首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
血液肿瘤即造血系统的恶性肿瘤,是一种严重危害公共健康的疾病。目前,血液肿瘤诊断治疗的最理想方法就是分子特异性诊断和靶向治疗,但该方法面临的最大困难就是分子靶点的选择。噬菌体展示技术是近十年发展起来的一种新的生物学技术,具有高通量筛选、模拟天然表位、易于纯化、将蛋白功能与编码基因相统一等优点,广泛应用于功能性蛋白质和多肽的筛选、蛋白质间的识别与相互作用、抗原表位的鉴定、基因工程抗体的筛选等多个分子生物学领域,非常适于理想靶点的选择。目前,噬菌体文库技术在血液肿瘤诊治中的应用主要集中在噬菌体抗体文库和噬菌体随机肽库上。本文就噬菌体展示技术在血液肿瘤诊断治疗中的研究成果做一总结分析,并对该技术在这一领域的应用前景进行展望。  相似文献   

2.
Shi B  Wang H  Guo S  Xu Y  Li Z  Gu J 《BioTechniques》2007,42(6):760-765
We present herein a novel method of pIII-based antibody phage display using Hpd3cells--bacterial cells bearing the genome of a gene-III-lacking helper phage (VCSM13d3). A high level of single-chain variable fragments (scFvs) was displayed in the consequent phagemid particles using Hpd3cells to rescue the phagemid encoding scFv-pIII. Hpd3cells considerably improved the specific enrichment factor when used for constructing an immunized antibody library. In addition, using Hpd3cells could overcome pill resistance and can contribute to the efficient enrichment of specific binding antibodies from a phage display library, thereby increasing the chance of obtaining more diverse antibodies specific for target antigens.  相似文献   

3.
Phage-display technology is probably the best available strategy to produce antibodies directed against various carbohydrate moieties since conventional hybridoma technologies have yielded mostly low-affinity antibodies against a limited number of carbohydrate antigens. Because of difficulties in immobilization of carbohydrate antigens onto plastic plates, however, the same procedures used for protein antigens cannot be readily applied. We adapted phage-display technology to generate human single chain antibodies (scFvs) using neoglycolipids as antigens. This study describes the isolation and characterization of phage-displayed antibodies (phage Abs) that recognized nonreducing terminal mannose residues. We first constructed a phage Ab library with a large repertoire using CDR shuffling and VL/VH shuffling methods with unique vector constructs. The library was subjected to four rounds of panning against neoglycolipids synthesized from mannotriose (Man3) and dipalmitoylphosphatidylethanolamine (DPPE) by reductive amination. Of 672 clones screened by enzyme-linked immunosorbent assay (ELISA) using Man3-DPPE as an antigen, 25 positive clones encoding scFvs with unique amino acid sequences were isolated as candidates for phage Abs against Man3 residues. TLC-overlay assays and surface plasmon resonance analyses revealed that selected phage Abs bound to neoglycolipids bearing mannose residues at nonreducing termini. In addition, binding of the phage Ab to RNase B carrying high mannose type oligosaccharides but not to fetuin carrying complex type and O-linked oligosaccharides was confirmed. Furthermore, first round characterization of scFvs expressed from respective phages indicated good affinity and specificity for nonreducing terminal mannose residues. These results demonstrated the usefulness of this strategy in constructing human scFv against various carbohydrate antigens. Further studies on the purification and characterization of these scFvs are presented in an accompanying paper in this issue.  相似文献   

4.
The combinatorial phage display library approach to antibody repertoire cloning offers a powerful tool for the isolation of specific antibodies to defined target antigens. Panning strategy is often a very critical point for selecting antibody displayed on the surface of bacteriophages. Most selection strategies described to date have relied on the availability of purified and often recombinant antigen, providing the possibility to perform selections on a well defined antigen source. However, when the antigen is difficult to purify by means of laborious and time-consuming chromatography procedures, panning of phage antibody libraries has to be performed on complex antigen sources such as cell surfaces or tissue sections, or even by in vivo selection methods. This provides a series of technical and experimental complications. In the present work, we successfully generated a mouse monoclonal antibody fragment from a phage display library directed against protein E7 of HPV18 avoiding antigen purification as for immunizing mice as for antibody library selection. Our work demonstrates the feasibility of phage antibody selections on antigens transferred to a nitrocellulose membrane as solid support, using one-dimensional polyacrylamide gel electrophoresis system as the only practice to separate a given antigen present in bacterial crude cell lysate.  相似文献   

