首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aryl piperazine melanocortin MC4 receptor agonists   总被引:1,自引:0,他引:1  
Incorporation of substituted phenyl piperazine privileged structures into a known MC4 specific dipeptoid consensus sequence resulted in a series of potent (EC(50)=24 nM) and selective MC4-R agonists. We report the SAR of this series of compounds using in vitro cAMP functional assays in cells transfected with the MC4 or other melancortin receptors.  相似文献   

2.
The melanocortin receptor type 4 (MC4-R) is involved in food intake and represents a potential target for the treatment of some forms of obesity. The fluorescent protein EGFP was fused to the wild-type or mutated coding sequence of the human MC4-R. After transfection in HEK 293, clones stably expressing hMC4-R-EGFP were selected. Wild-type chimeric hMC4-R was well addressed to the cell membrane as demonstrated using confocal microscopy and displayed the same pharmacological characteristics as native hMC4R. NDP-alpha MSH induced a time-dependent internalization of MC4-R that was partially prevented by AgRP. The two mutated chimeric receptors studied here (CTCT-deleted and C271A) showed a high alteration of their response to ligand and were retained inside the cells. In conclusion, we have developed a model of clones stably expressing EGFP-tagged-hMC4-R. This is the only such model available to date and it provides a useful tool to follow the trafficking of MC4-R inside living cells.  相似文献   

3.
Melanocortin system and corticotropin releasing hormone (CRH) are implicated in the control of feeding behavior. Besides its anorexigenic effect on food intake, CRH is one of the most important regulators of hypothalamic-pituitary-adrenal (HPA) axis activity. Therefore, there could be an interplay between HPA axis activity and melanocortin system. We investigated the expression of melanocortin-4 receptor (MC4-R) mRNA in the hypothalamus of rats after 14 days of food restriction or after a fasting-refeeding regimen, in sham or adrenalectomized rats. Male Wistar rats were subjected to free access to food or food ingestion restricted for 2 h a day (8-10 AM) during 14 d, when plasma corticosterone, ACTH, insulin, leptin concentrations, and MC4-R mRNA expression were determined before and after refeeding. Another set of rats was fasted for 48 h, followed by refeeding during 2 or 4 h on the seventh day after adrenalectomy (ADX) or sham surgery. On the day of the experiment, rats were anesthetized and perfused and the brain processed for MC4-R mRNA by in situ hybridization. Long-term reduction of food intake, either secondary to food restriction or adrenalectomy, reduced body weight gain and also leptin and insulin plasma concentrations. Food ingestion reduced MC4-R expression in the paraventricular nucleus in naive rats subjected to food restriction and also in sham rats fasted for 48 h. However, after ADX, MC4-R expression was not changed by refeeding. In conclusion, the present data indicate that MC4-R expression is downregulated by food ingestion and this response could be modulated by glucocorticoid withdrawal.  相似文献   

4.
The melanocortin 4 receptor (MC4-R) is a Gs-coupled receptor known to increase cAMP production following agonist stimulation. We demonstrate that the mitogen-activated protein kinases p42 (ERK2) and p44 (ERK1) are also activated by MC4-R following treatment with the MC4-R agonist NDP--MSH in stably transfected CHO-K1 cells. This time- and dose-dependent response is abolished by the MC4-R antagonist SHU-9119. p42/p44 MAPK activation is blocked by the phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and LY294002 but not by the protein kinase A (PKA) inhibitor Rp-cAMPS, indicating that that signal activating the p42/p44 MAPK pathway is conveyed through inositol triphosphate.  相似文献   

