首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human cytomegalovirus (CMV) is the leading cause of prenatal viral infection. Affected infants may suffer intrauterine growth retardation and serious neurologic impairment. Analysis of spontaneously aborted conceptuses shows that CMV infects the placenta before the embryo or fetus. In the human hemochorial placenta, maternal blood directly contacts syncytiotrophoblasts that cover chorionic villi and cytotrophoblasts that invade uterine vessels, suggesting possible routes for CMV transmission. To test this hypothesis, we exposed first-trimester chorionic villi and isolated cytotrophoblasts to CMV in vitro. In chorionic villi, syncytiotrophoblasts did not become infected, although clusters of underlying cytotrophoblasts expressed viral proteins. In chorionic villi that were infected with CMV in utero, syncytiotrophoblasts were often spared, whereas cytotrophoblasts and other cells of the villous core expressed viral proteins. Isolated cytotrophoblasts were also permissive for CMV replication in vitro; significantly, infection subsequently impaired the cytotrophoblasts' ability to differentiate and invade. These results suggest two possible routes of CMV transmission to the fetus: (i) across syncytiotrophoblasts with subsequent infection of the underlying cytotrophoblasts and (ii) via invasive cytotrophoblasts within the uterine wall. Furthermore, the observation that CMV infection impairs critical aspects of cytotrophoblast function offers testable hypotheses for explaining the deleterious effects of this virus on pregnancy outcome.  相似文献   

2.
During pregnancy, the placenta regulates the transfer of oxygen, nutrients, and residual products between the maternal and fetal bloodstreams and is a key determinant of fetal exposure to xenobiotics from the mother. To study the disposition of substances through the placenta, various experimental models are used, especially the perfused placenta, placental villi explants, and cell lineage models. In this context, nanotechnology, an area of study that is on the rise, enables the creation of particles on nanometric scales capable of releasing drugs aimed at specific tissues. An important reason for furthering the studies on transplacental transfer is to explore the potential of nanoparticles (NPs), in new delivery strategies for drugs that are specifically aimed at the mother, the placenta, or the fetus and that involve less toxicity. Due to the fact that the placental barrier is essential for the interaction between the maternal and fetal organisms as well as the possibility of NPs being used in the treatment of various pathologies, the aim of this review is to present the main experimental models used in studying the maternal–fetal interaction and the action of NPs in the placental environment.  相似文献   

3.
Genetic insights into trophoblast differentiation and placental morphogenesis   总被引:12,自引:0,他引:12  
The placenta is comprised of an inner vascular network covered by an outer epithelium, called trophoblast, all designed to promote the delivery of nutrients to the fetus. Several specialized trophoblast cell subtypes arise during development to promote this function, including cells that invade the uterus to promote maternal blood flow to the implantation site, and other cells that fuse into a syncytium, expand and fold to increase the surface area for efficient transport. Mutation of many genes in mice results in embryonic mortality or fetal growth restriction due to defects in placental development. Several important principles about placental development have emerged from these studies. First, distinct molecular pathways regulate the differentiation of the various trophoblast cell subtypes. Second, trophoblast proliferation, differentiation and morphogenesis are highly regulated by interactions with adjacent cell types. Finally, the specific classes of mutant phenotypes observed in the placenta of knockout mice resemble those seen in humans that are associated with preeclampsia and intrauterine growth restriction.  相似文献   

4.
The human placenta is a complex organ whose proper function is crucial for the development of the fetus. The placenta contains within its structure elements of the maternal and fetal circulatory systems. The interface with maternal blood is the lining of the placenta, that is a unique compartment known as the syncytiotrophoblast. This large syncytial structure is a single cell layer in thickness, and the apical plasma membrane of the syncytiotrophoblast interacts directly with maternal blood. Relatively little is known about the proteins that reside in this unique plasma membrane or how they may change in various placental diseases. Our goal was to develop methods for isolating highly enriched preparations of this apical plasma membrane compatible with high-quality proteomics analysis and herein describe the properties of these isolated membranes.  相似文献   

