirus tegument protein VP22 can enhance the effect of therapeutic proteins in gene therapy, such as thymidine kinase (tk) and p53; however, the mechanism is unclear or controversial. In this study, mammalian expression vectors carrying bovine herpesvirus 1 (BHV-1) VP22 (BVP22) or herpes simplex virus type 1 (HSV-1) VP22 (HVP22) and equine herpesvirus type 4 (EHV-4) tk (Etk) were constructed in order to evaluate and compare the therapeutic potentials of BVP22 and HVP22 to enhance Etk/ganciclovir (Etk/GCV) suicide gene therapy for neuroblastomas by GCV cytotoxicity assays and noninvasive bioluminescent imaging in vitro and in vivo. BVP22 enhanced Etk/GCV cytotoxicity compared to that with HVP22 both in vitro and in vivo. However, assays utilizing a mixture of parental and stably transfected cells indicated that the enhancement was detected only in transfected cells. Thus, the therapeutic potential of BVP22 and HVP22 in Etk/GCV suicide gene therapy in this tumor system is not due to VP22 delivery of Etk into surrounding cells but rather is likely due to an enhanced intracellular effect.  相似文献   

8.
Hafezi W  Bernard E  Cook R  Elliott G 《Journal of virology》2005,79(20):13082-13093
Many steps along the herpesvirus assembly and maturation pathway remain unclear. In particular, the acquisition of the virus tegument is a poorly understood process, and the molecular interactions involved in tegument assembly have not yet been defined. Previously we have shown that the two major herpes simplex virus tegument proteins VP22 and VP16 are able to interact, although the relevance of this to virus assembly is not clear. Here we have constructed a number of recombinant viruses expressing N- and C-terminal truncations of VP22 and have used them to identify regions of the protein involved in its assembly into the virus structure. Analysis of the packaging of these VP22 variants into extracellular virions revealed that the C terminus of VP22 is absolutely required for this process, with removal of the C-terminal 89 residues abrogating its incorporation. However, while these 89 residues alone were sufficient for specific incorporation of small amounts of VP22 into the tegument, efficient packaging of VP22 to the levels of full-length protein required an additional 52 residues of the protein. Coimmunoprecipitation assays indicated that these 52 residues also contained the interaction domain for VP16. Furthermore, analysis of the subcellular localization of the mutant forms of VP22 revealed that only those truncations that were efficiently assembled formed characteristic cytoplasmic trafficking complexes, suggesting that these complexes may represent the cellular location for VP22 assembly into the virus. Taken together, these results suggest that there are two determinants involved in the packaging of VP22-a C-terminal domain and an internal VP16 interaction domain, both of which are required for the efficient recruitment of VP22 to sites of virus assembly.  相似文献   

9.
10.
11.
The incorporation of tegument proteins into the herpes simplex virus 1 (HSV-1) virion during virion assembly is thought to be a complex, multistage process occurring via numerous interactions between the tegument and the capsid, within the tegument, and between the tegument and the envelope. Here, we set out to examine if the direct interaction between two essential tegument proteins VP1/2 and VP16 is required for connecting the inner tegument with the outer tegument. By using glutathione S-transferase (GST) pulldowns, we identified an essential role of lysine 343 in VP16, mutation of which to a neutral amino acid abrogated the interaction between VP1/2 and VP16. When the K343A substitution was inserted into the gene encoding VP16 (UL48) of the viral genome, HSV-1 replicated successfully although its growth was delayed, and final titers were reduced compared to titers of wild-type virus. Surprisingly, the mutated VP16 was incorporated into virions at levels similar to those of wild-type VP16. However, the analysis of VP16 on cytoplasmic capsids by fluorescence microscopy showed that VP16 associated with cytoplasmic capsids less efficiently when the VP16-VP1/2 interaction was inhibited. This implies that the direct interaction between VP1/2 and VP16 is important for the efficiency/timing of viral assembly but is not essential for HSV-1 replication in cell culture. These data also support the notion that the incorporation of tegument proteins into the herpesviruses is a very complex process with significant redundancy.  相似文献   