5.
Kim MS  Rossi M  Abbott CR  AlAhmed SH  Smith DM  Bloom SR 《Peptides》2002,23(6):1069-1076
Intracerebroventricular (ICV) injection of Agouti related protein (AgRP), an endogenous melanocortin 3 and 4 receptor (MC3/4-R) antagonist, produces a prolonged increase in food intake. To clarify the roles of the MC3-R and MC4-R in AgRP-induced hyperphagia, the feeding effect of AgRP (83-132) was compared with that of the selective MC4-R antagonist, JKC-363 (cyclic [Mpr11, D-Nal14, Cys18, Asp22-NH2]-beta-MSH11-22). Single ICV administration of AgRP (83-132) increased food intake for 48 h whilst ICV JKC-363 increased food intake for 8h. An increase in body weight at 24 and 48 h was observed following AgRP (83-132) but not JKC-363 treatment. These data suggest that the sustained orexigenic action of AgRP (83-132) may not be through MC4-R antagonism.  相似文献   

6.
The melanocortin peptides regulate a wide variety of physiological processes, including pigmentation and glucocorticoid production, and also have several activities in the central and peripheral nervous systems. The melanocortin receptor family includes the melanocytestimulating hormone receptor (MSH-R), adrenocorticotropic hormone receptor (ACTH-R), and two neural receptors, MC3-R and MC4-R. In the human these receptors map to 16q24 (MSH-R), 18p11.2 (ACTH-R), 20q13.2 (MC3-R), and 18q22 (MC4-R). The corresponding locations in the mouse are 8, 18, and 2; a variant for mapping MC4-R has not yet been identified. The data reported here also show that the neural MC3 receptor maps close to a disease locus for benign neonatal epilepsy in human and near the El-2 epilepsy susceptibility locus in the mouse.  相似文献   

7.
alpha-Melanocyte-stimulating-hormone (alpha-MSH) is an agonist at the melanocortin 3 receptor (MC3-R) and melanocortin 4 receptor (MC4-R). alpha-MSH stimulates corticosterone release from rat adrenal glomerulosa cells in vitro. Agouti-related protein (AgRP) an endogenous antagonist at the MC3-R and MC4-R, is expressed in the adrenal gland. We investigated the expression of the MC3-R and MC4-R and the role of AgRP in the adrenal gland. MC3-R and MC4-R expression was detected in rat adrenal gland using RT-PCR. The effect of AgRP on alpha-MSH-induced corticosterone release was investigated using dispersed rat adrenal glomerulosa cells. AgRP administered alone did not affect corticosterone release, but co-administration of AgRP and alpha-MSH attenuated alpha-MSH-induced corticosterone release. To investigate glucocorticoid feedback, adrenal AgRP expression was compared in rats treated with dexamethasone to controls. AgRP mRNA was increased in rats treated with dexamethasone treatment compared to controls. Our findings demonstrate that adrenal AgRP mRNA is regulated by glucocorticoids. AgRP acting via the MC3-R or MC4-R may have an inhibitory paracrine role, blocking alpha-MSH-induced corticosterone secretion.  相似文献   

8.
Functionally active antibodies (Abs) against central G-protein-coupled receptors have not yet been reported. We selected the hypothalamic melanocortin-4 receptor (MC4-R) as a target because of its crucial role in the regulation of energy homeostasis. A 15 amino acid sequence of the N-terminal (NT) domain was used as an antigen. This peptide showed functional activity in surface plasmon resonance experiments and in studies on HEK-293 cells overexpressing the human MC4-R (hMC4-R). Rats immunized against the NT peptide produced specific antibodies, which were purified and characterized in vitro. In HEK-293 cells, rat anti-NT Abs showed specific immunofluorescence labeling of hMC4-R. They reduced the production of cAMP under basal conditions and after stimulation with a synthetic MC4-R agonist. Rats immunized against the NT peptide developed a phenotype consistent with MC4-R blockade, that is, increased food intake and body weight, increased liver and fat pad weight, and elevated plasma triglycerides. In a separate experiment in rats, an increase in food intake could be produced after injection of purified Abs into the third ventricle. Similar results were obtained in rats injected with anti-NT Abs raised in rabbits. Our data show for the first time that active immunization of rats against the NT sequence of the MC4-R results in specific Abs, which appear to stimulate food intake by acting as inverse agonists in the hypothalamus.  相似文献   

