首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diuretic and natriuretic activities of atrial extracts from BIO 14.6 (cardiomyopathic) and F1B (normal) hamsters at 180 days of age were measured by rat bioassay. Both activities were lower in BIO 14.6 extracts. Because of the reported protective action of taurine in the cardiomyopathic hamster, we tested the effect of 0.1 M taurine drinking upon the activity of atrial extracts. Urine flow and Na+ excretion were increased in both BIO 14.6 and F1B; however, comparatively larger increases in BIO 14.6 taurine drinkers abolished strain differences that were observed in water drinkers. Taurine drinking BIO 14.6 hamsters exhibited an increased plasma sodium concentration. Drinking of 0.6% NaCl also produced an elevated plasma sodium concentration in BIO 14.6. Extracts from hamsters with increased salt intake had diuretic and natriuretic activities that were not different from those of water drinkers. These findings confirm that ANF activity is deficient in BIO 14.6 hamsters, and this suggests a role for taurine in its production, release, and/or activation.  相似文献   

2.
In general, it is recognized that prolonged exposure to catecholamine leads to a reduction in the -adrenoceptor density (downregulation). However, it has been previously reported that the myocardial -adrenoceptor densities and norepinephrine levels significantly increase in the hearts of BIO 14.6 cardiomyopathic hamsters in the early stage. The mechanism of the increased -adrenoceptor density is not clearly elucidated, and it can not be excluded that this phenomenon may be a secondary effect. The purpose of this study was to assess the effect of verapamil on the density of -adrenoceptors in the heart of BIO 14.6 cardiomyopathic hamsters. The total number of -adrenoceptors in untreated BIO 14.6 hamsters was significantly higher at 90 days of age (30.4±2.2 v.s. 25.9±1.4 fmol/mg protein, p<0.05). BIO 14.6 hamsters received daily intraperitoneal injections of 5 mg/kg verapamil for 70 days, from an age of 20 days. Verapamil protected against progressive myocardial damage (total damage; 8.2±0.7 v.s. 0.4±0.2%/area, p<0.05) and the myocardial -adrenoceptor density returned to that of the normal control group (26.9±3.0 fmol/mg protein). Conversely, verapamil did not have an effect on the number of myocardial -adrenoceptors in normal golden hamsters. This study showed that verapamil protected against progressive myocardial damage and myocardial -adrenoceptor density returned to those of normal hamsters. These results suggest that an increased number of -adrenoceptors in the early stage of BIO 14.6 cardiomyopathic hamsters may be involved in the secondary pathogenesis of cardiomyopathy.  相似文献   

3.
Mechanisms underlying dilated cardiomyopathy (DCM) are poorly understood and effective therapy is still unavailable. The aim of this study was to examine the heart ultrastructure and dynamic of BIO T0-2 cardiomyopathic hamsters, an animal model of DCM, and to study in these animals, the effects of a co-formulation (HS12607) of propionyl-L-carnitine, coenzyme Q(10) and omega-3 fatty acids on cardiac mechanical parameters. Sarcomere length, Frank-Starling mechanism and force-frequency relations were studied on isolated ventricular papillary muscle from age-matched BIO F1B normal Syrian hamsters, BIO T0-2 control and BIO T0-2 HS12607-treated cardiomyopathic Syrian hamsters. At the optimum length to maximum active force, electron microscopy of left ventricular papillary muscle revealed that seven out of ten muscles studied showed shorter sarcomeres (1.20 +/- 0.29 microm), and the remaining three showed longer sarcomeres (2.80 +/- 0.13 microm), compared to those of normal hamsters (2.05 +/- 0.06 microm, n = 10). Severe alterations of the Frank-Starling mechanism, force-frequency relations and derivative parameters of contractile waves were also observed in vitro in the BIO T0-2 control hamsters. Long-term (8 weeks) treatment with HS12607 prevented alterations in sarcomere length in the BIO T0-2 cardiomyopathic hamsters; the Frank-Starling mechanism and force-frequency relations were also significantly (P < 0.05) improved in these hamsters. Therefore results of the present study strongly suggest the need for clinical studies on metabolic therapeutic intervention in the effort to stop the progression of dilated cardiomyopathy.  相似文献   