12.
【背景】猪流行性腹泻、猪轮状病毒病与猪伪狂犬病是严重危害全球养猪业的3种重要传染病,混合感染往往导致猪场更严重的损失。【目的】利用同源重组技术构建共表达猪流行性腹泻病毒(Porcine epidemic diarrhea virus,PEDV) S蛋白和猪轮状病毒(Rotavirus,PoRV) VP7蛋白的猪伪狂犬三联基因工程疫苗株,并研究其部分生物学特性。【方法】通过序列比对、蛋白结构分析筛选s基因的475?804 aa和vp7基因的17?339 aa作为毒株构建的目的片段,依次构建了pMD-S、pMD-VP7、pMD-VP7.S克隆载体和pEGFP-VP7.S转移载体。将质粒pEGFP-VP7.S和PRV XJ亲本株同源重组,空斑纯化得到重组毒株PRV (CM),对其稳定性和增殖特性进行研究。【结果】构建了共表达S蛋白和VP7蛋白的伪狂犬基因工程病毒,连续传代20次,均能检测到vp7和s基因,而gE基因阴性;Western blotting证实2种外源基因在重组病毒中均能实现良好的表达;测定亲本毒株和重组毒株的TCID50分别是10?7.59/0.1 mL和10?7.25/0.1 mL。【结论】获得了伪狂犬基因工程重组弱毒株PRV (CM),外源基因稳定存在,毒力基因稳定缺失,增殖特性差异不大,为PRV、PEDV和PoRV基因工程三联苗研究奠定了基础。  相似文献   

13.
寻求有效的肿瘤基因疗法,构建鸡贫血病毒VP3的减毒鼠伤寒沙门氏菌疫苗,并获得较纯的表达VP3基因的融合蛋白,初步研究其免疫原性.采用PCR技术扩增VP3基因,并将其与原核载体pET32α( )重组.将重组后质粒转染E.coli BL21,得到表达VP3的融合蛋白,并将此蛋白通过50%的Ni -NTA亲和树脂纯化.同时将重组质粒转染减毒沙门氏菌SL7207.经双酶切和PCR鉴定,成功构建了表达VP3的减毒沙门氏菌苗.融合蛋白通过50%的Ni -NTA亲和树脂纯化,得到纯度在90%以上的纯化蛋白.成功构建了表达VP3的减毒沙门氏菌苗,并且获得纯化的表达VP3的融合蛋白,为进一步研究VP3的免疫保护作用及对抗肿瘤疫苗的研制打下基础.  相似文献   

14.
The final assembly of herpes simplex virus (HSV) involves binding of tegument-coated capsids to viral glycoprotein-enriched regions of the trans-Golgi network (TGN) as enveloped virions bud into TGN membranes. We previously demonstrated that HSV glycoproteins gE/gI and gD, acting in a redundant fashion, are essential for this secondary envelopment. To define regions of the cytoplasmic (CT) domain of gE required for secondary envelopment, HSVs lacking gD and expressing truncated gE molecules were constructed. A central region (amino acids 470 to 495) of the gE CT domain was important for secondary envelopment, although more C-terminal residues also contributed. Tandem affinity purification (TAP) proteins including fragments of the gE CT domain were used to identify tegument proteins VP22 and UL11 as binding partners, and gE CT residues 470 to 495 were important in this binding. VP22 and UL11 were precipitated from HSV-infected cells in conjunction with full-length gE and gE molecules with more-C-terminal residues of the CT domain. gD also bound VP22 and UL11. Expression of VP22 and gD or gE/gI in cells by use of adenovirus (Ad) vectors provided evidence that other viral proteins were not necessary for tegument/glycoprotein interactions. Substantial quantities of VP22 and UL11 bound nonspecifically onto or were precipitated with gE and gD molecules lacking all CT sequences, something that is very unlikely in vivo. VP16 was precipitated equally whether gE/gI or gD was present in extracts or not. These observations illustrated important properties of tegument proteins. VP22, UL11, and VP16 are highly prone to binding nonspecifically to other proteins, and this did not represent insolubility during our assays. Rather, it likely reflects an inherent "stickiness" related to the formation of tegument. Nevertheless, assays involving TAP proteins and viral proteins expressed by HSV and Ad vectors supported the conclusion that VP22 and UL11 interact specifically with the CT domains of gD and gE.  相似文献   