5.
The neurotrophin receptor p75NTR is utilized by a variety of pathogens to gain entry into the central nervous system (CNS). We tested if this entry portal might be exploited using a phage display library to isolate internalizing antibodies that target the CNS in vivo. By applying a phage library that expressed human single chain variable fragment (scFv) antibodies on their surface to a transected sciatic nerve, we showed that (1) phage conjugated to anti-p75NTR antibody or phage scFv library pre-panned against p75NTR are internalized by neurons expressing p75NTR; (2) subsequent retrograde axonal transport separates internalized phage from the applied phage; and, (3) internalized phage can be recovered from a proximal ligature made on a nerve. This approach resulted in 13-fold increase in the number of phage isolated from the injured nerve compared with the starting population, and isolation of 18 unique internalizing p75NTR antibodies that were transported from the peripheral nerve into the spinal cord, through the blood-brain barrier. In addition, antibodies recognizing other potentially internalized antigens were identified through in vivo selection using a fully diverse library. Because p75NTR expression is upregulated in motor neurons in response to injury and in disease, the p75NTR antibodies may have substantial potential for cell-targeted drug/gene delivery. In addition, this novel selection method provides the potential to generate panels of antibodies that could be used to identify further internalization targets, which could aid drug delivery across the blood-brain barrier.  相似文献   

6.
Advances in proteomic research allow the identification of several hundred protein components in complex biological specimens. Structural information is typically lost during proteomic investigations. For this reason, the rapid isolation of monoclonal antibodies specific to proteins of interest would allow the study of structurally intact biological specimens, thus providing complementary proteomic information. Here, we describe the design, construction, characterization, and use of a large synthetic human antibody phage display library (ETH-2-Gold) containing three billion individual antibody clones. A large repertoire of antibodies with similar biochemical properties was produced by appending short variable complementarity-determining region 3 (CDR3) onto three antibody germline segments (DP47, DPK22, and DPL16), which are frequently found in human antibodies. The ETH-2-Gold library exhibits efficient display of antibody fragments on filamentous phage, as assessed by immunoblot. Furthermore, the library is highly functional, since >90% of clones express soluble antibodies in bacteria and since good quality monoclonal antibodies have been isolated against 16 different antigens. The usefulness of the library as a tool for generating monoclonal antibodies for biomedical applications was tested using the C-domain of tenascin-C (a marker of angiogenesis) as antigen and showing that specific antibodies to this target were able to stain vascular structures in tumor sections.  相似文献   

7.
目的:构建天然兔源噬菌体单链抗体库。方法:采用RT-PCR法从未免疫的兔子脾脏中克隆得到抗体重链可变区(VH)与轻链可变区(VL)基因,重叠PCR将VH和VL拼接成scFv片段,将scFv连接到噬菌粒pComb3XSS上,电转入XL1-Blue菌中,得到单链抗体库,并用此抗体库筛选抗肌酸激酶抗体。结果:构建了容量为4×108,基因重组率95%的单链抗体库,DNA指纹图谱显示抗体库多样性良好。以肌酸激酶为抗原,从该库中筛到3株抗肌酸激酶的抗体。结论:分析表明构建的天然兔源单链抗体库质量良好,可用于快速筛选、制备多种单链抗体。  相似文献   

8.
Toxoplasma gondii is a ubiquitous, unicellular, eukaryotic parasite with a complex intracellular life cycle capable of invading and chronically infecting a wide variety of vertebrate host species, including man. Although normally opportunistic in healthy adults, it is a lethal pathogen in immunocompromised humans, particularly in AIDS patients. We present the application of a genomic phage display as a tool for the direct identification of antigens with potential value in diagnosis and/or as subunit vaccine components. Using a polycosmid cloning strategy, we constructed a large phagemid display library (>10(9) independent clones) of mixed short genomic restriction fragments (< or = 500 bp) of T. gondii genomic DNA (80 Mbp genome size) fused to gene III of the filamentous phage M13. Biopanning of the library with monoclonal Toxoplasma antibodies resulted in the isolation and identification of an epitope of GRA3, an antigen located in the dense granules of T. gondii tachyzoites. The reactivity of the phage displaying the GRA3 epitope with the monoclonal antibody was confirmed by an enzyme-linked immunosorbent assay. These results demonstrate the accessibility of midsized eukaryotic genomes to display technology and the feasibility to screen these whole genome display libraries with antibodies for isolating novel antigenic determinants.  相似文献   

