首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background: Mesenchymal stem cells are able to undergo adipogenic differentiation and present a possible alternative cell source for regeneration and replacement of adipose tissue. The human infrapatellar fat pad is a promising source of mesenchymal stem cells with many source advantages over from bone marrow. It is important to determine whether a potential mesenchymal stem‐cell exhibits tri‐lineage differentiation potential and is able to maintain its proliferation potential and cell‐surface characterization on expansion in tissue culture. We have previously shown that mesenchymal stem cells derived from the fat pad can undergo chondrogenic and osteogenic differentiation, and we characterized these cells at early passage. In the study described here, proliferation potential and characterization of fat pad‐derived mesenchymal stem cells were assessed at higher passages, and cells were allowed to undergo adipogenic differentiation. Materials and methods: Infrapatellar fat pad tissue was obtained from six patients undergoing total knee replacement. Cells isolated were expanded to passage 18 and proliferation rates were measured. Passage 10 and 18 cells were characterized for cell‐surface epitopes using a range of markers. Passage 2 cells were allowed to undergo differentiation in adipogenic medium. Results: The cells maintained their population doubling rates up to passage 18. Cells at passage 10 and passage 18 had cell‐surface epitope expression similar to other mesenchymal stem cells previously described. By staining it was revealed that they highly expressed CD13, CD29, CD44, CD90 and CD105, and did not express CD34 or CD56, they were also negative for LNGFR and STRO1. 3G5 positive cells were noted in cells from both passages. These fat pad‐derived cells had adipogenic differentiation when assessed using gene expression for peroxisome proliferator‐activated receptor γ2 and lipoprotein lipase, and oil red O staining. Discussion: These results indicate that the cells maintained their proliferation rate, and continued expressing mesenchymal stem‐cell markers and pericyte marker 3G5 at late passages. These results also show that the cells were capable of adipogenic differentiation and thus could be a promising source for regeneration and replacement of adipose tissue in reconstructive surgery.  相似文献   

2.
3.
Mesenchymal stem/stromal cells respond to physical cues present in their microenvironment such as substrate elasticity, geometry, or topography with respect to morphology, proliferation, and differentiation. Although studies have demonstrated the role of focal adhesions in topography-mediated changes of gene expression, information linking substrate topography to the nucleus remains scarce. Here we show by two-dimensional gel electrophoresis and western blotting that A-type lamins and retinoblastoma protein are downregulated in mesenchymal stem/stromal cells cultured on 350 nm gratings compared to planar substrates; these changes lead to a decrease in proliferation and changes in differentiation potential.  相似文献   

4.
Multipotent bone marrow mesenchymal stromal cells are progenitors of various cell types capable of long-term self-renewal. These cells are an adequate model for studying the most important problems in cell biology, such as self-renewal of stem cells and regulation of their differentiation. Moreover, these cells are a promising resource for regenerative medicine. In this context, isolation of the earliest multipotent mesenchymal stromal cells, their in vitro maintenance in an undifferentiated state, and stimulation of their differentiation in a desired direction appear to be most important. To successfully use the multipotent mesenchymal stromal cells both in fundamental studies and in therapy, it is necessary to modify and standardize the composition of culture medium, replacing blood serum with certain growth factors. These factors have influence on the proliferation and differentiation of most cell types, including multipotent mesenchymal stromal cells. This paper is a review of available data concerning the effects of some growth factors on the multipotent mesenchymal stromal cells of the bone marrow.  相似文献   