9.
10.
The proinflammatory cytokine interleukin-1beta (IL-1beta) influences neuroendocrine activity and produces other effects, including fever and behavioral changes such as anxiety. The melanocortin neuropeptides, such as alpha-melanocyte-stimulating hormone (alpha-MSH), antagonize many actions of IL-1, including fever, anorexia and hypothalamic-pituitary-adrenal (HPA) axis activation through specific melanocortin receptors (MC-R) in the central nervous system. The objective of the present study was to establish the effect of MSH peptides on IL-1beta-induced anxiety-like behavior and the melanocortin receptors involved. We evaluated the effects of intracerebroventricular (i.c.v.) administration of IL-1beta (30 ng) and melanocortin receptor agonists: alpha-MSH, an MC3/MC4-R agonist (0.2 microg) or gamma-MSH, an MC3-R agonist (2 microg) or HS014, an MC4-R antagonist (2 microg), on an elevated plus-maze (EPM) test. Injection of IL-1beta induced an anxiogenic-like response, as indicated by reduced open arms entries and time spent on open arms. The administration of alpha-MSH reversed IL-1beta-induced anxiety with co-administration of HS014 inhibiting the effect of alpha-MSH. However, the associated treatment with gamma-MSH did not affect the anxiety response to IL-1beta. These data suggest that alpha-MSH, through central MC4-R can modulate the anxiety-like behavior induced by IL-1beta.  相似文献   

11.
Energy balance results from the coordination of multiple pathways affecting energy expenditure and food intake. Candidate neuropeptides involved in energy balance are the melanocortins. Several species, including Siberian hamsters studied here, decrease and increase food intake in response to stimulation and blockade of the melanocortin 4-receptor (MC4-R). In addition, central application of the MC3/4-R agonist melanotan-II decreases body fat (increases lipolysis) beyond that accounted for by its ability to decrease food intake. Because an increase in the sympathetic nervous system drive to white adipose tissue (WAT) is the principal initiator of lipolysis, we tested whether the sympathetic outflow circuitry from brain to WAT contained MC4-R mRNA expressing cells. This was accomplished by labeling the sympathetic outflow to inguinal WAT using the pseudorabies virus (PRV), a transneuronal retrograde viral tract tracer, and then processing the brain for colocalization of PRV immunoreactivity with MC4-R mRNA, the latter assessed by in situ hybridization. MC4-R mRNA was impressively colocalized in PRV-labeled cells (approximately greater than 60%) in many brain areas across the neuroaxis, including those typically implicated in lipid mobilization (e.g., hypothalamic paraventricular, suprachiasmatic, arcuate and dorsomedial nuclei, lateral hypothalamic area), as well as those not traditionally identified with lipolysis (e.g., preoptic area, subzona incerta of the lateral hypothalamus, periaqueductal gray, solitary nucleus). These data provide compelling neuroanatomical evidence that could underlie a direct central modulation of the sympathetic outflow to WAT by the melanocortins through the MC4-Rs resulting in changes in lipid mobilization and adiposity.  相似文献   

12.
Agouti protein and agouti-related protein (AGRP) antagonize alpha-melanocyte-stimulating hormone that binds to and activates the melanocortin-4 receptor (MC4-R) in the hypothalamus, thereby stimulating food intake. Melanin-concentrating hormone (MCH) and orexin are orexigenic peptides that specifically are synthesized in the lateral hypothalamus. MCH gene expression was augmented in A(y)/a (agouti) mice which overexpress agouti protein, but orexin mRNA was not. AGRP administered intracerebroventricularly into wild-type rats augmented MCH but not orexin gene expression. Also, SHU9119, a peptidergic antagonist of MC4-R, increased only MCH mRNA. These findings indicate that interruption of signaling at MC4-R activates the MCH but not the orexin gene. The biosyntheses of MCH and orexin are regulated through different pathways.  相似文献   

