首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The association among anthropogenic environmental disturbance, pathogen pollution and the emergence of infectious diseases in wildlife has been postulated, but not always well supported by epidemiologic data. Specific evidence of coastal contamination of the marine ecosystem with the zoonotic protozoan parasite, Toxoplasma gondii, and extensive infection of southern sea otters (Enhydra lutris nereis) along the California coast was documented by this study. To investigate the extent of exposure and factors contributing to the apparent emergence of T. gondii in southern sea otters, we compiled environmental, demographic and serological data from 223 live and dead sea otters examined between 1997 and 2001. The T. gondii seroprevalence was 42% (49/116) for live otters, and 62% (66/107) for dead otters. Demographic and environmental data were examined for associations with T. gondii seropositivity, with the ultimate goal of identifying spatial clusters and demographic and environmental risk factors for T. gondii infection. Spatial analysis revealed clusters of T. gondii-seropositive sea otters at two locations along the coast, and one site with lower than expected T. gondii seroprevalence. Risk factors that were positively associated with T. gondii seropositivity in logistic regression analysis included male gender, older age and otters sampled from the Morro Bay region of California. Most importantly, otters sampled near areas of maximal freshwater runoff were approximately three times more likely to be seropositive to T. gondii than otters sampled in areas of low flow. No association was found between seropositivity to T. gondii and human population density or exposure to sewage. This study provides evidence implicating land-based surface runoff as a source of T. gondii infection for marine mammals, specifically sea otters, and provides a convincing illustration of pathogen pollution in the marine ecosystem.  相似文献   

2.
Sea otters in California are commonly infected with Toxoplasma gondii. A unique Type X strain is responsible for 72% of otter infections, but its prevalence in terrestrial animals and marine invertebrates inhabiting the same area was unknown. Between 2000 and 2005, 45 terrestrial carnivores (lions, bobcats, domestic cats and foxes) and 1396 invertebrates (mussels, clams and worms) were screened for T. gondii using PCR and DNA sequencing to determine the phylogeographic distribution of T. gondii archetypal I, II, III and Type X genotypes. Marine bivalves have been shown to concentrate T. gondii oocysts in the laboratory, but a comprehensive survey of wild invertebrates has not been reported. A California mussel from an estuary draining into Monterey Bay was confirmed positive for Type X T. gondii by multilocus PCR and DNA sequencing at the B1 and SAG1 loci. This mussel was collected from nearshore marine waters just after the first significant rainfall event in the fall of 2002. Of 45 carnivores tested at the B1, SAG1, and GRA6 typing loci, 15 had PCR-confirmed T. gondii infection; 11 possessed alleles consistent with infection by archetypal Type I, II or III strains and 4 possessed alleles consistent with Type X T. gondii infection. No non-canonical alleles were identified. The four T. gondii strains with Type X alleles were identified from two mountain lions, a bobcat and a fox residing in coastal watersheds adjacent to sea otter habitat near Monterey Bay and Estero Bay. Confirmation of Type X T. gondii in coastal-dwelling felids, canids, a marine bivalve and nearshore-dwelling sea otters supports the hypotheses that feline faecal contamination is flowing from land to sea through surface runoff, and that otters can be infected with T. gondii via consumption of filter-feeding marine invertebrates.  相似文献   

3.
Toxoplasma gondii affects a wide variety of hosts including threatened southern sea otters (Enhydra lutris nereis) which serve as sentinels for the detection of the parasite's transmission into marine ecosystems. Toxoplasmosis is a major cause of mortality and contributor to the slow rate of population recovery for southern sea otters in California. An updated seroprevalence analysis showed that 52% of 305 freshly dead, beachcast sea otters and 38% of 257 live sea otters sampled along the California coast from 1998 to 2004 were infected with T. gondii. Areas with high T. gondii exposure were predominantly sandy bays near urban centres with freshwater runoff. Genotypic characterisation of 15 new T. gondii isolates obtained from otters in 2004 identified only X alleles at B1 and SAG1. A total of 38/50 or 72% of all otter isolates so far examined have been infected with a Type X strain. Type X isolates were also obtained from a Pacific harbor seal (Phoca vitulina) and California sea lion (Zalophus californianus). Molecular analysis using the C8 RAPD marker showed that the X isolates were more genetically heterogeneous than archetypal Type I, II and III genotypes of T. gondii. The origin and transmission of the Type X T. gondii genotype are not yet clear. Sea otters do not prey on known intermediate hosts for T. gondii and vertical transmission appears to play a minor role in maintaining infection in the populations. Therefore, the most likely source of infection is by infectious, environmentally resistant oocysts that are shed in the feces of felids and transported via freshwater runoff into the marine ecosystem. As nearshore predators, otters serve as sentinels of protozoal pathogen flow into the marine environment since they share the same environment and consume some of the same foods as humans. Investigation into the processes promoting T. gondii infections in sea otters will provide a better understanding of terrestrial parasite flow and the emergence of disease at the interface between wildlife, domestic animals and humans.  相似文献   