5.
Cytomegalovirus (CMV), the major viral cause of congenital disease, infects the uterus and developing placenta and spreads to the fetus throughout gestation. Virus replicates in invasive cytotrophoblasts in the decidua, and maternal immunoglobulin G (IgG)-CMV virion complexes, which are transcytosed by the neonatal Fc receptor across syncytiotrophoblasts, infect underlying cytotrophoblasts in chorionic villi. Immunity is central to protection of the placenta-fetal unit: infection can occur when IgG has a low neutralizing titer. Here we used immunohistochemical and function-blocking methods to correlate infection in the placenta with expression of potential CMV receptors in situ and in vitro. In placental villi, syncytiotrophoblasts express the virion receptor epidermal growth factor receptor (EGFR) but lack integrin coreceptors, and virion uptake occurs without replication. Focal infection can occur when transcytosed virions reach EGFR-expressing cytotrophoblasts that selectively initiate expression of alphaV integrin. In cell columns, proximal cytotrophoblasts lack receptors and distal cells express integrins alpha1beta1 and alphaVbeta3, enabling virion attachment. In the decidua, invasive cytotrophoblasts expressing coreceptors upregulate EGFR, thereby dramatically increasing susceptibility to infection. Our findings indicate that virion interactions with cytotrophoblasts expressing receptors in the placenta (i) change as the cells differentiate and (ii) correlate with spatially distinct sites of CMV replication in maternal and fetal compartments.  相似文献   

6.

Background  

In pregnancy, maternal serum concentrations of calcitriol significantly rise as a result of increased renal and placental contribution in order to assure calcium supply for the developing fetus. Considering that placenta is a site for vitamin D activation, and the versatility and potency of calcitriol, it is feasible that this hormone participates in fetal/placental development and physiology. In the present work we studied calcitriol actions upon human chorionic gonadotropin (hCG) secretion and expression in cultured trophoblasts, as well as vitamin D receptor (VDR) and CYP27B1 immunolocalization in placental villi.  相似文献   

7.
A proteomics screen of human placental microvillous syncytiotrophoblasts (STBs) revealed the expression of dysferlin (DYSF), a plasma membrane repair protein associated with certain muscular dystrophies. This was unexpected given that previous studies of DYSF have been restricted to skeletal muscle. Within the placenta, DYSF localized to the STB and, with the exception of variable labeling in the fetal placental endothelium, none of the other cell types expressed detectable levels of DYSF. Such restricted expression was recapitulated using primary trophoblast cell cultures, because the syncytia expressed DYSF, but not the prefusion mononuclear cells. The apical plasma membrane of the STB contained approximately 4-fold more DYSF than the basal membrane, suggesting polarized trafficking. Unlike skeletal muscle, DYSF in the STB is localized to the plasma membrane in the absence of caveolin. DYSF expression in the STB was developmentally regulated, because first-trimester placentas expressed approximately 3-fold more DYSF than term placentas. As the current literature indicates that few cell types express DYSF, it is of interest that the two major syncytial structures in the human body, skeletal muscle and the STB, express this protein.  相似文献   

8.
The factors that affect and govern the glucose transfer from maternal blood to the fetus are not completely deciphered. We present a steady state, one dimensional mathematical simulation which integrates the main mechanisms that have been shown to exist: metabolic consumption of the placenta, simple and facilitated diffusion via the two membranes of the microvillous and simple diffusion within the placenta. The model uses all available physiologic data we could collect. Numerical results indicate that the most crucial factor in determining the fetal glucose concentration is the facilitated diffusion process at the basal membrane or, more specifically: the permeability of the basal membrane and the density of the transporter GLUT1 on its faces. The gradient between the maternal and the fetal glucose concentration is important as is the metabolic consumption of the placenta. The diffusion within the placenta and the conditions that prevail at the apical microvillous plasma membrane are much less significant. Intrasyncytial concentration of glucose is close to that of maternal blood. The adjustment of the fetal glucose concentration to abrupt changes of its surrounding is estimated to be quite rapid hence for all practical purposes this steady state model can serve as a reasonable approximation. Parameters that await experimental determination are identified.  相似文献   

9.
According to the “parent-offspring conflict hypothesis” the rapid evolution and diversification of the mammalian placenta is driven by divergent optima of resource allocation between fetus and mother. The fetus has an interest to maximize its resource intake, while the mother has an interest to restrict the transfer of resources, and thus retain resources for subsequent pregnancies. In the epitheliochorial placenta, the contacting fetal and maternal surfaces at the feto-maternal interface are covered with microvilli, which leads to an increase of membrane surfaces available for transport processes. Because membranes are the site of active transport, the conflict hypothesis predicts that the fetal surfaces at the feto-maternal interfaces are larger than the maternal ones. We use transmission electron microscopy and a stereological method to estimate the factors by which the apical fetal and maternal membranes are enlarged by the microvilli. Ten species with an epitheliochorial placenta were studied. Focused ion beam—scanning electron microscopy (FIB-SEM) was used to create three-dimensional models of the interdigitating microvilli of the bovine and porcine placenta. In all species, the fetal surface was larger than the maternal. This was due to a higher number of fetal microvilli and to the presence of membrane folds at the base of the fetal, but not of maternal microvilli. Our results suggest that the ultrastructural morphology of the feto-maternal interface in the epitheliochorial placenta is shaped by conflicting interests between fetus and mother and thus represent a so far neglected arena of the parent-offspring conflict.  相似文献   

