首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The ability of insulin-like growth factor I (IGF-I) to stimulate cartilage matrix synthesis is reduced in aged and osteoarthritic cartilage. Aging and osteoarthritis are associated with an increase in reactive oxygen species, which we hypothesized would interfere with normal IGF-I signaling. We compared IGF-I signaling in normal and osteoarthritic human articular chondrocytes and investigated the effects of oxidative stress induced by tert-butylhydroperoxide (tBHP). In normal human chondrocytes, IGF-I initiated a strong and sustained phosphorylation of IRS-1 (Tyr-612) and Akt (Ser-473) and transient ERK phosphorylation. In contrast, in osteoarthritic chondrocytes, which possessed elevated basal IRS-1 (Ser-312) and ERK phosphorylation, IGF-I failed to stimulate IRS-1 (Tyr-612) or Akt phosphorylation. In normal human chondrocytes, tBHP triggered strong IRS-1 (Ser-312 and Ser-616) and ERK phosphorylation and inhibited IGF-I-induced IRS-1 (Tyr-612) and Akt phosphorylation. Lentivirus-mediated overexpression of constitutively active (CA) Akt significantly enhanced proteoglycan synthesis, whereas both dominant negative Akt and CA MEK inhibited proteoglycan synthesis. CA Akt also promoted type II collagen and Sox9 expression, whereas tBHP treatment and CA MEK inhibited aggrecan, collagen II, and Sox9 mRNA expression. In osteoarthritic chondrocytes, the antioxidants Mn(III) tetrakis(4-benzoic acid)porphyrin and N-acetylcysteine increased the ratio of Akt to ERK phosphorylation and promoted IGF-I-mediated proteoglycan synthesis. Chemical inhibition of ERK significantly enhanced IGF-I phosphorylation of Akt and alleviated tBHP inhibition of Akt phosphorylation. These results demonstrate opposing roles for phosphatidylinositol 3-kinase-Akt and MEK-ERK in cartilage matrix synthesis and suggest that elevated levels of reactive oxygen species cause chondrocyte IGF-I resistance by altering the balance of Akt to ERK activity.  相似文献   

3.
Insulin-like growth factor 1 (IGF-1) has poor anabolic efficacy in cartilage in osteoarthritis (OA), partly because of its sequestration by abnormally high levels of extracellular IGF-binding proteins (IGFBPs). We studied the effect of NBI-31772, a small molecule that inhibits the binding of IGF-1 to IGFBPs, on the restoration of proteoglycan synthesis by human OA chondrocytes. IGFBPs secreted by human OA cartilage or cultured chondrocytes were analyzed by western ligand blot. The ability of NBI-31772 to displace IGF-1 from IGFBPs was measured by radiobinding assay. Anabolic responses in primary cultured chondrocytes were assessed by measuring the synthesis of proteoglycans in cetylpyridinium-chloride-precipitable fractions of cell-associated and secreted 35S-labeled macromolecules. The penetration of NBI-31772 into cartilage was measured by its ability to displace 125I-labeled IGF-1 from cartilage IGFBPs. We found that IGFBP-3 was the major IGFBP secreted by OA cartilage explants and cultured chondrocytes. NBI-31772 inhibited the binding of 125I-labeled IGF-1 to IGFBP-3 at nanomolar concentrations. It antagonized the inhibitory effect of IGFBP-3 on IGF-1-dependent proteoglycan synthesis by rabbit chondrocytes. The addition of NBI-31772 to human OA chondrocytes resulted in the restoration or potentiation of IGF-1-dependent proteoglycan synthesis, depending on the IGF-1 concentrations. However, NBI-31772 did not penetrate into cartilage explants. This study shows that a new pharmacological approach that uses a small molecule inhibiting IGF-1/IGFBP interaction could restore or potentiate proteoglycan synthesis in OA chondrocytes, thereby opening exciting possibilities for the treatment of OA and, potentially, of other joint-related diseases.  相似文献   