13.
A precise understanding of neural circuits controlling lipid mobilization and thermogenesis remains to be determined. We have been studying the sympathetic nervous system (SNS) contributions to white adipose tissue (WAT) lipolysis largely in Siberian hamsters. Central melanocortins are implicated in the control of the sympathetic outflow to WAT, and, moreover, the melanocortin 4 receptors (MC4-R) appear to be principally involved. We previously found that acute third ventricular melanotan II (MTII; an MC3/4-R agonist) injections increase sympathetic drive (norepinephrine turnover) to interscapular brown adipose tissue (IBAT) and IBAT temperature. Here we tested whether MC4-R mRNA is expressed in IBAT SNS outflow neurons using in situ hybridization for the former and injections of the transneuronal viral retrograde tract tracer, pseudorabies virus (PRV) into IBAT, for the latter. Significant numbers of double-labeled cells for PRV and MC4-R mRNA were found across the neuroaxis (mean of all brain sites approximately 60%), including the hypothalamic paraventricular nucleus (PVH; approximately 80%). Acute parenchymal MTII microinjections into the PVH of awake, freely-moving hamsters, using doses below those able to increase IBAT temperature when injected into the third ventricle, increased IBAT temperature for as long as 4 h, as measured by temperature transponders implanted below the tissue. Collectively, these data add significant support to the view that central melanocortins are important in controlling IBAT thermogenesis via the SNS innervation of this tissue, likely through the MC4-Rs.  相似文献   

14.
alpha-Melanocyte-stimulating hormone (alpha-MSH) appears to play a tonic inhibitory role in feeding and energy storage. MTII, a specific synthetic MC3-R/MC4-R agonist, has similar effects on feeding in rats. The current studies demonstrate that PVN administration of alpha-MSH or MTII decreases nocturnal and NPY-stimulated food intake without causing aversive effects. Co-administration with NPY of 600 pmol alpha-MSH or 1 pmol MTII into the PVN caused a significant decrease in NPY-induced feeding. PVN administration of MTII or alpha-MSH at doses effective to suppress feeding did not cause conditioned taste aversion (CTA). ICV administration of alpha-MSH, however, did cause weak CTA. These results indicate that the potent effects on feeding of MC3-R and MC4-R agonists when injected into the PVN are not due to aversive effects.  相似文献   

15.
The issue of which melanocortin receptor (MC-R) is responsible for the anti-inflammatory effects of melanocortin peptides is still a matter of debate. Here we have addressed this aspect using a dual pharmacological and genetic approach, taking advantage of the recent characterization of more selective agonists/antagonists at MC1 and MC3-R as well as of the existence of a naturally defective MC1-R mouse strain, the recessive yellow (e/e) mouse. RT-PCR and ultrastructural analyses showed the presence of MC3-R mRNA and protein in peritoneal macrophages (M phi) collected from recessive yellow (e/e) mice and wild-type mice. This receptor was functional as Mphi incubation (30 min) with melanocortin peptides led to accumulation of cAMP, an effect abrogated by the MC3/4-R antagonist SHU9119, but not by the selective MC4-R antagonist HS024. In vitro M phi activation, determined as release of the CXC chemokine KC and IL-1 beta, was inhibited by the more selective MC3-R agonist gamma(2)-melanocyte stimulating hormone but not by the selective MC1-R agonist MS05. Systemic treatment of mice with a panel of melanocortin peptides inhibited IL-1 beta release and PMN accumulation elicited by urate crystals in the murine peritoneal cavity. MS05 failed to inhibit any of the inflammatory parameters either in wild-type or recessive yellow (e/e) mice. SHU9119 prevented the inhibitory actions of gamma(2)-melanocyte stimulating hormone both in vitro and in vivo while HS024 was inactive in vivo. In conclusion, agonism at MC3-R expressed on peritoneal M phi leads to inhibition of experimental nonimmune peritonitis in both wild-type and recessive yellow (e/e) mice.  相似文献   