9.
The identification of marker molecules specific for blood and lymphatic endothelium may provide new diagnostic tools and identify new targets for therapy of immune, microvascular and cancerous diseases. Here, we used a phage display library expressing human randomized single-chain Fv (scFv) antibodies for direct panning against live cultures of blood (BECs) and lymphatic (LECs) endothelial cells in solution. After six panning rounds, out of 944 sequenced antibody clones, we retrieved 166 unique/diverse scFv fragments, as indicated by the V-region sequences. Specificities of these phage clone antibodies for respective compartments were individually tested by direct cell ELISA, indicating that mainly pan-endothelial cell (EC) binders had been selected, but also revealing a subset of BEC-specific scFv antibodies. The specific staining pattern was recapitulated by twelve phage-independently expressed scFv antibodies. Binding capacity to BECs and LECs and differential staining of BEC versus LEC by a subset of eight scFv antibodies was confirmed by immunofluorescence staining. As one antigen, CD146 was identified by immunoprecipitation with phage-independent scFv fragment. This antibody, B6-11, specifically bound to recombinant CD146, and to native CD146 expressed by BECs, melanoma cells and blood vessels. Further, binding capacity of B6-11 to CD146 was fully retained after fusion to a mouse Fc portion, which enabled eukaryotic cell expression. Beyond visualization and diagnosis, this antibody might be used as a functional tool. Overall, our approach provided a method to select antibodies specific for endothelial surface determinants in their native configuration. We successfully selected antibodies that bind to antigens expressed on the human endothelial cell surfaces in situ, showing that BECs and LECs share a majority of surface antigens, which is complemented by cell-type specific, unique markers.  相似文献   

10.
A unique human phage display library was used to successfully generate a scFv to the highly carcinogenic toxin aflatoxin B1. Such an antibody has major potential applications in therapy and diagnostics. To further exploit its analytical capacity, the scFv was genetically fused to alkaline phosphatase, thereby generating a novel and highly sensitive self-indicating reagent. The performance of this reagent was further characterized, demonstrating its efficacy. The sensitivity of scFv-AP fusion was three-fold better than that of the scFv form. The ability of this human library to generate antibodies to a small hapten was clearly demonstrated and this is linked to its intrinsic diversity, which exceeds many existing conventional human libraries. Our results indicate that demography may influence the diversity of the repertoire of the library in terms of its capacity to generate antibodies to specific targets. Equally, the approach demonstrated should also be applicable for other haptens and larger antigens.  相似文献   

11.
Phage display technology has been utilized for identification of specific binding molecules to an antigenic target thereby enabling the rapid generation and selection of high affinity, fully human antibodies directed towards disease target appropriate for antibody therapy. In the present study, single chain Fv antibody fragment (scFv) to hepatitis A virus (HAV) was selected from phage displayed antibody library constructed from peripheral blood lymphocytes (PBLs) of a vaccinated donor. The variable heavy (V(H)) and light chains (V(L)) were amplified using cDNA as template, assembled into scFv using splicing by overlap extension PCR (SOE PCR) and cloned into phagemid vector as a fusion for display of scFv on bacteriophage. The phage displaying antibody fragments were subjected to three rounds of panning with HAV antigen on solid phase. High affinity antibodies reactive to hepatitis A virus were identified by phage ELISA and cloned into a bacterial expression vector pET20b. The scFv was purified by immobilized metal affinity chromatography (IMAC) on a nickel-nitrilotriacetic acid (NTA) agarose column and characterized. The binding activity and specificity of the scFv was established by its non-reactivity towards other human viral antigens as determined by ELISA and immunoblot analysis. The scFv was further used in the development of an in-house IC-ELISA format in combination with a commercially available mouse monoclonal antibody for the quantification of hepatitis A virus antigen in human vaccine preparations. The adjusted r2 values obtained by subjecting the values obtained by quantification of the NIBSC standards using the commercial and the in-house ELISA kits by regression analysis were 0.99 and 0.95. 39 vaccine samples were subjected to quantification using both the kits. Regressional statistical analysis through the origin of the samples indicated International Unit (IU) values of 0.0416x and 0.0419x, respectively for the commercial and in-house kit respectively.  相似文献   