4.
The growth plate is an important target tissue for insulin-like growth factors (IGFs), but little is known about the regulation of the IGF system during the developmental sequence of chondrocytes. We therefore examined the expression profile of IGF system components in proliferating vs. differentiating growth plate chondrocytes by use of two cell culture models of the growth cartilage. In rat growth plate chondrocytes in primary culture, IGF-I expression increased twofold during the process of differentiation. IGF-binding protein-3 (IGFBP-3) expression showed a biphasic pattern of with a twofold increase at the onset of differentiation and a downregulation in late differentiating chondrocytes to 25% of baseline levels; the expression patterns of IGFBP-2, -4 and -6 were not dependent on the developmental stage. In IGF- and IGFBP-3-deficient RCJ3.1C5.18 (RCJ) mesenchymal chondrogenic cells, IGFBP-2 and -6 synthesis declined by 50% during differentiation. IGFBP-5 expression was markedly upregulated during the process of differentiation in both cell culture models. Although IGFBP-5 overexpression did not have an IGF-independent effect on RCJ cell differentiation, it promoted IGF-I-enhanced differentiation of these cells. A potential mechanism for this effect is the specific increase of Akt phosphorylation in IGFBP-5-overexpressing cells in the presence of IGF-I, indicating an increased activity of the phosphatidylinositol (PI) 3-kinase pathway. These data suggest that the developmental stage of the chondrocyte is an important determinant of IGF and IGFBP expression and imply a functional role for IGFBP-5 for upregulating IGF action during chondrocyte differentiation in vivo.  相似文献   

5.
Indian hedgehog (Ihh) is highly expressed in prehypertrophic chondrocytes in vivo and has been proposed to regulate the proliferation and maturation of chondrocytes and bone collar formation in the growth plate. In high-density cultures of rabbit growth-plate chondrocytes, Ihh mRNA was also expressed at the highest level in the prehypertrophic stage. To explore endogenous factors that regulate Ihh expression in chondrocytes, we examined the effects of various growth factors on Ihh mRNA expression in this system. Retinoic acid (RA) and bone morphogenetic protein-2 enhanced Ihh mRNA expression, whereas PTH/PTH-related peptide (PTHrP) markedly suppressed Ihh expression. RA at more than 10(-8) M induced the expression of Ihh and Patched 1 (Ptc1) within 3 h, before it increased the type X collagen mRNA level at 6-24 h. Cycloheximide blocked the up-regulation of Ihh by RA, indicating the requirement of de novo protein synthesis for this stimulation. These findings suggest that RA is involved in the up-regulation of Ihh during endochondral bone formation. In contrast to RA, PTH (1-84) at 10(-7) M abolished the mRNA expression of Ihh and Ptc1 within 2-4 h, before it suppressed the expression of type X collagen at 12-24 h. The inhibition of Ihh expression by PTH (1-84) did not require de novo protein synthesis. PTH (1-34), PTHrP (1-34), and (Bu)(2)cAMP also suppressed Ihh expression. On the other hand, Ihh has been reported to induce PTHrP synthesis in the perichondrium. Consequently, the direct inhibitory action of PTH/PTHrP on Ihh appears to be a negative feedback mechanism that prevents excess PTHrP accumulation in cartilage.  相似文献   

6.
Martin JA  Buckwalter JA 《Biorheology》2000,37(1-2):129-140
Throughout life chondrocytes maintain the articular cartilage matrix by replacing degraded macromolecules and respond to focal cartilage injury or degeneration by increasing local synthesis activity. These observations suggest that mechanisms exist within articular cartilage that stimulate chondrocyte anabolic activity in response to matrix degradation or damage. An important cartilage anabolic factor, insulin-like growth factor I (IGF-I), appears to have a role in stimulating chondrocyte anabolic activity. Although IGF-I is ubiquitous, its bioavailability is controlled by a class of secreted proteins, IGF binding proteins (IGFPBs). Of the six known IGFPBs, IGFBP-3 is the most abundant in human articular cartilage. We recently found that with increasing age, articular chondrocytes increase their expression of IGFBP-3. This observation led us to investigate the potential role of IGFBP-3 in chondrocyte-matrix interactions. Using immunofluorescent staining and confocal microscopy we found that IGFBP-3 accumulates with increasing age in the chondrocyte territorial matrix where it co-localizes with fibronectin, but not with tenascin-C or type VI collagen. Using purified proteins we demonstrated that IGFBP-3 binds to fibronectin in a dose dependent manner, but not to tenascin-C. In vitro studies showed that IGFBP-3 alone inhibited chondrocyte synthetic activity while intact fibronectin alone significantly stimulated activity. When fibronectin and IGFBP-3 were combined we found that the inhibitory activity of low concentrations of IGFPB-3 was enhanced. These observations indicate that in mature articular cartilage IGF-I is stored in the chondrocyte territorial matrix through binding to a complex of IGFPB-3 and intact fibronectin. Storage of IGF-I of the territorial matrix may help maintain a relatively constant level of available IGF-I and the local increase in matrix synthesis following matrix damage may result from release of IGF-I. This mechanism may have an important role in maintaining and repairing articular cartilage and failure of this mechanism may lead to progressive articular cartilage degeneration.  相似文献   