5.
BACKGROUND: The human cysteine rich protein 61 (CYR61, CCN1) as well as the other members of the CCN family of genes play important roles in cellular processes such as proliferation, adhesion, migration and survival. These cellular events are of special importance within the complex cellular interactions ongoing in bone remodeling. Previously, we analyzed the role of CYR61/CCN1 as an extracellular signaling molecule in human osteoblasts. Since mesenchymal stem cells of bone marrow are important progenitors for various differentiation pathways in bone and possess increasing potential for regenerative medicine, here we aimed to analyze the expression of CCN family members in bone marrow-derived human mesenchymal stem cells and along the osteogenic, the adipogenic and the chondrogenic differentiation. RESULTS: Primary cultures of human mesenchymal stem cells were obtained from the femoral head of patients undergoing total hip arthroplasty. Differentiation into adipocytes and osteoblasts was done in monolayer culture, differentiation into chondrocytes was induced in high density cell pellet cultures. For either pathway, established differentiation markers and CCN-members were analyzed at the mRNA level by RT-PCR and the CYR61/CCN1 protein was analyzed by immunocytochemistry.RT-PCR and histochemical analysis revealed the appropriate phenotype of differentiated cells (Alizarin-red S, Oil Red O, Alcian blue, alkaline phosphatase; osteocalcin, collagen types I, II, IX, X, cbfa1, PPARgamma, aggrecan). Mesenchymal stem cells expressed CYR61/CCN1, CTGF/CCN2, CTGF-L/WISP2/CCN5 and WISP3/CCN6. The CYR61/CCN1 expression decreased markedly during osteogenic differentiation, adipogenic differentiation and chondrogenic differentiation. These results were confirmed by immuncytochemical analyses. WISP2/CCN5 RNA expression declined during adipogenic differentiation and WISP3/CCN6 RNA expression was markedly reduced in chondrogenic differentiation. CONCLUSION: The decrease in CYR61/CCN1 expression during the differentiation pathways of mesenchymal stem cells into osteoblasts, adipocytes and chondrocytes suggests a specific role of CYR61/CCN1 for maintenance of the stem cell phenotype. The differential expression of CTGF/CCN2, WISP2/CCN5, WISP3/CCN6 and mainly CYR61/CCN1 indicates, that these members of the CCN-family might be important regulators for bone marrow-derived mesenchymal stem cells in the regulation of proliferation and initiation of specific differentiation pathways.  相似文献   

6.
The newly evolved field of regenerative medicine is offering solutions in the treatment of bone or cartilage loss and deficiency. Mesenchymal stem cells, as well as articular chondrocytes, are potential cells for the generation of bone or cartilage. The natural mechanism of bone formation is that of endochondral ossification, regulated, among other factors, through the hormones dexamethasone and triiodothyronine. We investigated the effects of these hormones on articular chondrocytes and chondrogenically differentiated mesenchymal stem cells, hypothesizing that these hormones would induce terminal differentiation, with chondrocytes and differentiated stem cells being similar in their response. Using a 3D-alginate cell culture model, bovine chondrocytes and chondrogenically differentiated stem cells were cultured in presence of triiodothyronine or dexamethasone, and cell proliferation and extracellular matrix production were investigated. Collagen mRNA expression was measured by real-time PCR. Col X mRNA and alkaline phosphatase were monitored as markers of terminal differentiation, a prerequisite of endochondral ossification. The alginate culture system worked well, both for the culture of chondrocytes and for the chondrogenic differentiation of mesenchymal stem cells. Dexamethasone led to an increase in glycosaminoglycan production. Triiodothyronine increased the total collagen production only in chondrocytes, where it also induced signs of terminal differentiation, increasing both collagen X mRNA and alkaline phosphatase activity. Dexamethasone induced terminal differentiation in the differentiated stem cells. The immature articular chondrocytes used in this study seem to be able to undergo terminal differentiation, pointing to their possible role in the onset of degenerative osteoarthritis, as well as their potential for a cell source in bone tissue engineering. When chondrocyte-like cells, after their differentiation, can indeed be moved on towards terminal differentiation, they can be used to generate a model of endochondral ossification, but this limitation must be kept in mind when using them in cartilage tissue engineering application.  相似文献   

7.
Differentiation, cancer, and anticancer activity   总被引:2,自引:0,他引:2  
Carcinogenesis is a multistep process that results from the development of a variety of defects in the control of differentiation and proliferation. To investigate this concept further, 3T3 T mesenchymal stems cells were employed to establish that a distinct sequence of biological processes is involved in the control of differentiation and proliferation, and that these processes are integrally regulated. Specific defects in these regulatory processes were next established as being involved in carcinogenesis. These defects, however, were found not to be absolute; rather, they appear to involve changes in the stringency by which differentiation and proliferation are integrally regulated. Finally, it was established that when normal or transformed stem cells are induced to undergo nonterminal differentiation (which is one step in the integrated control of proliferation and differentiation), they can be made resistant to carcinogenesis or to revert to a nontransformed state. These data provide strong evidence that a critically important requirement for normal homeostasis is maintenance of intact cellular mechanisms to integrally regulate differentiation and proliferation.  相似文献   