4.
The aim of this study was to determine the effect of protein kinase C (PKC) activation on intracellular Ca(2+) transient and its relation to alpha(1)-adrenoceptor (alpha(1)-AR)-stimulated negative inotropic response in rat ventricles. The electromechanical responses to phenylephrine (PE) in rat ventricular muscles were concomitantly examined using the conventional microelectrode method. The responses of intracellular Ca(2+) transient and cell contractions to PE in the absence of certain pharmacological interventions were ascertained in fura-2-loaded myocytes. The influence of PE on L-type Ca(2+) current (I(Ca,L)) was also examined using a voltage clamp in a whole-cell configuration. PE did not alter the action potential parameters during the negative inotropic phase. The negative inotropic effect (NIE) was inhibited by prazosin, chloroethylclonidine (CEC) and staurosporine, but was insensitive to pertussis toxin. Desensitization of PKC after prolonged pretreatment of rat ventricles with PDBu also abolished the NIE of PE. Caffeine modulated the NIE, but thapsigargin did not. The evoked intracellular Ca(2+) transient and cell contraction were initially decreased by PE, while I(Ca,L) was not altered. Prazosin and staurosporine significantly inhibited the responses. Our data indicated that alpha(1)AR-mediated NIE in rat ventricular muscles was due to the decrease of intracellular Ca(2+) transients by the modulation of PKC on Ca(2+)-releasing channels signaling through a CEC-sensitive alpha(1)AR subtype.  相似文献   

5.
Recently, the concept of an atrial endocrine system has expanded to that of a cardiac endocrine system. In support of this expanded view, the cardiac ventricles have been demonstrated to be a source of the atrial hormone (atriopeptin). Markedly enhanced ventricular expression of atriopeptin has been shown to be associated with cardiac hypertrophy. In this study, we measured the levels of atriopeptin in atrial and extra-atrial tissues of the BIO 14.6 hamster, a genetic model of cardiomyopathy and congestive heart failure. The BIO 14.6 hamsters (approximately 1 year of age) weighed 7.4% more than their age-matched controls, an indication of edema, and showed overt cardiac hypertrophy (control vs. BIO 14.6 heart weight: .556 +/- .045 g vs. .990 +/- .043 g). A survey of extra-atrial tissues indicated that pulmonary and ventricular tissue from both control and BIO 14.6 hamsters possessed measurable levels of immunoreactive atriopeptin. However, a comparison of atriopeptin levels in the lungs and cardiac ventricles, respectively, of control and BIO 14.6 hamsters revealed profound differences. Pulmonary atriopeptin levels were 30-fold greater, and ventricular atriopeptin levels were 13.3-fold greater, in the BIO 14.6 hamsters. In addition, the total content of atriopeptin was 2.2-fold greater in the atria of BIO 14.6 hamsters. Dot blot analysis indicated that atriopeptin mRNA levels were greater in the atria (3.4-fold) and ventricles (17.9-fold) of BIO 14.6 hamsters. A similar analysis of atriopeptin mRNA in pulmonary tissue proved inconclusive. The function of the marked increase of pulmonary and ventricular atriopeptin is unknown; however, it is plausible that the peptide hormone serves to regulate the formation of pulmonary and peripheral edema.  相似文献   

6.
Although the influence of the adrenergic system has been studied in the presence of heart failure, controversies still exist. Since cyclooxygenase derivatives appear to modulate coronary and cardiac adaptation in the failing heart, we hypothesized that cyclooxygenase derivatives may participate in the altered adrenergic responses in this situation. Isolated hearts from cardiomyopathic (UM-X7.1 subline) and normal hamsters, aged > 240 days, were utilized. Coronary and cardiac response to alpha1-, beta1-, and beta2-adrenergic stimulations was observed before and after pretreatment with indomethacin, a cyclooxygenase inhibitor. Reduction of coronary flow elicited by alpha1-adrenergic stimulation was unchanged in the presence of heart failure, while beta1- and beta2-induced vasodilatations were reduced. Inotropic response to alpha1 and beta1 stimulations were also reduced in failing hearts, while beta2-adrenergic action was unchanged. Pretreatment with indomethacin exacerbated coronary flow reduction observed with alpha1 stimulation in failing hearts only. Beta2-induced coronary vasodilatation and inotropic response to alpha1 and beta2 stimulations were impaired similarly in the presence of indomethacin in normal and failing hearts. The results suggest a complex interaction between adrenergic and cyclooxygenase activation.  相似文献   