4.
Toxoplasma gondii is associated with morbidity and mortality in a variety of marine mammals, including fatal meningoencephalitis in the southern sea otter (Enhydra lutris nereis). The source(s) of T. gondii infection and routes of transmission in the marine environment are unknown. We hypothesise that filter-feeding marine bivalve shellfish serve as paratenic hosts by assimilation and concentration of infective T. gondii oocysts and their subsequent predation by southern sea otters is a source of infection for these animals. We developed a TaqMan PCR assay for detection of T. gondii ssrRNA and evaluated its usefulness for the detection of T. gondii in experimentally exposed mussels (Mytilus galloprovincialis) under laboratory conditions. Toxoplasma gondii-specific ssrRNA was detected in mussels as long as 21 days post-exposure to T. gondii oocysts. Parasite ssrRNA was most often detected in digestive gland homogenate (31 of 35, i.e. 89%) compared with haemolymph or gill homogenates. Parasite infectivity was confirmed using a mouse bioassay. Infections were detected in mice inoculated with any one of the mussel sample preparations (haemolymph, gill, or digestive gland), but only digestive gland samples remained bioassay-positive for at least 3 days post-exposure. For each time point, the total proportion of mice inoculated with each of the different tissues from T. gondii-exposed mussels was similar to the proportion of exposed mussels from the same treatment groups that were positive via TaqMan PCR. The TaqMan PCR assay described here is now being tested in field sampling of free-living invertebrate prey species from high-risk coastal locations where T. gondii infections are prevalent in southern sea otters.  相似文献   

5.
Toxoplasma gondii and Sarcocystis neurona have caused significant morbidity and mortality in threatened Southern sea otters (Enhydra lutris nereis) along the central California coast. Because only terrestrial animals are known to serve as definitive hosts for T. gondii and S. neurona, infections in otters suggest a land to sea flow of these protozoan pathogens. To better characterize the role of overland runoff in delivery of terrestrially derived fecal pathogens to the near shore, we assessed the temporal association between indicators of runoff and the timing of sea otter deaths due to T. gondii and S. neurona. Sea otter stranding records 1998-2004, from Monterey and Estero bays were reviewed and cases identified for which T. gondii or S. neurona were determined to be a primary or contributing cause of death. Precipitation and stream flow data from both study sites were used as indicators of land-based runoff. Logistic regression was applied to determine if a temporal association could be detected between protozoal mortalities and runoff indicators that occur in the 2 mo preceding mortality events. A significant association was found between S. neurona otter deaths at Estero Bay and increased stream flow that occurred 30-60 days prior to mortality events. At this site, the cause of otter mortality following increased river flows was 12 times more likely to be S. neurona infection compared with nonprotozoal causes of death. There were no significant associations between the timing of T. gondii otter deaths and indicators of overland runoff. Our results indicate that the association between overland runoff and otter mortalities is affected by geography as well as parasite type, and highlight the complex mechanisms that influence transmission of terrestrially derived pathogens to marine wildlife. Policy and management practices that aim to mitigate discharges of contaminated overland runoff can aid conservation efforts by reducing pathogen pollution of coastal waters, which impacts the health of threatened marine wildlife and humans.  相似文献   