10.
One of the most fascinating immunologic questions is how the genetically distinct fetus is able to survive and develop within the mother without provoking an immune rejection response. The pregnant uterus undergoes rapid morphological and functional changes, and these changes may influence the nature of local immune responses at the maternal/fetal interface at different stages of gestation. We hypothesized that specialized mechanisms exist to control access of maternal leukocyte subsets to the decidua and that these mechanisms are modulated during the course of pregnancy. At the critical period of initial placenta development, the maternal/fetal interface displays an unparalleled compartmentalization of microenvironmental domains associated with highly differentiated vessels expressing vascular addressins in nonoverlapping patterns and with recruitment of specialized leukocyte subsets (monocytes, granulated metrial gland cells, and granulocytes) thought to support, modulate, and regulate trophoblast invasion. One of the most striking observations at this time of gestation is the almost complete exclusion of lymphocytes from the maternal/fetal interface. The second half of pregnancy is characterized by a partial loss of microenvironmental specialization and different switches in vascular specificity within the decidua basalis, paralleling dramatic changes in the populations of recruited leukocytes (e.g., a striking influx of lymphocytes, especially T cells). In the term pregnant uterus, the expression of all vascular addressins decreased dramatically; only weakly staining maternal vascular segments remained. These segments may define sites of extremely low residual traffic in the term decidua, which contains remarkably few maternal leukocytes overall. Our results suggest that the maternal/fetal interface represents a situation in which leukocyte trafficking is exquisitely regulated to allow entry of specialized leukocyte subsets that may play a fundamental role in immune regulation during pregnancy.  相似文献   

11.
Distribution in mature human placenta of plasminogen, pregnancy-associated inhibitors of proteases (pregnancy-associated protein A (PAPP-A) and alpha 2--pregnancy-associated glycoprotein, and also of not associated with pregnancy alpha 2-macroglobulin and alpha 1-antitrypsin was examined. Primary monospecific antibodies and secondary antibodies labeled with colloid gold were used. Plasminogen was detected in the fetal and maternal blood, and also on the surface of some placental villi (as thin positively stained rims). Pregnancy-associated protease inhibitors were detected in the syncytium of the villi of all histological types and also in the fetal and maternal blood. Staining for alpha 2-macroglobulin was most intensive. This antigen was detected in the maternal and fetal blood and on the surface of the villi. alpha 2-antitrypsin was detected in the fetal and maternal blood. It has been shown that both free plasminogen and its inhibitors are retained on the surface of the placental villi.  相似文献   

12.
The pig possesses a noninvasive, diffuse type of epitheliochorial placentation in which the blood supply of the mother is well separated from the absorptive surface of the chorion, a feature that must complicate the movement of nutrient molecules across the placenta. Evidence is presented that a protein synthesized and secreted by the glandular epithelial cells of the maternal uterus of the pig is involved in iron transport to the fetus. This protein, uteroferrin, is induced by progesterone; is purple, which results from an unusual iron center; and possesses acid phosphatase activity. Secreted uteroferrin is taken up by specialized chorionic epithelial cells located in domed structures, called areolae, overlying the mouth of each uterine gland. Uteroferrin then enters the placental venous drainage and its iron is efficiently incorporated into fetal hemoglobin. It is taken up by the fetal liver or cleared by the kidney. The liver is the main site of erythropoiesis in the fetus. From the kidney uteroferrin enters the allantoic sac where it exchanges its iron with fetal transferrin. The rate of uteroferrin biosynthesis in the uterus and its rate of metabolism in the fetus can theoretically provide sufficient iron for the needs of pregnancy, at least until around day 70 of the 115-day gestation. Uteroferrin and transferrin, the iron transport protein of plasma, appear to be unrelated proteins.  相似文献   

13.
Placental infections are major causes of maternal and fetal disease. This review introduces a new paradigm for placental infections based on current knowledge of placental defenses and how this barrier can be breached. Transmission of pathogens from mother to fetus can occur at two sites of direct contact between maternal cells and specialized fetal cells (trophoblasts) in the human placenta: firstly, maternal immune and endothelial cells juxtaposed to extravillous trophoblasts in the uterine implantation site and secondly, maternal blood surrounding the syncytiotrophoblast (SYN). Recent findings suggest that the primary vulnerability is in the implantation site. We explore evidence that the placental SYN evolved as a defense against pathogens, and that inflammation-mediated spontaneous abortion may benefit mother and pathogen.  相似文献   