7.
Catecholamine-induced thermogenesis is significantly diminished in BIO 14.6 cardiomyopathic hamsters as demonstrated by a reduced increase in oxygen consumption of these hamsters in response to administered isoproterenol. This decreased responsiveness is accompanied by a reduction in the amount of brown adipose tissue, a major nonshivering thermogenic effector. The present study demonstrates that the metabolic responses of individual brown fat cells are also altered in the dystrophic hamster. That is, 1 microM norepinephrine, the physiological mediator of nonshivering thermogenesis, evoked rates of oxygen consumption that were significantly lower in brown adipocytes isolated from the BIO 14.6 hamsters than in those from normal controls. Additionally, the dystrophic adipocytes exhibited: decreased maximal activity (per cell as well as per milligram protein) of citrate synthase; decreased cell size; and decreased amounts of protein per cell. These data indicate that the nonshivering thermogenic capacity of the intact BIO 14.6 hamsters reflects altered characteristics of the individual brown adipocytes themselves, as well as decreased amounts of the tissue.  相似文献   

8.
Reductions in cytochrome P-450 levels and aminopyrine N-demethylase activity of hepatic microsomes obtained from cardiomyopathic hamsters (BIO 14.6) occurred at all stages of the disease before the development of congestive heart failure (CHF). Cytochrome b5 levels were reduced only in animals with CHF when compared with age-matched controls (BIO.RB). Total microsomal protein and p-nitrophenol glucuronidation were not affected by the disease process. We conclude that the reduction in cytochrome P-450 levels and N-demethylase activity in cardiomyopathic hamsters is not a consequence of CHF, but is one of the manifestations of the disease process.  相似文献   

9.
We examined the effects of a selective κ opioid receptor agonist (U-50,488H) on the contractile properties of single ventricular myocytes from 127 day old control (F1B) and cardiomyopathic (BIO 14.6) hamsters. Myocytes in bicarbonate buffered solution with 1.5 mM [Ca2+] were electrically stimulated with field electrodes in the bath. Length changes were monitored via myocyte edge tracking. Twitch amplitude and the velocity of cell shortening were less in the cardiomyopathic hamster myocytes than in age-matched hamsters (P≤0.05). There was a concentration-dependent effect of U-50,488H (0.1–20 μM) to decrease twitch amplitude and shortening velocity in both control and cardiomyopathic myocytes (P≤0.001). In cells loaded with the Ca2+ indicator indo-1 the negative inotropic action of U-50,488H was associated with a decreased indo-1 fluorescence transient amplitude. There was no difference in the negative inotropic effect of U-50,488H on control and cardiomyopathic cells. Thus, the CM hamster does not demonstrate a different contractile response to U-50,488H.  相似文献   

10.
Previous studies have demonstrated that the slope of the function relating the action potential duration (APD) and the diastolic interval, known as the APD restitution curve, plays an important role in the initiation and maintenance of ventricular fibrillation. Since the APD restitution slope critically depends on the kinetics of the L-type Ca(2+) current, we hypothesized that manipulation of the subunit composition of these channels may represent a powerful strategy to control cardiac arrhythmias. We studied the kinetic properties of the human L-type Ca(2+) channel (Ca(v)1.2) coexpressed with the alpha(2)delta-subunit alone (alpha(1C) + alpha(2)delta) or in combination with beta(2a), beta(2b), or beta(3) subunits (alpha(1C) + alpha(2)delta + beta), using Ca(2+) as the charge carrier. We then incorporated the kinetic properties observed experimentally into the L-type Ca(2+) current mathematical model of the cardiac action potential to demonstrate that the APD restitution slope can be selectively controlled by altering the subunit composition of the Ca(2+) channel. Assuming that beta(2b) most closely resembles the native cardiac L-type Ca(2+) current, the absence of beta, as well as the coexpression of beta(2a), was found to flatten restitution slope and stabilize spiral waves. These results imply that subunit modification of L-type Ca(2+) channels can potentially be used as an antifibrillatory strategy.  相似文献   