8.
Induction of glial glutamate transporters in adult mesenchymal stem cells   总被引:5,自引:0,他引:5  
Adult bone marrow mesenchymal stem cells are multipotent cells that can differentiate into a variety of mesodermal tissues. Recent studies have reported on their ability to also evolve into non-mesodermal cells, especially neural cells. While most of these studies revealed that manipulating these cells triggers the expression of typical neurone markers, less is known about the induction of neuronal- or glial-related physiological properties. The present study focused on the characterisation of glutamate transporters expression and activity in rat mesenchymal stem cells grown in culture conditions favouring their differentiation into astroglial cells. Ten days exposure of the cells to the culture supplement G5 was found to increase the expression of nestin (neuro-epithelial stem cell intermediate filament), an intermediate filament protein expressed by neural stem cells. Simultaneously, a robust induction of the high-affinity glutamate transporter GLT-1 (and GLAST) expression was detected by RT-PCR and immunocytochemistry. This expression was correlated with a highly significant increase in the Na+-dependent [3H]D-aspartate uptake. Finally, while glial fibrillary acidic protein immunoreactivity could not be detected, the induced expression of the astrocytic enzyme glutamine synthetase was demonstrated. These results indicate that in vitro differentiation of adult mesenchymal stem cells in neural precursors coincides with the induction of functional glutamate transport systems. Although the astrocytic nature of these cells remains to be confirmed, this observation gives support to the study of mesenchymal stem cells as a promising tool for the treatment of neurological diseases involving glutamate excitoxicity.  相似文献   

9.
Dental pulp stem cells constitute an attractive source of multipotent mesenchymal stem cells owing to their high proliferation rate and multilineage differentiation potential. Osteogenesis is initiated by osteoblasts, which originate from mesenchymal stem cells. These cells express specific surface antigens that disappear gradually during osteodifferentiation. In parallel, the appearance of characteristic markers, including alkaline phosphatase, collagen type I, osteocalcin and osteopontin characterize the osteoblastic phenotype of dental pulp stem cells. This review will shed the light on the osteogenic differentiation potential of dental pulp stem cells and explore the culture medium components, and markers associated with osteodifferentiation of these cells.  相似文献   

10.
11.
Differentiation of the adult Leydig cell population in the postnatal testis   总被引:8,自引:0,他引:8  
Five main cell types are present in the Leydig cell lineage, namely the mesenchymal precursor cells, progenitor cells, newly formed adult Leydig cells, immature Leydig cells, and mature Leydig cells. Peritubular mesenchymal cells are the precursors to Leydig cells at the onset of Leydig cell differentiation in the prepubertal rat as well as in the adult rat during repopulation of the testis interstitium after ethane dimethane sulfonate (EDS) treatment. Leydig cell differentiation cannot be viewed as a simple process with two distinct phases as previously reported, simply because precursor cell differentiation and Leydig cell mitosis occur concurrently. During development, mesenchymal and Leydig cell numbers increase linearly with an approximate ratio of 1:2, respectively. The onset of precursor cell differentiation into progenitor cells is independent of LH; however, LH is essential for the later stages in the Leydig cell lineage to induce cell proliferation, hypertrophy, and establish the full organelle complement required for the steroidogenic function. Testosterone and estrogen are inhibitory to the onset of precursor cell differentiation, and these hormones produced by the mature Leydig cells may be of importance to inhibit further differentiation of precursor cells to Leydig cells in the adult testis to maintain a constant number of Leydig cells. Once the progenitor cells are formed, androgens are essential for the progenitor cells to differentiate into mature adult Leydig cells. Although early studies have suggested that FSH is required for the differentiation of Leydig cells, more recent studies have shown that FSH is not required in this process. Anti-Müllerian hormone has been suggested as a negative regulator in Leydig cell differentiation, and this concept needs to be further explored to confirm its validity. Insulin-like growth factor I (IGF-I) induces proliferation of immature Leydig cells and is associated with the promotion of the maturation of the immature Leydig cells into mature adult Leydig cells. Transforming growth factor alpha (TGFalpha) is a mitogen for mesenchymal precursor cells. Moreover, both TGFalpha and TGFbeta (to a lesser extent than TGFalpha) stimulate mitosis in Leydig cells in the presence of LH (or hCG). Platelet-derived growth factor-A is an essential factor for the differentiation of adult Leydig cells; however, details of its participation are still not known. Some cytokines secreted by the testicular macrophages are mitogenic to Leydig cells. Moreover, retarded or absence of Leydig cell development has been observed in experimental models with impaired macrophage function. Thyroid hormone is critical to trigger the onset of mesenchymal precursor cell differentiation into Leydig progenitor cells, proliferation of mesenchymal precursors, acceleration of the differentiation of mesenchymal cells into Leydig cell progenitors, and enhance the proliferation of newly formed Leydig cells in the neonatal and EDS-treated adult rat testes.  相似文献   