7.
The object of this study was to determine whether changes in the synovial fluid (SF) induced by in vivo loading can alter the metabolic activity of chondrocytes in vitro, and, if so, whether insulin-like growth factor-I (IGF-I) is responsible for this effect. Therefore, SF was collected from ponies after a period of box rest and after they had been exercised for a week. Normal, unloaded articular cartilage explants were cultured in 20% solutions of these SFs for 4 days and chondrocyte bioactivity was determined by glycosaminoglycan (GAG) turnover (i.e., the incorporation of 35SO4 into GAG and the release of GAG into the medium). Furthermore, the extent to which the bioactivity is IGF-I-dependent was determined in a cartilage explant culture in 20% SF, in the presence and absence of anti-IGF-I antibodies. In explants cultured in post-exercise SF, GAG synthesis was enhanced and GAG release was diminished when compared to cultures in pre-exercise SF. SF analysis showed that IGF-I and IGFBP-3 levels were increased in post-exercise SF. There was a positive correlation between IGF-I levels and proteoglycan synthesis, but no correlation between IGF-I levels and proteoglycan release. Addition of anti-IGF-I antibodies significantly inhibited stimulation of proteoglycan synthesis in explants cultured in SF with 40%. However, there was no difference in inhibition of proteoglycan synthesis between pre- and post-exercise SF which indicated that the relative contribution of IGF-I in the stimulating effect of SF did not change. Proteoglycan release was not influenced by the presence of anti-IGF-I antibodies. It is concluded that chondrocyte metabolic activity is at least partially regulated by changes in the SF induced by in vivo loading. Exercise altered the SF in a way that it had a favourable effect on cartilage PG content by enhancing the PG synthesis and reducing the PG breakdown. IGF-I is an important contributor to the overall stimulating effect of SF on cartilage metabolism. It is, however, unlikely that IGF-I is the only mediator in the exercise-induced increase in this stimulating effect.  相似文献   

8.
Chick embryo chondrocytes cultured in sera from scorbutic and fasted guinea pigs exhibited decreases in collagen and proteoglycan production to about 30-50% of control values (I. Oyamada et al., 1988, Biochem. Biophys. Res. Commun. 152, 1490-1496). Here we show by pulse-chase labeling experiments that in the chondrocyte system, as in the cartilage of scorbutic and fasted guinea pigs, decreased incorporation of precursor into collagen was due to decreased synthesis rather than to increased degradation. There was a concomitant decrease in type II procollagen mRNA to about 32% of the control level. As in scorbutic cartilage, proteoglycan synthesis by chondrocytes in scorbutic serum was blocked at the stage of glycosaminoglycan chain initiation. Scorbutic and fasted guinea pig sera also caused a 50-60% decrease in the rates of collagen and proteoglycan synthesis in adult human skin fibroblasts, which synthesize mainly type I collagen. Decreased matrix synthesis in both cell types resulted from the presence of an inhibitor in scorbutic and fasted sera. Elevated cortisol levels in these sera were not responsible for inhibition, as determined by the addition of dexamethasone to chondrocytes cultured in normal serum. Insulin-like growth factor I (IGF-I, 300-350 ng/ml) reversed the inhibition of extracellular matrix synthesis by scorbutic and fasted guinea pig sera in both cell types and prevented the decrease in type II procollagen mRNA in chondrocytes. Therefore, in addition to its established role in proteoglycan metabolism, IGF-I also regulates the synthesis of several collagen types. An increase in the circulating inhibitor of IGF-I action thus could lead to the negative regulation of collagen and cartilage proteoglycan synthesis that occurs in ascorbate-deficient and fasted guinea pigs.  相似文献   