16.
The melanocortin (MC) receptor type-1 (MC1-R) is the only one of the five MC receptor subtypes expressed in human adipose tissue explants, human mesenchymal stem cells (MSCs), and MSC-derived adipocytes. Following our recent expression studies (Obesity 2007, 15, 40-49), we now investigated the functional role of MC1-R in these tissues and cells to deduce the coupling state of MC1-R to intracellular output signals in human fat cells and tissue. Expression of MC1-R by undifferentiated and differentiated MSCs was quantified by real-time TaqMan PCR. Intracellular output signals (cAMP, lipolysis, secretion of IL-6, IL-10, and TNF-alpha), as well as effects on the metabolic rate and proliferation of human MSCs were analyzed by standard assays, exposing undifferentiated and differentiated MSCs and, in part, human adipose tissue explants to the potent MC1-R agonist, [Nle(4), D-Phe(7)]-alpha-MSH (NDP-MSH). This agonist induced a weak cAMP signal in MSC-derived adipocytes. However, it did not affect lipolysis in these cells or in adipose tissue explants, nor did it modulate cytokine release and mRNA expression of IL-6, IL-8, and TNF-alpha upon LPS stimulation. In undifferentiated MSCs, NDP-MSH did not alter the metabolic rate, but it showed a significant antiproliferative effect. Therefore, it appears that MC1-R-effector coupling in (differentiated) human adipocytes is too weak to induce a regulatory effect on lipolysis or inflammation; by contrast, MC1-R stimulation in undifferentiated MSCs induces an inhibitory signal on cell proliferation.  相似文献   

17.
alpha-Melanocyte stimulating hormone (MSH) has generally been assumed to be the endogenous ligand acting at the melanocortin-4 receptor (MC4-R), activation of which in the hypothalamus leads to reduced feeding. However, beta-MSH is also capable of activating MC4-R and inhibiting feeding. Here, we investigated the possibility that beta-MSH acts as an endogenous MC4-R agonist and that this melanocortin peptide plays a role in the regulation of feeding and energy balance. We found that beta-MSH had significantly higher affinities than alpha-MSH at both human MC4-R transfected into CHO cells (K(i): beta-MSH, 11.4+/-0.4 nmol/l versus alpha-MSH, 324+/-16 nmol/l, P<0.001) and MC4-R in rat hypothalamic homogenates (K(i): beta-MSH, 5.0+/-0.4 nmol/l versus alpha-MSH, 22.5+/-2.3 nmol/l, P<0.001). Incubation of brain slices with 5 microM beta-MSH significantly increased [35S]GTPgammaS binding by 140-160% (P<0.001), indicating activation of G-protein-coupled receptors (GPCRs), in the hypothalamic ventromedial (VMH), dorsomedial (DMH), arcuate (ARC) and paraventricular (PVN) nuclei. These sites match the distribution of beta-MSH immunoreactive fibres and also the distribution of MC4-R binding sites which we and others previously reported. Food-restriction significantly increased beta-MSH levels in the VMH, DMH and ARC (all P<0.05) above freely-fed controls, whilst alpha-MSH concentrations were unchanged. We propose that increased beta-MSH concentrations reflect blockade of the peptide's release in these sites, consistent with the increased hunger and the known up-regulation of MC4-R in the same nuclei. Thus, we conclude that (1). beta-MSH has higher affinity at MC4-R than alpha-MSH; (2). beta-MSH activates GPCR in these sites, which are rich in MC4-R; and (3). beta-MSH is present in hypothalamic nuclei that regulate feeding and its concentrations alter with nutritional state. We suggest that beta-MSH rather than alpha-MSH is the key ligand at the MC4-R populations that regulate feeding, and that inhibition of tonic release of beta-MSH is one mechanism contributing to hunger in under-feeding.  相似文献   