6.
Detailed postmortem examination of southern sea otters (Enhydra lutris nereis) found along the California (USA) coast has provided an exceptional opportunity to understand factors influencing survival in this threatened marine mammal species. In order to evaluate recent trends in causes of mortality, the demographic and geographic distribution of causes of death in freshly deceased beachcast sea otters necropsied from 1998-2001 were evaluated. Protozoal encephalitis, acanthocephalan-related disease, shark attack, and cardiac disease were identified as common causes of death in sea otters examined. While infection with acanthocephalan parasites was more likely to cause death in juvenile otters, Toxoplasma gondii encephalitis, shark attack, and cardiac disease were more common in prime-aged adult otters. Cardiac disease is a newly recognized cause of mortality in sea otters and T. gondii encephalitis was significantly associated with this condition. Otters with fatal shark bites were over three times more likely to have pre-existing T. gondii encephalitis suggesting that shark attack, which is a long-recognized source of mortality in otters, may be coupled with a recently recognized disease in otters. Spatial clusters of cause-specific mortality were detected for T. gondii encephalitis (in Estero Bay), acanthocephalan peritonitis (in southern Monterey Bay), and shark attack (from Santa Cruz to Point A?o Nuevo). Diseases caused by parasites, bacteria, or fungi and diseases without a specified etiology were the primary cause of death in 63.8% of otters examined. Parasitic disease alone caused death in 38.1% of otters examined. This pattern of mortality, observed predominantly in juvenile and prime-aged adult southern sea otters, has negative implications for the overall health and recovery of this population.  相似文献   

7.
This study investigated the genetic characteristics of the Toxoplasma gondii strains isolated from 87 patients with cerebral toxoplasmosis and AIDS, treated in Sao Paulo State, Brazil. The laboratorial diagnosis of cerebral toxoplasmosis was based on positive serological exams and PCR of blood and/or cerebrospinal fluid. Four markers (5'-SAG2, 3'-SAG2, SAG3 and GRA6) were chosen to analyze the samples. Each having clear resolution to distinguish the three clonal lineages after PCR amplified targets were treated with restriction enzyme digestion (PCR-RFLP). The genotyping provided the following results: 40 patients (46%) were infected with strains classified as type I; 4 (4%), as type III; 13 (15%) were infected with polymorphic strains (unusual genotype); 6 patients with type I or II alleles; and 15 (17%) patients had strains not classified for any marker. PCR-RFLP, also classified 9 (11%) clinical isolates as type II, which is uncommon in South America. However, the sequencing of the nested-PCR products (of SAG3 marker) of type II and polymorphic isolates (of 5'-SAG2, SAG3 and GRA6 markers) showed a nucleotide polymorphism compared with the archetypal clonal genotypes (types I, II and III) and these isolates were considered as polymorphic strains. The markers used here were inappropriate to distinguish the most isolates considered as polymorphic strains. These data confirm other studies showing the high rate of genetic polymorphism in T. gondii strains isolated in Brazil.  相似文献   

8.
The southern sea otter (Enhydra lutris nereis) population in California (USA) and the Alaskan sea otter (E. lutris kenyoni) population in the Aleutian Islands (USA) chain have recently declined. In order to evaluate disease as a contributing factor to the declines, health assessments of these two sea otter populations were conducted by evaluating hematologic and/or serum biochemical values and exposure to six marine and terrestrial pathogens using blood collected during ongoing studies from 1995 through 2000. Samples from 72 free-ranging Alaskan, 78 free-ranging southern, and (for pathogen exposure only) 41 debilitated southern sea otters in rehabilitation facilities were evaluated and compared to investigate regional differences. Serum chemistry and hematology values did not indicate a specific disease process as a cause for the declines. Statistically significant differences were found between free-ranging adult southern and Alaskan population mean serum levels of creatinine kinase, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, calcium, cholesterol, creatinine, glucose, phosphorous, total bilirubin, blood urea nitrogen, and sodium. These were likely due to varying parasite loads, contaminant exposures, and physiologic or nutrition statuses. No free-ranging sea otters had signs of disease at capture, and prevalences of exposure to calicivirus, Brucella spp., and Leptospira spp. were low. The high prevalence (35%) of antibodies to Toxoplasma gondii in free-ranging southern sea otters, lack of antibodies to this parasite in Alaskan sea otters, and the pathogen's propensity to cause mortality in southern sea otters suggests that this parasite may be important to sea otter population dynamics in California but not in Alaska. The evidence for exposure to pathogens of public health importance (e.g., Leptospira spp., T. gondii) in the southern sea otter population, and the na?veté of both populations to other pathogens (e.g., morbillivirus and Coccidiodes immitis) may have important implications for their management and recovery.  相似文献   