9.
In this study we report the preparation of a human osteosarcoma cell cDNA library and describe the isolation and sequence determination of a clone encoding the complete sequence of a novel human insulin-like growth factor (IGF)-binding protein (hIGFBP-4). Previous work indicated that hIGFBP-4 is the predominant IGFBP expressed by human osteoblast-like cells, and that IGFBP-4 binds and inhibits the mitogenic activities of IGF-I and IGF-II. Sequence determination revealed that hIGFBP-4 is a unique gene product with significant amino- and carboxy-terminal sequence similarity to three other known IGFBPs. Identical alignment of 18 cysteines in IGFBP-4 and the three other IGFBPs is a key structural feature of this protein family. In vitro studies of human osteoblast-like cells suggest that PTH regulates the expression of hIGFBP-4 and that the PTH effect is mediated through a cAMP mechanism. hIGFBP-4 mRNA was also expressed in skin fibroblasts, and thus, this inhibitory IGFBP could be an important physiological regulator of IGF actions in bone cells and other cell types as well.  相似文献   

10.
11.
Human intestinal smooth muscle in culture produces insulin-like growth factor (IGF)-I and IGF binding protein (IGFBP)-3, IGFBP-4, and IGFBP-5, which modulate the effects of IGF-I. This study examined the regulation of IGFBP production by endogenous IGF-I. R3-IGF-I, an agonist unaffected by IGFBPs, elicited concentration-dependent increase in growth, measured by [(3)H]thymidine incorporation, and production of IGFBP-3, IGFBP-4, and IGFBP-5, measured by Western blot. Antagonists of the IGF-I receptor, IGF-I Analog or monoclonal antibody 1H7, elicited concentration-dependent inhibition of growth and decrease in IGFBP-3, IGFBP-4, and IGFBP-5 production, implying that endogenous IGF-I stimulated growth and IGFBP production. R3-IGF-I-induced increase in IGFBP-3, IGFBP-4, and IGFBP-5 production was partially inhibited by a mitogen-activated protein (MAP) kinase or a phosphatidylinositol-3-kinase (PI 3-kinase) inhibitor and abolished by the combination. We conclude that endogenous IGF-I stimulates growth and IGFBP-3, IGFBP-4, and IGFBP-5 production in human intestinal smooth muscle cells. Regulation of IGFBP production by IGF-I is mediated by activation of distinct MAP kinase and PI 3-kinase pathways, the same pathways through which IGF-I stimulates growth.  相似文献   

12.
Insulin-like growth factor-binding protein-5 (IGFBP-5) is abundantly expressed in bone cells. To determine the physiological role(s) of endogenous IGFBP-5 in regulating bone cell growth, differentiation, and survival, we used short double-stranded RNA (siRNA) to trigger RNA interference of IGFBP-5 in human osteosarcoma cells. The IGFBP-5 siRNA, targeting against a sequence unique to the IGFBP-5 middle domain, efficiently reduced IGFBP-5 mRNA and protein levels. The IGFBP-5 siRNA did not change the levels of IGFBP-4, a structurally related protein, or glyceraldehyde-3-phosphate dehydrogenase, a housekeeping gene. Knock-down of IGFBP-5 resulted in a significant increase in the number of transferase-mediated dUTP nick end labeling-positive cells and a decrease in a bone differentiation parameter (alkaline phosphatase activity) but had little effect on basal or insulin-like growth factor I-induced proliferation. Overexpression of a siRNA-resistant IGFBP-5 mutant in the IGFBP-5 knock-down cells restored the levels of survival to the control level; overexpression of IGFBP-4 or wild type IGFBP-5 had no such effect. Paradoxically, the addition of exogenous IGFBP-5 not only failed to rescue IGFBP-5 knock-down-induced apoptosis, it caused a further increase in apoptosis. Furthermore, the addition of exogenous IGFBP-5 alone increased apoptosis. This pro-apoptotic action of exogenous IGFBP-5 was abolished when IGF-I was added in excess, suggesting that exogenous IGFBP-5 increases apoptosis by binding to and inhibiting the activities of insulin-like growth factors. These results indicate that endogenous and exogenous IGFBP-5 exhibits opposing biological actions on cell survival and underscore the necessity and utility of studying IGFBP functions through loss-of-function approaches.  相似文献   