12.
Phage display has emerged as a powerful technique for mapping epitopes recognised by monoclonal and polyclonal antibodies. We have recently developed a simple gene-fragment phage display system and have shown its utility in mapping epitope recognised by a monoclonal antibody. In the present study, we have employed this system in mapping epitopes recognised by polyclonal antibodies raised against HIV-1 capsid protein, p24 which is derived from proteolytic cleavage of Gag polyprotein. HIV-1 gag DNA was fragmented by DNase I and the fragments (50-250 bp) were cloned into gene-fragment phage display vector to construct a library of phages displaying peptides. This phage library was used for affinity selection of phages displaying epitopes recognised by rabbit anti-p24 polyclonal antibodies. Selected phages contained sequences from two discrete regions of p24, demonstrating the presence of two antigenic regions. The DNA sequences encoding these regions were also cloned and expressed as GST fusion proteins. The immunoreactivity of these epitopes as GST fusion proteins, or as phage-displayed peptides, was comparable in ELISA system using same anti-p24 polyclonal antibodies. The results indicate that the gene-fragment based phage display system can be used efficiently to identify epitopes recognised by polyclonal antibodies, and phage displayed epitopes can be directly employed in ELISA to detect antibodies.  相似文献   

13.
The creation of large phage antibody libraries has become an important goal in selecting antibodies against any antigen. Here we describe a method for making libraries so large that the complete diversity cannot be accessed using traditional phage technology. This involves the creation of a primary phage scFv library in a phagemid vector containing two nonhomologous lox sites. Contrary to the current dogma, we found that infecting Cre recombinase-expressing bacteria by such a primary library at a high multiplicity of infection results in the entry of many different phagemid into the cell. Exchange of Vh and Vl genes between such phagemids creates many new V h/Vl combinations, all of which are functional. On the basis of the observed recombination, the library is calculated to have a diversity of 3x1011. A library created using this method was validated by the selection of high affinity antibodies against a large number of different protein antigens.  相似文献   

14.
With the advent of modern technologies enabling single cell analysis, it has become clear that small sub‐populations of cells or even single cells can drive the phenotypic appearance of tissue, both diseased and normal. Nucleic acid based technologies allowing single cell analysis has been faster to mature, while technologies aimed at analysing the proteome at a single cell level is still lacking behind, especially technologies which allow single cell analysis in tissue. Introducing methods, that allows such analysis, will pave the way for discovering new biomarkers with more clinical relevance, as these may be unique for microenvironments only present in tissue and will avoid artifacts introduced by in vitro studies. Here, we introduce a technology enabling biomarker identification on small sub‐populations of cells within a tissue section. Phage antibody libraries are applied to the tissue sections, followed by washing to remove non‐bound phage particles. To eliminate phage antibodies binding to antigens ubiquitously expressed and retrieve phage antibodies binding specifically to antigens expressed by the sub‐population of cells, the area of interest is protected by a ‘shadow stick’. The phage antibodies on the remaining areas on the slide are exposed to UV light, which introduces cross‐links in the phage genome, thus rendering them non‐replicable. In this work we applied the technology, guided by CD31 expressing endothelial cells, to isolate recombinant antibodies specifically binding biomarkers expressed either by the cell or in the microenvironment surrounding the endothelial cell.  相似文献   

15.
【目的】获得针对单增李斯特菌的特异性单域重链抗体,并对筛选过程中特异性克隆的富集规律进行分析,为筛选具有种属特异性的噬菌体展示抗体提供参考。【方法】采用固相筛选技术,以热灭活的单增李斯特菌菌体为抗原,通过四轮常规筛选和一轮消减筛选,从驼源天然噬菌体展示文库中筛选针对单增李斯特菌的单域重链抗体。采用Phage-ELISA法,对后四轮筛选洗脱物中随机挑选的噬菌体进行鉴定,阳性克隆进行基因测序及结合特异性分析。通过多序列比对分析将获得的基因序列进行分组和统计。【结果】成功筛选到2株单增李斯特菌特异性的单域重链抗体。【结论】在优化的筛选条件下,基于全细胞的筛选方法能够获得特异性识别单增李斯特菌的单域重链抗体,消减筛选对于去除非特异性克隆是有效的和必要的。  相似文献   

16.
Much work has been done to develop tumor-targeting antibodies by selecting a phage antibody library on cancer cell lines. However, when tumor cells are removed from their natural environment, they may undergo genetic and epigenetic changes yielding different surface antigens than those seen in actual cases of cancer. We developed a strategy that allows selection of phage antibodies against tumor cells in situ on both fresh frozen and paraffin-embedded tissues using laser capture microdissection. By restricting antibody selection to binders of internalizing epitopes, we generated a panel of phage antibodies that target clinically represented prostate cancer antigens. We identified ALCAM/MEMD/CD166, a newly discovered prostate cancer marker, as the target for one of the selected antibodies, demonstrating the effectiveness of our approach. We further conjugated two single chain Fv fragments to liposomes and demonstrated that these nanotargeting devices were efficiently delivered to the interior of prostate cancer cells. The ability to deliver payload intracellularly and to recognize tumor cells in situ makes these antibodies attractive candidates for the development of targeted cancer therapeutics.  相似文献   