12.
Mesenchymal stem cells (MSCs) have a great capacity for use in regenerative medicine and other clinical applications. However, one question creating curiosity of their use, is how they are affected by ageing. As we now live within an ageing population, the prevalence of age related disorders is increasing, so it is important to investigate how effectively MSCs from older patients can be expanded and differentiated in vitro before their use in autologous cell transplantation. This paper will look at how ageing effects proliferation potential, differentiation potential and cell surface characterisation of human mesenchymal stem cells.  相似文献   

13.
14.
Bone morphogenetic proteins (BMPs) are expressed during osteogenesis and their action is regulated by corresponding BMP inhibitors. Chordin (a well recognized BMP inhibitor) and BMP-2 are expressed during osteogenic differentiation of human mesenchymal stem cells. Chordin inhibition induces human mesenchymal stem cell differentiation and reduces their proliferation by increasing BMP-2 bioavailability. The potential of suppressing BMP inhibitors is emerging as a biological therapeutic target in bone tissue engineering, because it results in an unopposed synergy between the various growth factors that are involved in osteogenesis, within their physiological milieu.  相似文献   

15.
16.
卫静  袁发焕  黄云剑 《生物磁学》2011,(10):1987-1990
骨髓间充质干细胞是目前广受关注的一群成体干细胞,具有取材容易,增殖能力强,生物学特性稳定,可以跨胚层分化,低免疫源性,参与受损组织修复等优点,随着组织工程的兴起和发展以及其自身所特有的生物学特性,人们逐渐认识到将骨髓间充质干细胞作为肾脏病移植治疗的种子细胞具有良好的应用前景。本文就骨髓间充质干细胞的生物学特性及其在肾脏病移植治疗中的进展做一综述。  相似文献   

17.
骨髓间充质干细胞是目前广受关注的一群成体干细胞,具有取材容易,增殖能力强,生物学特性稳定,可以跨胚层分化,低免疫源性,参与受损组织修复等优点,随着组织工程的兴起和发展以及其自身所特有的生物学特性,人们逐渐认识到将骨髓间充质干细胞作为肾脏病移植治疗的种子细胞具有良好的应用前景。本文就骨髓间充质干细胞的生物学特性及其在肾脏病移植治疗中的进展做一综述。  相似文献   

18.
Information about the differentiation of mast cells has increased remarkably in the past ten years. This progress has resulted from the introduction of techniques which developed in other fields of experimental hematology. Once mast cells were recognized as a progeny of multipotential hematopoietic stem cells, their unique differentiation processes were clarified. Although most of the progeny of stem cells leave the hematopoietic tissue after maturation, undifferentiated precursors of mast cells leave the hematopoietic tissue. Morphologically, unidentifiable precursors migrate in the bloodstream, invade the connective tissues or the mucosa of the alimentary canal, proliferate, and differentiate into mast cells. Even after their morphological differentiation, some mast cells retain an extensive proliferative potential. There are at least two subpopulations of mast cells: a connective-tissue type and a mucosal type. Connective tissue-type and mucosal mast cells can be distinguished by histochemical, electron microscopical, biochemical and immunological criteria; however, these two types can interchange, and their phenotypes are determined by the anatomical microenvironment in which their final differentiation occurs. Although biochemical natures of the anatomical microenvironment are unknown, molecules that support proliferation and differentiation of mast cells in vitro have been characterized, i.e., interleukin 3 and interleukin 4. In the next ten years, increased information about the differentiation processes will probably induce further understanding of mast cell functions.  相似文献   

19.
Mesenchymal stem cells, due to their characteristics are ideal candidates for cellular therapy. Currently, in culture these cells are defined by their adherence to plastic, specific surface antigen expression and multipotent differentiation potential. However, the in vivo identification of mesenchymal stem cells, before culture, is not so well established. Pre-culture identification markers would ensure higher purity than that obtained with selection based on adherence to plastic. Up until now, CD271 has been described as the most specific marker for the characterization andpurification of human bone marrow mesenchymal stem cells. This marker has been shown to be specifically expressed by these cells. Thus, CD271 has been proposed as a versatile marker to selectively isolated and expand multipotent mesenchymal stem cells with both immunosuppressive and lymphohematopoietic engraftment-promoting properties. This review focuses on this marker, specifically on identification of mesenchymal stem cells from different tissues. Literature revision suggests that CD271 should not be defined as a universal marker to identify mesenchymal stem cells before culture from different sources. In the case of bone marrow or adipose tissue, CD271 could be considered a quite suitable marker; however this marker seems to be inadequate for the isolation of mesenchymal stem cells from other tissues such as umbilical cord blood or wharton’s jelly among others.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号