13.
D Demarquay  M F Dumontier  L Tsagris  J Bourguignon  V Nataf  M T Corvol 《Hormone research》1990,33(2-4):111-4; discussion 115
This paper reports data on the in vitro effects of insulin-like growth factor I (IGF-I) and basic fibroblast growth factor (bFGF) on the phenotypic expression of epiphyseal chondrocytes grown in serum-free (SF) culture medium. bFGF mostly stimulates chondrocyte DNA and inhibits sulfated proteoglycan synthesis and type II collagen mRNA. On the contrary, IGF-I is poorly mitogenic but strongly stimulates protein synthesis and type II collagen mRNA. In addition, IGF-I prevents the expression of type I collagen gene. Lastly, chondrocytes cultured in SF medium are able to locally produce IGF-I peptides. In conclusion, IGF-I and bFGF have opposite effects on the phenotypic expression of chondrocytes in vitro: bFGF is mostly mitogenic and IGF-I appears to be a differentiating factor.  相似文献   

14.
The effects of transforming growth factor-beta (TGF-beta) on the synthesis of cartilage-matrix proteoglycan by cultured rabbit chondrocytes were examined. Rabbit chondrocytes were seeded at low density and exposed to a 1:1 mixture of Dulbecco's modified Eagle's medium and Ham's F-12 medium supplemented with 0.5% fetal bovine serum, 1% bovine serum albumin, 50 micrograms/ml ascorbic acid, and 2 x 10(-7) M hydrocortisone (Medium A). Various combinations of TGF-beta, insulin-like growth factor-I (IGF-I), and fibroblast growth factor (FGF) were also added to Medium A, and the chondrocytes were grown to confluency. Chondrocytes grown with TGF-beta or FGF alone became flat or fibroblastic, those grown with FGF and TGF-beta became very elongated and formed distinct foci, and those grown with FGF and IGF-I showed the spherical configuration characteristic of overtly differentiated chondrocytes. Nevertheless, the incorporation of 3H with glucosamine into the large, chondroitin sulfate proteoglycan synthesized by cultures with FGF and TGF-beta was similar to that in cells grown with FGF and IGF-I and five times that in cells cultured with FGF alone. The increases in incorporation of 3H reflected real increases in proteoglycan synthesis, because chemical analyses showed an increase in the accumulation of macromolecules containing uronic acid in cultures with FGF and TGF-beta or with FGF and IGF-I. However, FGF in combination with either TGF-beta or IGF-I had little effect on the incorporation of 3H into small proteoglycans or hyaluronic acid. These results indicate that chondrocytes morphologically transformed with TGF-beta and FGF fully express the differentiated proteoglycan phenotype rather than the transformed glycosaminoglycan phenotype.  相似文献   

15.
In the proteoglycans extracted from rabbit costal chondrocytes in culture, two populations of proteoglycans were distinguished by density gradient centrifugation under dissociative conditions. The major component was the faster sedimenting population (proteoglycan I), the putative 'cartilage-specific' proteoglycans, and the minor component was the slower sedimenting population (proteoglycan II). The monomeric size of proteoglycan I was closely related to the differentiation-state of chondrocytes and was a good marker of the differentiated chondrocytes. Treatment of the cultures with parathyroid hormone (PTH) induced an increase in the monomeric size of proteoglycan I. This increase was ascribed to an increase in the molecular size of the glycosaminoglycan chain in proteoglycan I. On the other hand, somatomedin-like growth factors, such as multiplication-stimulating activity (MSA) and cartilage-derived factor (CDF), did not affect the size of proteoglycan I, while they markedly stimulated the synthesis of proteoglycan I. In contrast, treatment with nonsomatomedin growth factors, such as fibroblast growth factor (FGF) and epidermal growth factor (EGF), resulted in not only a decrease in glycosaminoglycan synthesis but also a slight decrease in size of proteoglycan I. However, synthesis and size of proteoglycan II were little affected by these agents. Thus, the present study clearly shows that PTH and somatomedin-like growth factors have differential functions in bringing about the expression of the differentiated phenotype of chondrocytes: PTH influences chain elongation and termination of glycosaminoglycans in proteoglycan I, while somatomedin-like growth factors affect primarily the synthesis and secretion of proteoglycan I.  相似文献   