15.
The alphaherpesvirus tegument protein VP22 has been characterized with multiple traits including microtubule reorganization, nuclear localization, and nonclassical intercellular trafficking. However, all these data were derived from studies using herpes simplex virus type 1 (HSV-1) and may not apply to VP22 homologs of other alphaherpesviruses. We compared subcellular attributes of HSV-1 VP22 (HVP22) with bovine herpesvirus 1 (BHV-1) VP22 (BVP22) using green fluorescent protein (GFP)-fused VP22 expression vectors. Fluorescence microscopy of cell lines transfected with these constructs revealed differences as well as similarities between the two VP22 homologs. Compared to that of HVP22, the BVP22 microtubule interaction was much less pronounced. The VP22 nuclear interaction varied, with a marbled or halo appearance for BVP22 and a speckled or nucleolus-bound appearance for HVP22. Both VP22 homologs associated with chromatin at various stages of mitosis and could traffic from expressing cells to the nuclei of nonexpressing cells. However, distinct qualitative differences in microtubule, nuclear, and chromatin association as well as trafficking were observed. The differences in VP22 homolog characteristics revealed in this study will help define VP22 function within HSV-1 and BHV-1 infection.  相似文献   

16.
The pseudorabies virus (PRV) Us9 protein plays a central role in targeting viral capsids and glycoproteins to axons of dissociated sympathetic neurons. As a result, Us9 null mutants are defective in anterograde transmission of infection in vivo. However, it is unclear how Us9 promotes axonal sorting of so many viral proteins. It is known that the glycoproteins gB, gC, gD and gE are associated with lipid raft microdomains on the surface of infected swine kidney cells and monocytes, and are directed into the axon in a Us9-dependent manner. In this report, we determined that Us9 is associated with lipid rafts, and that this association is critical to Us9-mediated sorting of viral structural proteins. We used infected non-polarized and polarized PC12 cells, a rat pheochromocytoma cell line that acquires many of the characteristics of sympathetic neurons in the presence of nerve growth factor (NGF). In these cells, Us9 is highly enriched in detergent-resistant membranes (DRMs). Moreover, reducing the affinity of Us9 for lipid rafts inhibited anterograde transmission of infection from sympathetic neurons to epithelial cells in vitro. We conclude that association of Us9 with lipid rafts is key for efficient targeting of structural proteins to axons and, as a consequence, for directional spread of PRV from pre-synaptic to post-synaptic neurons and cells of the mammalian nervous system.  相似文献   

17.
Potel C  Elliott G 《Journal of virology》2005,79(22):14057-14068
Herpes simplex virus VP22 is a major tegument protein of unknown function. Very recently, we reported that the predominant effect of deleting the VP22 gene was on the expression, localization, and virion incorporation of ICP0. In addition, the Delta22 virus replicated poorly in epithelial MDBK cells. We have also previously shown that VP22 interacts with the tegument protein VP16 and the cellular microtubule network. While the majority of VP22 in infected cells is highly phosphorylated, the nonphosphorylated form of VP22 is the predominant species in the virion, suggesting a differential requirement for phosphorylation through virus replication. Hence, to study the significance of VP22 phosphorylation, we have now constructed two recombinant viruses expressing green fluorescent protein-VP22 (G22) in which the previously identified serine phosphorylation sites have been mutated either to alanine to abolish the phosphorylation status of VP22 (G22P-) or to glutamic acid to mimic permanent phosphorylation (G22P+). Localization studies indicated that the G22P- protein associated tightly with microtubules in some infected cells, suggesting that VP22 phosphorylation may control its interaction with the microtubule network. By contrast, VP22 phosphorylation had no effect on its ability to interact with VP16 and, importantly, had no effect on the relative packaging of VP22. Intriguingly, virion packaging of ICP0 was reduced in the G22P+ virus while ICP0 expression was reduced in the G22P- virus, suggesting that these two ICP0 defects, previously observed in the Delta22 virus, were attributable to different forms of VP22. Furthermore, the Delta22 virus replication defect in MDBK cells correlated with the expression of constitutively charged VP22 in the G22P+ virus. Taken together, these results suggest an important role for VP22 phosphorylation in its relationship with ICP0.  相似文献   