11.
The Bio 14.6 cardiomyopathic Syrian hamster is an animal model of human idiopathic cardiomyopathy. The pathogenesis of the disease in this animal has not yet been clearly elucidated. It is well known that α- and β-adrenergic receptors are increased in the myocardium of this animal, but that isoprenaline does not produce an augmented response. We examined the activity of cardiac stimulatory GTP-binding protein (Gs), which couple with β-adrenergic receptors to stimulate adenylate cyclase, in Bio 14.6 cardiomyopathic hamsters at 90 and 160 days of age. The cardiac norepinephrine concentration was significantly increased in Bio 14.6 hamsters compared with control hamsters (F1B) at 90 days of age (1,739±120 vs 1,470±161 ng/g wet tissue weight, p<0.05). Cardiac forskolin-stimulated adenylate cyclase activities at 90 and 160 days of age were lower in the cardiomyopathic hamsters than in the F1B controls (90 days old: 98±24 vs 122±29 pmol/min/mg protein, p<0.05; 160 days old: 74±13 vs 124±28 pmol/min/mg protein, p<0.01). Cardiac Gs activities at 90 and 160 days of age were significantly lower in Bio 14.6 hamsters than those in F1B hamsters (90 days old: 204±42 vs 259±49 pmol/min/mg protein, p<0.05; 160 days old: 156±39 vs 211±60 pmol/min/mg protein, p<0.05). We thus demonstrated functional defects in cardiac Gs protein and adenylate cyclase activity in the Bio 14.6 cardiomyopathic hamsters at 90 to 160 days of age (the hypertrophic stage of cardiomyopathy). Such defects could be one possible mechanism preventing an enhanced response to β-adrenergic stimulation in this animal and could also contribute to myocardial decompensation in the late stage of cardiomyopathy.  相似文献   

12.
The effect of taurine, Guanidino Ethyl Sulfonate (G.E.S.) and NaCl on the lung mass and collagen content in BIO 14.6 strain of the Syrian hamster was investigated. Lungs from healthy and cardiomyopathic hamsters showed no change in mass or collagen content as a result of the various treatments.  相似文献   

13.
In isolated rat hepatocytes phenylephrine promotes a rapid increase in the amount of pyruvate dehydrogenase present in its active form (PDHa). This action is mediated by alpha 1-adrenergic receptors and is not observed in Ca2+-depleted hepatocytes. It is mimicked by the Ca2+ ionophore A23187. No changes in metabolites known to affect PDH activity are measured 3 min after addition of phenylephrine. Glucagon also increases PDHa, its action is additive to that of phenylephrine. The action of phenylephrine on PDHa could be explained by an increase in mitochondrial free Ca2+.  相似文献   

14.
The feasibility of gene therapy for cardiomyopathy, heart failure and other chronic cardiac muscle diseases is so far unproven. Here, we developed an in vivo recombinant adeno-associated virus (rAAV) transcoronary delivery system that allows stable, high efficiency and relatively cardiac-selective gene expression. We used rAAV to express a pseudophosphorylated mutant of human phospholamban (PLN), a key regulator of cardiac sarcoplasmic reticulum (SR) Ca(2+) cycling in BIO14.6 cardiomyopathic hamsters. The rAAV/S16EPLN treatment enhanced myocardial SR Ca(2+) uptake and suppressed progressive impairment of left ventricular (LV) systolic function and contractility for 28-30 weeks, thereby protecting cardiac myocytes from cytopathic plasma-membrane disruption. Low LV systolic pressure and deterioration in LV relaxation were also largely prevented by rAAV/S16EPLN treatment. Thus, transcoronary gene transfer of S16EPLN via rAAV vector is a potential therapy for progressive dilated cardiomyopathy and associated heart failure.  相似文献   