16.
The liver is a major source of circulating insulin-like growth factor I (IGF-I), and it also synthesizes several classes of IGF binding proteins (IGFBPs). Synthesis of IGF-I and IGFBPs is regulated by hormones, growth factors, and cytokines. They are nutritionally regulated and expressed in developmentally specific patterns. To gain insight into cellular regulatory mechanisms that determine hepatic synthesis of IGF-I and IGFBPs and to identify potential target cells for IGF-I within the liver, we studied the cellular sites of synthesis of IGF-I, IGF receptor, growth hormone (GH) receptor, and IGFBPs in freshly isolated rat hepatocytes, endothelial cells, and Kupffer cells. We also localized cellular sites of IGFBP synthesis by in situ hybridization histochemistry. Western ligand and immunoblot analyses were used to determine IGFBP secretion by isolated cells. Two IGF-I mRNA subtypes with different 5' ends (class 1 and class 2) were detected in all isolated liver cell preparations. Type 1 IGF receptor mRNA was detected in endothelial cells, indicating that these cells are a local target for IGF actions in liver. GH receptor was expressed in all cell preparations, consistent with GH regulation of IGF-I and IGFBP synthesis in multiple liver cell types. The IGFBPs expressed striking cell-specific expression. IGFBP-1 was synthesized only in hepatocytes, and IGFBP-3 was expressed in Kupffer and endothelial cells. IGFBP-4 was expressed at high levels in hepatocytes and at low levels in Kupffer and endothelial cells. Cell-specific expression of distinct IGFBPs in the liver provides the potential for cell-specific regulation of hepatic and endocrine actions of IGF-I.  相似文献   

17.
Glucocorticoids (GCs) modulate insulin-like growth factor action in cartilage through mechanisms that are complex and insufficiently defined, especially in the context of cranio-facial growth. Because the family of IGF-binding proteins (IGFBP-1 to -6) is important in the regulation of IGF availability and bioactivity, we examined the effect of GCs on chondrocyte differentiation in correlation with IGFBP production in cultured fetal rat chondrocytes isolated from nasal septum cartilage of fetal rat. Dexamethasone (DEX) effects were tested before and at the onset of extracellular matrix maturation. DEX induced a dose-dependent increase in the size of cartilage nodule formed, (45)Ca incorporation into extracellular matrix, alkaline phosphatase activity, and sulfatation of glycosaminoglycans, maximal effects being obtained with a 10-mM DEX concentration. The IGFBPs produced by cultured chondrocytes were characterized in culture medium which had been conditioned for 24 h under serum-free conditions by these cells. Western ligand blotting with a mixture of [(125)I]IGF-I and -II revealed bands of 20, 24, 29, a 31-32 kDa doublet and a 39-41 kDa triplet which were differently regulated by DEX. Immunoblotting showed that following DEX exposure, IGFBP-3 and -6 were up-regulated whereas IGFBP-2, -5, and the 24 kDa band were down-regulated. The effect of DEX on both differentiation and IGFBP production showed a same dependence, and developed when extracellular matrix maturation had been just induced. The results obtained in this chondrocyte culture system show that production of IGFBPs is modulated by DEX at physiological concentrations thus regulating IGF availability and action, a control which could promote the primordial role of the rat nasal septum in craniofacial growth.  相似文献   