9.
Although the Korean isolate KI-1 of Toxoplasma gondii has been considered to be a virulent type I lineage because of its virulent clinical manifestations, its genotype is unclear. In the present study, genotyping of the KI-1 was performed by multilocus PCR-RFLP and microsatellite sequencing. For 9 genetic markers (c22-8, c29-2, L358, PK1, SAG2, SAG3, GRA6, BTUB, and Apico), the KI-1 and RH strains exhibited typical PCR-RFLP patterns identical to the type I strains. DNA sequencing of tandem repeats in 5 microsatellite markers (B17, B18, TUB2, W35, and TgM-A) of the KI-1 also revealed patterns characteristic of the type I. These results provide strong genetic evidence that KI-1 is a type I lineage of T. gondii.  相似文献   

10.
Toxoplasma gondii tachyzoites were isolated from an ocular patient in the Republic of Korea and maintained in the laboratory (designated KI-1). In the present study, its genotype was determined by analyzing dense granule antigen 6 (GRA6) gene and surface antigen 2 (SAG2) gene as typing markers. Digestion of the amplification products of GRA6 and of the 5o and 3o ends of SAG2, respectively, with Mse I, Sau3A I, and Hha I, revealed that KI-1 is included in the genotype I, which includes the worldwide virulent RH strain. In addition, when the whole sequences of the coding regions of SAG1, rhoptry antigen 1 (ROP1), and GRA8 genes of KI-1 were compared with those of RH, minor nucleotide polymorphisms and amino acid substitutions were identified. These results show that KI-1 is a new geographical strain of T. gondii that can be included in the genotype I.  相似文献   

11.
We evaluated the sensitivity (Se) and specificity (Sp) of an IgG enzyme-linked immunosorbent assay (ELISA) and IgG indirect fluorescent antibody test (IFAT) for detection of Toxoplasma gondii-specific antibodies in sera from 2 cat populations using a Bayesian approach. Accounting for test covariance, the Se and Sp of the IgG ELISA were estimated to be 92.6% and 96.5%, and those of the IgG IFAT were 81.0% and 93.8%, respectively. Both tests performed poorly in cats experimentally coinfected with feline immunodeficiency virus and T. gondii. Excluding this group, Se and Sp of the ELISA were virtually unchanged (92.3% and 96.4%, respectively), whereas the IFAT Se improved to 94.2% and Sp remained stable at 93.7%. These tests and an IgM ELISA were applied to 123 cat sera from the Morro Bay area, California, where high morbidity and mortality attributable to toxoplasmosis have been detected in southern sea otters. Age-adjusted IgG seroprevalence in this population was estimated to be 29.6%, and it did not differ between owned and unowned cats. Accounting for Se, Sp, and test covariances, age-adjusted seroprevalence was 45.0%. The odds for T. gondii seropositivity were 12.3-fold higher for cats aged >12 mo compared with cats aged <6 mo.  相似文献   

12.
An indirect fluorescent antibody test (IFAT) for detection of Toxoplasma gondii infection was validated using serum from 77 necropsied southern sea otters (Enhydra lutris nereis) whose T. gondii infection status was determined through immunohistochemistry and parasite isolation in cell culture. Twenty-eight otters (36%) were positive for T. gondii by immunohistochemistry or parasite isolation or both, whereas 49 (64%) were negative by both tests. At a cutoff of 1:320, combined values for IFAT sensitivity and specificity were maximized at 96.4 and 67.3%, respectively. The area under the receiver-operating characteristic curve for the IFAT was 0.84. A titer of 1:320 was used as cutoff when screening serum collected from live-sampled sea otters from California (n = 80), Washington (n = 21), and Alaska (n = 65) for T. gondii infection. Thirty-six percent (29 out of 80) of California sea otters (E. lutris nereis) and 38% (8 out of 21) of Washington sea otters (E. lutris kenyoni) were seropositive for T. gondii, compared with 0% (0 out of 65) of Alaskan sea otters (E. lutris kenyoni).  相似文献   