15.
The cardiac Na(+)/Ca(2+) exchanger (NCX1) is the predominant mechanism for the extrusion of Ca(2+) from beating cardiomyocytes. The role of protein phosphorylation in the regulation of NCX1 function in normal and diseased hearts remains unclear. In our search for proteins that interact with NCX1 using a yeast two-hybrid screen, we found that the C terminus of calcineurin Abeta, containing the autoinhibitory domain, binds to the beta1 repeat of the central cytoplasmic loop of NCX1 that presumably constitutes part of the allosteric Ca(2+) regulatory site. The association of NCX1 with calcineurin was significantly increased in the BIO14.6 cardiomyopathic hamster heart compared with that in the normal control. In hypertrophic neonatal rat cardiomyocytes subjected to chronic phenylephrine treatment, we observed a marked depression of NCX activity measured as the rate of Na(+)(i)-dependent (45)Ca(2+) uptake or the rate of Na(+)(o)-dependent (45)Ca(2+) efflux. Depressed NCX activity was partially and independently reversed by the acute inhibition of calcineurin and protein kinase C activities with little effect on myocyte hypertrophic phenotypes. Studies of NCX1 deletion mutants expressed in CCL39 cells were consistent with the view that the beta1 repeat is required for the action of endogenous calcineurin and that the large cytoplasmic loop may be required to maintain the interaction of the enzyme with its substrate. Our data suggest that NCX1 is a novel regulatory target for calcineurin and that depressed NCX activity might contribute to the etiology of in vivo cardiac hypertrophy and dysfunction occurring under conditions in which both calcineurin and protein kinase C are chronically activated.  相似文献   

16.
We have previously demonstrated that gene therapy can rescue the phenotype and extend lifespan in the delta-sarcoglycan deficient cardiomyopathic hamster. In patients with similar genetic defects, steroids have been largely used to slow down disease progression. Aim of our study was to evaluate the combined effects of steroid treatment and gene therapy on cardiac function. We injected the human delta-sarcoglycan cDNA by adeno-associated virus (AAV) 2/8 by a single intraperitoneal injection into BIO14.6 Syrian hamsters at ten days of age to rescue the phenotype. We then treated the hamsters with deflazacort. Treatment was administered to half of the hamsters that had received the AAV and the other hamsters without AAV, as well as to normal hamsters. Both horizontal and vertical activities were greatly enhanced by deflazacort in all groups. As in previous experiments, the AAV treatment alone was able to preserve the ejection fraction (70±7% EF). However, the EF value declined (52±14%) with a combination of AAV and deflazacort. This was similar with all the other groups of affected animals. We confirm that gene therapy improves cardiac function in the BIO14.6 hamsters. Our results suggest that deflazacort is ineffective and may also have a negative impact on the cardiomyopathy rescue, possibly by boosting motor activity. This is unexpected and may have significance in terms of the lifestyle recommendations for patients.  相似文献   

17.
A mutation in the delta-sarcoglycan (SG) gene with absence of delta-SG protein in the heart has been identified in the BIO14.6 cardiomyopathic (CM) hamster, but how the defective gene leads to myocardial degeneration and dysfunction is unknown. We correlated left ventricular (LV) function with increased sarcolemmal membrane permeability and investigated the LV distribution of the dystrophin-dystroglycan complex in BIO14.6 CM hamsters. On echocardiography at 5 wk of age, the CM hamsters showed a mildly enlarged diastolic dimension (LVDD) with decreased LV percent fractional shortening (%FS), and at 9 wk further enlargement of LVDD with reduction of %FS was observed. The percent area of myocardium exhibiting increased membrane permeability or membrane rupture, assessed by Evans blue dye (EBD) staining and wheat germ agglutinin, was greater at 9 than at 5 wk. In areas not stained by EBD, immunostaining of dystrophin was detected in CM hamsters at sarcolemma and T tubules, as expected, but it was also abnormally expressed at the intercalated discs; in addition, the expression of beta-dystroglycan was significantly reduced compared with control hearts. As previously described, alpha-SG was completely deficient in CM hearts compared with control hearts. In myocardial areas showing increased sarcolemmal permeability, neither dystrophin nor beta-dystroglycan could be identified by immunolabeling. Thus, together with the known loss of delta-SG and other SGs, abnormal distribution of dystrophin and reduction of beta-dystroglycan are associated with increased sarcolemmal permeability followed by cell rupture, which correlates with early progressive cardiac dysfunction in the BIO14.6 CM hamster.  相似文献   