14.
Confined chorionic mosaicism in prenatal diagnosis   总被引:4,自引:1,他引:3  
Summary Confined chorionic mosaicism, detected commonly on chorionic villus sampling (CVS) and occasionally in cultured amniotic fluid cells, is described in five pregnancies that showed confined chorionic mosaicism for trisomies 12, 13, 14, 17 and a marker chromosome. Cytogenetic findings in these pregnancies support the conclusion that within chorion some chromosomal mosaicism are confined to the trophectoderm derivatives while others to the extra-embryonic mesoderm. The etiology of confined chorionic mosaicism is discussed in relation to a significant role of multiple cell lineages contributing to the early development of placenta. The need is indicated for the use of both direct and long-term cultures in CVS prenatal diagnosis, and for the confirmatory testing of fetal blood or amniotic fluid in cases where mosaicism is detected in chorionic villi.  相似文献   

15.
Calcium (Ca2+) entry in cells is crucial for development and physiology of virtually all cell types. It acts as an intracellular (second) messenger to regulate a diverse array of cellular functions, from cell division and differentiation to cell death. Among candidates for Ca2+ entry in cells are-voltage-dependant Ca2+ channels (VDCCs), transient receptor potential (TRP)-related Ca2+ channels and store-operated Ca2+ (SOC) channels. Plasma membrane Ca2+-ATPases (PMCA) and Na+/Ca2+ exchanger (NCX) are mainly responsible for Ca2+ extrusion. These different Ca2+channels/transporters and exchangers exhibit specific distribution and physiological properties. During pregnancy, the syncytiotrophoblast layer of the human placenta transfers as much as 30 g of Ca2+ from the mother to the fetus, especially in late gestation where Ca2+ transport through different channels must increase in response to the demands of accelerating bone mineralization of the fetus. The identification and characterization of the different Ca2+ channels/transporters and exchangers on the brush-border membrane (BBM) facing the maternal circulation, and the basal plasma membrane (BPM) facing the fetal circulation; placental membrane of the syncytiotrophoblasts have been the focus of numerous studies. This review discusses current views in this field regarding localization and functions during transcellular Ca2+ entry and extrusion from cells particularly in the placenta.  相似文献   

16.
Surface topography and cross-sections of the placental membranes were examined by scanning electron microscopy in two species of Thamnophis. The chorionic epithelium of the chorioallantoic placenta consists of broad, squamous cells that lack surface specializations. The apposed uterine epithelium contains ciliated cells and larger, nonciliated cells. Neither the epithelium of the chorion nor that of the uterus is eroded; thus, underlying capillaries are not exposed to the luminal surface. In both the omphaloplacenta and the omphalallantoic placenta, epithelium of the omphalopleure consists of brush-border cells bearing prominent microvilli, interspersed with cells bearing minuscule microvilli. These surface epithelial cells are joined at their apices and their lateral surfaces are extensively sculpted by intercellular channels, presenting the appearance of an epithelium specialized for absorption. Deep to the epithelium lie the yolk spheres of the isolated yolk mass, interspersed with endodermal cells. Surface topography of the uterine epithelia of the omphaloplacenta and omphalallantoic placenta is relatively unspecialized. The acellular shell membrane separates maternal and fetal tissues in each of the three placental types. Marked differences in surface features of the chorioallantois and omphalopleure probably reflect different roles of these membranes in gas exchange and transfer of water and nutrients.  相似文献   

17.
《Journal of morphology》2017,278(5):675-688
Ultrastructure of the placental tissues from redbelly watersnakes (Nerodia erythrogaster ) was analyzed during late pregnancy to provide insight into placental development and function. Examination of the chorioallantoic placenta with transmission electron microscopy reveals that chorionic and uterine epithelia are extremely attenuated but intact and that the eggshell membrane is vestigial and lacks a calcareous layer. These features minimize the interhemal diffusion distance across the placenta. Scanning electron microscopy reveals that fetal and maternal components of the placentas are richly vascularized by dense networks of capillaries. Although the yolk sac omphalopleure has largely been replaced by chorioallantois by late gestation, it retains patches of yolk droplets and regions of absorptive cells with microvilli and abundant mitochondria. Transmission electron microscopy reveals that yolk material is taken up for digestion by endodermal cells. As yolk is removed, allantoic capillaries invade to occupy positions just beneath the epithelium, forming regions of chorioallantoic placentation. Ultrastructural features indicate that the chorioallantoic placenta is specialized for gas exchange, while the omphalallantoic (“yolk sac”) placenta shows evidence of functions in yolk digestion and maternal‐fetal nutrient transfer. Placental features of this species are consistent with those of other thamnophines, and are evolutionarily convergent on snakes of other viviparous clades.  相似文献   