13.
A Pyrosequencing assay, based on SAG2 gene polymorphisms, was designed for genotyping and detection of multiple infections of Toxoplasma gondii. The assay was tested on samples spiked with DNA from single and multiple genotypes of T. gondii and also on a DNA sample from the brain of a rat with multiple infections. To evaluate the comparative efficacy of the assay, identical samples were also analysed by PCR-restriction fragment length polymorphism (RFLP) and dideoxy sequencing. The Pyrosequencing assay was found to be superior to the two conventional techniques. Genotyping and detection of multiple alleles were possible after a single PCR assay in duplex format, from both the spiked and direct samples. The simplex PCR assay enabled accurate quantification of the different alleles in the mix. In comparison, PCR-RFLP and dideoxy sequencing were neither able to unequivocally detect multiple genotype infections, nor quantify the relative concentrations of the alleles. We conclude that Pyrosequencing offers a simple, rapid and efficient means for diagnosis and genotyping of T. gondii, as well as detection and quantification of multiple genotype infections of T. gondii.  相似文献   

14.

Background

Environmental transmission of the zoonotic parasite Toxoplasma gondii, which is shed only by felids, poses risks to human and animal health in temperate and tropical ecosystems. Atypical T. gondii genotypes have been linked to severe disease in people and the threatened population of California sea otters. To investigate land-to-sea parasite transmission, we screened 373 carnivores (feral domestic cats, mountain lions, bobcats, foxes, and coyotes) for T. gondii infection and examined the distribution of genotypes in 85 infected animals sampled near the sea otter range.

Methodology/Principal Findings

Nested PCR-RFLP analyses and direct DNA sequencing at six independent polymorphic genetic loci (B1, SAG1, SAG3, GRA6, L358, and Apico) were used to characterize T. gondii strains in infected animals. Strains consistent with Type X, a novel genotype previously identified in over 70% of infected sea otters and four terrestrial wild carnivores along the California coast, were detected in all sampled species, including domestic cats. However, odds of Type X infection were 14 times higher (95% CI: 1.3–148.6) for wild felids than feral domestic cats. Type X infection was also linked to undeveloped lands (OR = 22, 95% CI: 2.3–250.7). A spatial cluster of terrestrial Type II infection (P = 0.04) was identified in developed lands bordering an area of increased risk for sea otter Type II infection. Two spatial clusters of animals infected with strains consistent with Type X (P≤0.01) were detected in less developed landscapes.

Conclusions

Differences in T. gondii genotype prevalence among domestic and wild felids, as well as the spatial distribution of genotypes, suggest co-existing domestic and wild T. gondii transmission cycles that likely overlap at the interface of developed and undeveloped lands. Anthropogenic development driving contact between these cycles may increase atypical T. gondii genotypes in domestic cats and facilitate transmission of potentially more pathogenic genotypes to humans, domestic animals, and wildlife.  相似文献   

15.
A weak and emaciated California sea otter (Enhydra lutris) was found stranded on Atascadero Beach in Morro Bay, California. It died three weeks after capture. A diagnosis of coccidioidomycosis was confirmed by histology, serology and culture. This is believed to be the first reported case of this disease from the Morro Bay area of San Luis Obispo County, California as well as the first reported case in a free-ranging marine mammal.  相似文献   

16.
We sought to determine the SAG2 genotypes of Toxoplasma gondii associated with cases of acute human toxoplasmosis in England and Wales. The samples examined were collected from a wide range of cases including congenital infections, AIDS and immunosuppressed patients and were derived from a number of different tissues. Parasite DNA was detected by PCR amplification without the need for prior template purification, and SAG2 genotype was determined by both restriction enzyme analysis and direct DNA sequencing of the PCR amplification products. Parasites of both SAG2 type I and type II genotypes were seen with approximately equal frequency amongst the samples examined. Neither of these genotypes was found to be more frequently associated with a particular clinical presentation or sample tissue. Unexpectedly, we found clear evidence of mixed (SAG2 type I+type II) infections in approximately the same number of samples as were seen to be associated with either type I or II alone. Our use of direct DNA sequencing rather than simple restriction analysis was essential for the detection of mixed infections since incomplete restriction digestion of samples containing a single parasite type was occasionally observed. It is possible that the presence of more than one type of parasite in single samples might be related to our recent demonstration that mixtures of SAG2 type I and type II parasites are present in a significant proportion of commercial meat preparations. Moreover, the presence of mixed infections in single patients might offer a direct molecular method of assessing risk factors for infection.  相似文献   