18.
The bovine herpesvirus 1 (BHV-1) UL49 gene encodes a viral tegument protein termed VP22. UL49 homologs are conserved among alphaherpesviruses. Interestingly, the BHV-1 VP22 deletion mutant virus is asymptomatic and avirulent in infected cattle but produces only a slight reduction in titer in vitro. Attenuation of the BHV-1 VP22 deletion mutant virus in vivo suggests that VP22 plays a functional role in BHV-1 replication. In herpes simplex virus type 1, the VP22 homolog was previously shown to interact with another tegument protein,VP16, the alpha-transinducing factor in vitro. In this report, we show that (i) the nuclear targeting of VP22 is independent of other viral factors, (ii) the carboxyl terminus of VP22 is required for its nuclear localization, (iii) VP22 associates with histones and nucleosomes, (iv) an antihistone monoclonal antibody cross-reacts with VP22, and (v) acetylation of histone H4 is decreased in VP22-expressing cells as well as virus-infected cells. Our data suggest that VP22 may have a modulatory function during BHV-1 infection.  相似文献   

19.
The mature virion of the alphaherpesvirus pseudorabies virus (PrV) contains a minimum of 31 structural proteins which are recruited into the virus particle by a network of protein-protein interactions which is only incompletely understood. We show here that deletion of the tegument protein pUL21 resulted in a drastic decrease in the incorporation of the pUL46, pUL49, and pUS3 tegument components into mature virions. Moreover, the attenuated PrV strain Bartha (PrV-Ba), which, among other defects, carries mutations in pUL21, also fails to package pUL46, pUL49, and pUS3 efficiently. By the reconstitution of wild-type pUL21 expression to PrV-Ba and the transfer of mutated PrV-Ba pUL21 into wild-type PrV, we demonstrate that this phenotype is due to the mutated pUL21.  相似文献   

20.
We have previously shown that the 301-amino-acid herpes simplex virus tegument protein VP22 exhibits a range of subcellular localization patterns when expressed in isolation from other virus proteins. By using live-cell analysis of cells expressing green fluorescent protein (GFP)-tagged VP22 we have shown that when VP22 is first expressed in the cell it localizes to the cytoplasm, where, when present at high enough concentrations, it can assemble onto microtubules, causing them to bundle and become highly stabilized. In addition we have shown that when a cell expressing VP22 enters mitosis, the cytoplasmic population of VP22 translocates to the nucleus, where it efficiently binds mitotic chromatin. Here we have investigated the specific regions of the VP22 open reading frame required for these properties. Using GFP-VP22 as our starting molecule, we have constructed a range of N- and C-terminal truncations and analyzed their localization patterns in live cells. We show that the C-terminal 242 residues of VP22 are sufficient to induce microtubule bundling. Within this subregion, the C-terminal 89 residues contain a signal for cytoplasmic localization of the protein, while a larger region comprising the C-terminal 128 residues of the VP22 protein is required for mitotic chromatin binding. Furthermore, a central 100-residue domain of VP22 maintains the ability to bind microtubules without inducing bundling, suggesting that additional regions flanking this microtubule binding domain may be required to alter the microtubule network. Hence, the signals involved in dictating the complex localization patterns of VP22 are present in overlapping regions of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号