18.
Immunofluorescence study of the extracellular matrix of the human placenta   总被引:1,自引:0,他引:1  
Distribution of collagen types I, III, IV, V and fibronectin in human placental villi has been studied by indirect immunofluorescence. During 9-12 weeks of pregnancy the extracellular matrix of villi represents a network of filaments organized in bundles and aggregates that contain collagen types I and III and finer filaments of collagen types IV and V. Collagen type IV is regularly detected in basal membrane of capillaries and particularly in villous epithelium, collagen type V and fibronectin are occasionally detected there. Marked immunofluorescent reaction on collagen types IV and V and fibronectin, and weak reaction on collagen type III is observed in cellular islets around cytotrophoblasts. In the fetus born in term placental villi have uniform immunofluorescence in thick basal membranes of fetal capillaries and of chorionic epithelium. The immunofluorescent reaction specific for all collagen types is uniform in villous stroma. Distribution of different collagen types and fibronectin, including the unusual localization of membrane collagen type IV, in villous stroma and cellular islets of early and mature placenta is discussed.  相似文献   

19.
The metabolism by the fetus and placenta of [2-3H, U-14C]glucose infused into fetal sheep has been studied. Uptake of glucose from the fetus by the placenta and transfer to the ewe, as well as placental metabolism of glucose to fructose and lactate have been quantified. About two-thirds of the glucose removed from the fetal circulation was taken up by placenta. Less than 15% of this passed back into the maternal circulation, the remainder was converted, at roughly equivalent rates, into lactate and fructose, most of which was transferred back to the fetus. It seems likely that little of this glucose is oxidised by the placenta. This data indicates that there are substrate cycles between the placenta and fetus, one possible function of which is to limit fetal glucose loss back to the mother; lactate and fructose have limited placental permeability. At uterine blood flow rates in the middle of the normal range net glucose uptake by the placenta from the maternal circulation was about 7-fold higher than that from the fetus. About 20% of this was transported to the fetus, 50% was oxidised and much of the remainder converted to lactate and transferred back to the ewe. Labelling patterns in fructose and lactate make it unlikely that this placental pool of glucose mixes freely with that derived from uptake from the fetus. Net movement of glucose across the placenta is markedly influenced by fluctuations in uterine blood flow over the normal range of 500-3000 ml/min. At low flow rates there is net output of glucose from the fetus to the placenta, and in some instances from the placenta to the ewe, i.e. there is evidence of net utero-placental production of glucose to the ewe separate from output by the fetus. There is a close linear relationship between uterine glucose supply (maternal arterial concentration x uterine blood flow) and net balance across the placenta. As uterine supply of glucose falls there is increased uptake by the placenta of glucose from the fetal circulation and corresponding enhanced recycling of fructose and lactate to the fetus. This production of fructose and lactate by the placenta may function to reduce glucose loss from the fetus to the ewe. Hence at high rates of placental uptake of glucose from the fetus placental production of lactate and particularly fructose may approach saturation and allow significant backflow of glucose from the fetus to the ewe. Under these conditions glucose uptake may in part sustain placental oxygen consumption.  相似文献   

20.
The placenta serves, in part, as a barrier to exclude noxious substances from the fetus. In humans, a single-layered syncytium of polarized trophoblast cells and the fetal capillary endothelium separate the maternal and fetal circulations. P-glycoprotein is present in the syncytiotrophoblast throughout gestation, consistent with a protective role that limits exposure of the fetus to hydrophobic and cationic xenobiotics. We have examined whether members of the multidrug resistance protein (MRP) family are expressed in term placenta. After screening a placenta cDNA library, partial clones of MRP1, MRP2, and MRP3 were identified. Immunofluorescence and immunoblotting studies demonstrated that MRP2 was localized to the apical syncytiotrophoblast membrane. MRP1 and MRP3 were predominantly expressed in blood vessel endothelia with some evidence for expression in the apical syncytiotrophoblast. ATP-dependent transport of the anionic substrates dinitrophenyl-glutathione and estradiol-17-beta-glucuronide was also demonstrated in apical syncytiotrophoblast membranes. Given the cellular distribution of these transporters, we hypothesize that MRP isoforms serve to protect fetal blood from entry of organic anions and to promote the excretion of glutathione/glucuronide metabolites in the maternal circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号