18.
Yoshimatsu H 《Peptides》2006,27(2):326-332
Hypothalamic neuronal histamine and its H(1) receptor (H(1)-R) form part of the leptin signaling pathway in the brain, and regulate body weight and adiposity by affecting food intake and energy expenditure. The pro-opiomelanocortin (POMC)-melanocortin 4 receptor (MC4-R) is also important for leptin signaling. We investigated whether and how these two neuronal pathways interact in regulating energy metabolism. From studies of agouti yellow (A(y)/a) obese mice, a model of a defect in POMC-MC4-R signaling, we concluded that the histamine H(1)-R signaling pathway is independent of the POMC-MC4-R complex in regulating food intake, energy metabolism, and adiposity.  相似文献   

19.
Leptin, the obese gene product, was reported to stimulate prolactin (PRL) secretion, but the neuroendocrine mechanism underlying this hormonal response is largely unknown. Thus, in this study we examined the involvement of several important PRL regulators in the leptin-induced PRL secretion in male rats. Compared with the values in normally fed rats, food deprivation for 3 days significantly decreased both PRL and leptin levels in the plasma. These changes were reverted to normal by a 3-day constant infusion of 75 microg/kg/day of leptin to the fasted rats, while 225 microg/kg/day of leptin further elevated both PRL and leptin levels. These four groups of animals were used for the following experiments. Results of dopamine and serotonin turnover studies in the brain and the pituitary indicated that neither of these biogenic amines plays a primary role in mediating leptin's effects on PRL. Repeated intracerebroventricular injections over 72 h of neutralizing antibodies against vasoactive intestinal peptide, PRL-releasing peptide, or beta-endorphin, did not significantly suppress the leptin actions. However, both the blockade of the melanocortin (MC) 4 receptor (R) and the immunoquenching of brain alpha-melanocyte-stimulating hormone (alpha-MSH) completely abolished the leptin-induced PRL release, and the stimulation of the MC4-R, but not the MC3-R, significantly elevated PRL levels in the fasted rats. These results suggest that alpha-MSH, a cleaved peptide from pro-opiomelanocortin of which synthesis is stimulated by leptin, may be the pivotal neuropeptide in the brain mediating the leptin's stimulatory influence on PRL secretion. It was also suggested that the MC4-R may be the primary subtype of the MC-Rs mediating this action of alpha-MSH.  相似文献   

20.
The melanocortin (MC) receptor type-1 (MC1-R) is the only one of the five MC receptor subtypes expressed in human adipose tissue explants, human mesenchymal stem cells (MSCs), and MSC-derived adipocytes. Following our recent expression studies (Obesity 2007, 15, 40–49), we now investigated the functional role of MC1-R in these tissues and cells to deduce the coupling state of MC1-R to intracellular output signals in human fat cells and tissue. Expression of MC1-R by undifferentiated and differentiated MSCs was quantified by real-time TaqMan PCR. Intracellular output signals (cAMP, lipolysis, secretion of IL-6, IL-10, and TNF-α), as well as effects on the metabolic rate and proliferation of human MSCs were analyzed by standard assays, exposing undifferentiated and differentiated MSCs and, in part, human adipose tissue explants to the potent MC1-R agonist, [Nle4, D-Phe7]-α -MSH (NDP-MSH). This agonist induced a weak cAMP signal in MSC-derived adipocytes. However, it did not affect lipolysis in these cells or in adipose tissue explants, nor did it modulate cytokine release and mRNA expression of IL-6, IL-8, and TNF-α upon LPS stimulation. In undifferentiated MSCs, NDP-MSH did not alter the metabolic rate, but it showed a significant antiproliferative effect. Therefore, it appears that MC1-R–effector coupling in (differentiated) human adipocytes is too weak to induce a regulatory effect on lipolysis or inflammation; by contrast, MC1-R stimulation in undifferentiated MSCs induces an inhibitory signal on cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号