18.
Cultured hepatic stellate cells (HSCs), the cell type primarily involved in the progression of liver fibrosis, secrete insulin-like growth factor-I (IGF-I) and IGF binding protein (IGFBP) activity. IGF-I exerts a mitogenic effect on HSCs, thus potentially contributing to the fibrogenic process in an autocrine fashion. However, IGF-I action is modulated by the presence of specific IGFBPs that may inhibit and/or enhance its biologic effects. Therefore, we examined IGFBP-1 through IGFBP-6 mRNA and protein expression in HSCs isolated from human liver and activated in culture. Regulation of IGFBPs in response to IGF-I and other polypeptide growth factors involved in the hepatic fibrogenic process was also assessed. RNase protection assays and ligand blot analysis demonstrated that HSCs express IGFBP-2 through IGFBP-6 mRNAs and release detectable levels of IGFBP-2 through IGFBP-5. Because IGF-I, platelet-derived growth factor-BB (PDGF-BB), and transforming growth factor-β (TGF-β) stimulate HSC proliferation and/or matrix production, we tested their effect on IGFBPs released by HSCs. IGF-I induced IGFBP-3 and IGFBP-5 proteins in a time-dependent manner without an increase in the corresponding mRNAs. IGFBP-4 protein levels decreased in response to IGF-I. TGF-β stimulated IGFBP-3 mRNA and protein but decreased IGFBP-5 mRNA and protein. In contrast, PDGF-BB failed to regulate IGFBPs compared with controls. Recombinant human IGFBP-3 (rhIGFBP-3) was then tested for its effect on IGF-I-induced mitogenesis in HSCs. rhIGFBP-3 inhibited IGF-I-stimulated DNA synthesis in a dose-dependent manner, with a peak effect observed at 25 nM IGFBP-3. Because TGF-β is highly expressed in cirrhotic liver tissue, we determined whether IGFBP-3 mRNA expression is increased in liver biopsies obtained from patients with an active fibroproliferative response due to viral-induced chronic active hepatitis. In the majority of these samples, IGFBP-3 mRNA was increased compared with normal controls. These findings indicate that human HSCs, in their activated phenotype, constitutively produce IGFBPs. IGF-I and TGF-β differentially regulate IGFBP-3, IGFBP-4, and IGFBP-5 expression, which, in turn, may modulate the in vitro and in vivo action of IGF-I. J. Cell. Physiol. 174:240–250, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

19.
Pleiotrophin (PTN) is a secreted heparin-binding, developmentally regulated protein that is found in abundance in fetal, but not mature, cartilage. SDS-page and glycosaminoglycan (GAG) analysis of sulfate-radiolabeled proteoglycans isolated from the medium of mature cultured chondrocytes treated with PTN showed a threefold increase in the levels of proteoglycan synthesis. In contrast, in cultures of fetal chondrocytes, no changes in proteoglycan synthesis were observed. Thymidine incorporation experiments showed a dose-dependent decrease in proliferation of treated cells compared with control cultures, suggesting that pleiotrophin had an inhibitory effect on growth of chondrocytes. Neither FGF or heparin reversed the inhibitory effect of PTN. Capillary electrophoresis of chondroitinase ABC-digested proteoglycans isolated from mature chondrocytes showed 2-4-fold increases in the amounts of the 4S- and 6S-substituted GAG chains for the PTN-treated chondrocytes. Northern analysis showed a twofold upregulation in the mRNA levels of biglycan and collagen type II, but no difference in the message levels for decorin and aggrecan. These results establish that PTN inhibits cell proliferation, while stimulating the synthesis of proteoglycans in mature chondrocytes in vitro, suggesting that PTN may act directly or indirectly to regulate growth and proteoglycan synthesis in the developing matrix of fetal cartilage.  相似文献   

20.
The recessive mutation nanomelia blocks the synthesis of a large aggregating proteoglycan (aggrecan) by avian embryo chondrocytes. Lack of aggrecan is associated with short stature, multiple morphological defects in cartilage, and embryo lethality. Bony defects have also been described, but were assumed to be a secondary consequence of the cartilage defect. However, two lines of evidence presented in this paper indicate that the aggrecan deficiency directly affects intramembranous bone. First, the morphology (i.e. projected area and shape) of certain membranous bones of nanomelia embryos was abnormal. Second, membranous bone from nanomelia embryos proved to be significantly stiffer in biomechanical tests that measured functional properties of the extracellular matrix. These findings were unexpected because intramembranous bones normally develop from mesenchyme and not from a cartilage intermediate, and they prompted a search for evidence of aggrecan expression in the bone of normal chick embryos. We report that: 1) aggrecan mRNA was identified by PCR analysis of total RNA isolated from day-13 chick embryo calvarium, 2) the PCR method successfully amplified aggrecan mRNA from primary chick embryo osteoblasts in culture, 3) in situ hybridization of membranous bone tissue sections demonstrated aggrecan expression by chick embryo osteoblasts in vivo, and 4) the aggrecan message was identified in Northern blots of calvarial mRNA probed at high stringency. The results of the molecular and biomechanical studies provide evidence that aggrecan is indeed expressed in membranous bone as well as cartilage. Altogether, these results suggest that aggrecan may contribute to the functional properties and the normal growth and development of avian membranous bone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号