17.
Phage display has emerged as a powerful technique for mapping epitopes recognised by monoclonal and polyclonal antibodies. We have recently developed a simple gene-fragment phage display system and have shown its utility in mapping epitope recognised by a monoclonal antibody. In the present study, we have employed this system in mapping epitopes recognised by polyclonal antibodies raised against HIV-1 capsid protein, p24 which is derived from proteolytic cleavage of Gag polyprotein. HIV-1 gag DNA was fragmented by DNase I and the fragments (50–250 bp) were cloned into gene-fragment phage display vector to construct a library of phages displaying peptides. This phage library was used for affinity selection of phages displaying epitopes recognised by rabbit anti-p24 polyclonal antibodies. Selected phages contained sequences from two discrete regions of p24, demonstrating the presence of two antigenic regions.

The DNA sequences encoding these regions were also cloned and expressed as GST fusion proteins. The immunoreactivity of these epitopes as GST fusion proteins, or as phage-displayed peptides, was comparable in ELISA system using same anti-p24 polyclonal antibodies. The results indicate that the gene-fragment based phage display system can be used efficiently to identify epitopes recognised by polyclonal antibodies, and phage displayed epitopes can be directly employed in ELISA to detect antibodies.  相似文献   

18.
We report a method for large-scale rapid analysis of phosphoproteins in tissues or cells by combining immobilized metal affinity chromatography (IMAC) with phage display cDNA library screening. We expressed a testis cDNA library as fusion proteins on phage and, using IMAC, enriched for sequences encoding phosphoproteins. Selected clones were polymerase chain reaction amplified and sequenced. The majority of the clones sequenced (80%) encoded known proteins previously identified as phosphoproteins. Immunoblotting with phosphotyrosine antibodies confirmed that some of the selected sequences encoded tyrosine phosphorylated proteins when expressed on phage. An advantage of this method is the rapid identification of phosphoproteins encoded by a cDNA library, which can identify proteins that are potentially phosphorylated in vivo. When this method is combined with limited enzymatic digestion and tandem mass spectrometric techniques, the specific phosphorylation site in a protein can be identified. This technique can be used in proteomics studies to effectively detect phosphorylated proteins and avoid time-consuming and expensive peptide sequencing.  相似文献   

19.
In vivo phage display is a high-throughput method for identifying target ligands specific for different vascular beds. Targeting is possible due to the heterogeneous expression of receptors and other antigens in a particular vascular bed. Such expression is additionally influenced by the physiological or pathological status of the vasculature. In vivo phage display represents a technique that is usable in both, vascular mapping and targeted drug development. In this review, several important methodological aspects of in vivo phage display experiments are discussed. These include choosing an appropriate phage library, an appropriate animal model and the route of phage library administration. In addition, peptides or antibodies identified by in vivo phage display homing to specific types of vascular beds, including the altered vasculature present in several types of diseases are summarized. Still, confirmation in independent experiments and reproduction of identified sequences are needed for enhancing the clinical applicability of in vivo phage display research.  相似文献   

20.
We describe a novel approach for high-throughput screening of recombinant antibodies, based on their immobilization on solid cellulose-based supports. We constructed a large human synthetic single-chain Fv antibody library where in vivo formed complementarity determining regions were shuffled combinatorially onto germline-derived human variable-region frameworks. The arraying of library-derived scFvs was facilitated by our unique display/expression system, where scFvs are expressed as fusion proteins with a cellulose-binding domain (CBD). Escherichia coli cells expressing library-derived scFv-CBDs are grown on a porous master filter on top of a second cellulose-based filter that captures the antibodies secreted by the bacteria. The cellulose filter is probed with labeled antigen allowing the identification of specific binders and the recovery of the original bacterial clones from the master filter. These filters may be simultaneously probed with a number of antigens allowing the isolation of a number of binding specificities and the validation of specificity of binders. We screened the library against a number of cancer-related peptides, proteins, and peptide-protein complexes and yielded antibody fragments exhibiting dissociation constants in the low nanomolar range. We expect our new antibody phage library to become a valuable source of antibodies to many different targets, and to play a vital role in facilitating high-throughput target discovery and validation in the area of functional cancer genomics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号