18.
This study revealed the occurrence of vitamin E deficiency in the myocardium of 60-day-old Syrian cardiomyopathic hamsters (BIO14.6), and that this deficiency might be related to the increase in lipid peroxide. Vitamin E administration for ten days effectively restored creatininekinase activity and decreased the lipid peroxide content in the myocardium, returning these to normal control levels (F1b). These results indicate that vitamin E deficiency, possibly combined with oxidative stress in the early cardiomyopathic stage plays an important role in initiating the pathogenesis of myocardial lesions.  相似文献   

19.
We examined the contributions of the Ca(2+) channels of the sarcolemma and of the sarcoplasmic reticulum to electromechanical restitution. Extrasystoles (F(1)) were interpolated 40-600 ms following a steady-state beat (F(0)) in perfused rat ventricles paced at 2 or 3 Hz. Plots of F(1)/F(0) versus the extrasystolic interval consisted of phase I, which occurred before relaxation of the steady-state beat, and phase II, which occurred later. Phase I exhibited a period of enhanced left ventricular pressure development that coincided with action potential prolongation. Phase I was eliminated by -BAY K 8644 (100 nM) and FPL 64176 (150 nM), augmented by 3 microM thapsigargin plus 200 nM ryanodine and unaffected by KN-93 and KB-R7943. Phase II was accelerated by the Ca(2+) channel agonists and by isoproterenol but was eliminated by thapsigargin plus ryanodine. The results suggest that phase I of electromechanical restitution is caused by a transient L-type Ca(2+) current facilitation, whereas phase II represents the recovery of the ability of the sarcoplasmic reticulum to release Ca(2+).  相似文献   

20.
The influence of chronic administration of eplerenone on the intracrine as well as on the extracellular action of angiotensin II (Ang II) on L-type inward calcium current was investigated in the failing heart of cardiomyopathic hamsters (TO-2).For this, eplerenone (200 mg/kg/day) was administered orally to 2 month-old cardiomyopathic hamsters for a period of 3 months. Measurements of the peak inward calcium current (I(Ca)) was performed in single cells under voltage clamp using the whole cell configuration. The results indicated that eplerenone suppressed the intracrine action of Ang II (10(-)(8) M) on peak I(Ca) density. Moreover, the intracellular dialysis of the peptide did not change the time course of I(Ca) inactivation in animals treated chronically with eplerenone. The extracellular administration of Ang II (10(-)(8) M) incremented the peak I(Ca) density by only 20+/-8% (n=30) compared with 38+/-4% (n=35) (P<0.05) obtained in age-matched cardiomyopathic hamsters not exposed to eplerenone. Interestingly, the inhibitory of eplerenone (10(-7) M) on the intracrine action of Ang II was also found, in vitro, but required an incubation period of, at least, 24 h. The inhibitory action of eplerenone on the intracellular action of Ang II was partially reversed by exposing the eplerenone-treated cells to aldosterone (10 nM) for a period of 24 h what supports the view that: a) the mineralocorticoid receptor(MR) was involved in the modulation of the intracrine action of the peptide; b) the effect of eplerenone on the intracrine as well as on the extracellular action of Ang II was related ,in part, to a decreased expression of membrane-bound and intracellular AT1 receptors. In conclusion: a) eplerenone inhibits the intracrine action of Ang II on inward calcium current and reduces drastically the effect of extracellular Ang II on I(Ca); b) aldosterone is able to revert the effect of eplerenone; c) the mineralocorticoid receptor is an essential component of the intracrine renin angiotensin aldosterone system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号