17.
18.
Despite its capacity for sexual reproduction and global distribution, Toxoplasma gondii has a highly clonal structure, with the majority of isolates belonging to three distinct clonal types. Congenital toxoplasmosis has been associated with type I and type II strains. We here present the first characterization of a T. gondii strain (BGD1) from South-East Europe, isolated from the umbilical blood of a 24-week-old fetus in Serbia. Genotyping, performed by PCR-RFLP using a set of nested PCR markers (5'SAG2, 3'SAG2, BTUB, SAG3, and GRA6), showed that the BGD1 strain possessed a type II genotype. The cytokine patterns in Swiss-Webster mice inoculated with brain cysts of BGD1 and the prototype type II ME49 strain were similar until 180 days post-infection, with highly elevated IFN-gamma, IL-12 and IL-10 by d7 and decreasing thereafter. While both strains induced pneumonia and hepatitis in acute infection (d14), chronic infection (d56) was characterized, in addition to hepatitis, by severe meningoencephalitis, associated with numerous brain cysts. Thus, the BGD1 strain of T. gondii has type II genotypic and immunologic characteristics, but unlike other type II strains of human origin, induces severe encephalitis, making it an alternative to the sheep-derived ME49 strain for experimental models of infection.  相似文献   

19.
DNA was extracted from 71 meat samples obtained from UK retail outlets. All of these DNA preparations gave the expected polymerase chain reaction products when amplified with primers specific for the species from which the meat originated. A second polymerase chain reaction analysis, using primers specific for the Toxoplasma gondii SAG2 locus, revealed the presence of this parasite in 27 of the meat samples. Restriction analysis and DNA sequencing showed that 21 of the contaminated meats contained parasites genotyped as type I at the SAG2 locus, whilst six of the samples contained parasites of both types I and II. Toxoplasma- positive samples were subjected to further polymerase chain reaction analysis to determine whether any carried an allele of the dihydropteroate synthase gene that has recently been shown to be causally associated with sulfonamide resistance in T. gondii. In all cases, this analysis confirmed that parasites were present in the samples and, additionally, revealed that none of them carried the drug-resistant form of dihydropteroate synthase. These results suggest that a significant proportion of meats commercially available in the UK are contaminated with T. gondii. Although none of the parasites detected in this study carried the sulfonamide-resistance mutation, a simplified procedure for monitoring this situation merits development.  相似文献   

20.
Recent studies found that isolates of Toxoplasma gondii from Brazil were biologically and genetically different from those in North America and Europe. However, to date only a small number of isolates have been analysed from different animal hosts in Brazil. In the present study DNA samples of 46 T. gondii isolates from cats in 11 counties in S?o Paulo state, Brazil were genetically characterised using 10 PCR restriction fragment length polymorphism markers including SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1 and Apico. An additional marker, CS3, that locates on chromosome VIIa and has previously been shown to be linked to acute virulence of T. gondii was also used to determine its association to virulence in mice. Genotyping of these 46 isolates revealed a high genetic diversity with 20 genotypes but no clonal Type I, II or III lineage was found. Two of the 46 isolates showed mixed infections. Combining genotyping data in this study with recent reported results from chickens, dogs and cats in Brazil (total 125 isolates) identified 48 genotypes and 26 of these genotypes had single isolates. Four of the 48 genotypes with multiple isolates identified from different hosts and locations are considered the common clonal lineages in Brazil. These lineages are designated as Types BrI, BrII, BrIII and BrIV. These results indicate that the T. gondii population in Brazil is highly diverse with a few successful clonal lineages expanded into wide geographical areas. In contrast to North America and Europe, where the Type II clonal lineage is overwhelmingly predominant, no Type II strain was identified from the 125 Brazil isolates. Analysis of mortality rates in infected mice indicates that Type BrI is highly virulent, Type BrIII is non-virulent, whilst Type BrII and BrIV lineages are intermediately virulent. In addition, allele types at the CS3 locus are strongly linked to mouse-virulence of the parasite. Thus, T. gondii has an epidemic population structure in Brazil and the major lineages have different biological traits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号